SEZ203b: OO Design for Software Engineers

w7: 00 Design Approach = //-
Architecture & Design patterns

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

The Road Map

4 Introduction to Software Design

v Software Design Approaches

v Introduction to OO Paradigm

> Software Design with OO Paradigm
Patterns in Design and Architecture

Selected Design Topics

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

OO0 Software Requirements & Design Process

v Requirement capture using Use Cases
v Use Case Diagrams
v Use Case Description

> Analysis & Design Model

v' Class Diagrams Architecture-centric
v’ Data Dictionary - . Patterns
v Interaction Diagrams * Frameworks
Statechart Diagrams
Activity Diagrams
Implementation Model

Deployment Model

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Architecture

System architecture describes
the pattern of the interconnection of the system’s components

_

Problem —

ks
\ Dﬂﬁ

IJ—_| Architecture 3
5 00T :

Architecture 2

Architecture 1

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Software Architecture

- Software architecture encompasses the set of significant decisions
about the organization of a software system

= composition of the structural and behavioral elements into larger
subsystem

o structural elements and their interfaces by which a system is
composed

o behavior as specified by the interaction or patterns among those
elements

= architectural style/pattern that guides this organization

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Representing System Architecture

Logical View Implementation View

End-user

Functionality

Programmers
Software management

Use Case View

Process View
System integrators

Deployment View
System engineers

Performance System topology
Scalability Delivery, installation
Throughput Communication

Conceptual Physical

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Architecture and the UML

Use cases

Process View

Active classes

o
B a
\/ = \/ g
B i N a
Logical View Implementation View
Classes, interfaces, ii-
collaborations J & Components

Use Case View

=

Deployment View

Nodes

Organization Package, subsystem

Mar 16, 2005

SE203b, ECE UWO, Hamada Ghenniwa

Dynamics Interaction State machine

The importance of software architecture

isolation

To enable everyone to better understand the system

To allow software developers to work on individual pieces of the system in

> To prepare for extension of the system

> To facilitate reuse and reusability

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Design Stable Architecture

To ensure the maintainability and reliability of a system,

= The architectural model of the system must be designed to be stable

= |n other words,

o new features can be easily added

> with only small changes to the architecture

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 9

To be a Master ...

Always study the designs of other Masters
= There are thousands of existing design patterns, which must be

o understood, memorized, and applied

"Each pattern describes a problem which occurs over and over again in our environment
and then describes the core of the solution to that problem,
in such a way that you can reuse this solution

a million times over,

without ever doing it the same way twice"
... Christopher Alexander

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 10

Patterns for Design Problems:
Non-functional

- How recursive, tree like structures be modeled?

- How can we reduce the interconnection between classes,

especially between classes that belong to different modules or subsystems?

How can additional functionality be attached to an object dynamically?

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Design with Patterns

A description of a pattern involves four items:
The name of the pattern
The purpose of the pattern, the problem it solves
How we could accomplish this
= The constraints and forces we have to consider in order to accomplish it

The greatest influential work on this fledging community was
Design Patterns: Elements of Reusable Object-Oriented Software by

Gamma, Helm, Johnson, Vlissides , 1995In recognition of their important work, these

four authors are commonly and affectionately known as the “Gang of Four”

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Kinds of Software Design Patterns

- Architectural Patterns

= afundamental structural organization for software systems

o It provides a set of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships between them

- Design Patterns

= commonly recurring structure of communicating subsystems or components
that solves a general design problem within a particular context

o a scheme for refining the subsystems or components of a software system, or the
relationships between them

. Idioms (coding) patterns

= alow-level pattern specific to a programming language

= how to implement particular aspects of components or the relationships
between them using the features of the given language

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 13

Patterns: Design Principles

- All the design patterns are based on two design concepts

1. programming to an interface

2. using indirection or composition with delegation

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 14

Program to an interface
Not an implementation

Inheritance: white-box reuse |

= Polymorphism depends on this!

Inheritance permits defining a family of objects with identical interfaces

- All derived classes share the base class interface

= Subclasses extend (add) or override operations,

o But NOT to block (hiding) operations

- All subclasses respond to requests in the interface of the abstract

class

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Inheritance for
Program to an interface

Clients should be unaware of types of
objects:

“explicit case analysis on the type of an object
is usually an error. The designer should use
polymorphism”.

Clients only know about the abstract classes
defining the interface.

= “All base classes should be abstract”.

This reduces implementation dependencies

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Component

\wedgetOperations())|

Button

TextArea |

WidgetContainer

ContainerOperations()|

However,
Inheritance for reuse

- Parent classes often define part of their subclasses physical
representation

= Inheritance exposes the parent implementation

o —>it's said to “break encapsulation”
Change in parent - change in subclass

Can’t change inherited implementation at run-time

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Object Composition:
Black-box Reuse

Object composition: black-box reusel

In object composition ¢

Component

= objects are accessed solely through their interfaces

\wedgetOperations()|

o no break of encapsulation

= any object can be replaced by another at runtime

| Button

[

TextArea |

o as long as they are the same type

WidgetContainer

(ContainerOperations()|

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Delegation

Delegation is “a way of making composition as
powerful for reuse as inheritance” through:

<-—___E

= The receiver passes itself to the delegate to let the
delegated operation refer to the receiver! Component

These objects handle a request [wedgetOperations()

o analogous to subclass deferring request to parent

Button | | Menu

| TextArea |

Can change behaviors at run-time WidgetContainer

o For example: button can become text at run-time by ContainerOperations()

replacing Button with TextArea, (assuming Button &
TextArea are same type!)

o However, there are run-time costs.

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 19

Delegation:
Example
Rectangle
Window
rectangle width
area() @ height
Q
area()

Window delegates area() to rectangle

return rectangle->area() return width*height

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 20

Design Pattern Template

Intent

o short description of pattern and its purpose
= Motivation

o motivation scenario demonstrating pattern’s use

= Applicability
o circumstances in which pattern applies
= Structure

o graphical representation of the pattern

= Participants

o participating classes and/or objects and their responsibilities

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 21

Some Reusable OO Design Patterns

Facade
Composite
Adapter
Proxy
Observer

Abstract Factory

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 22

The Facade Pattern

- Provides a unified interface to a set of interfaces in a subsystem

= Fagade defines a higher-level interface

o that makes the subsystem easier to use

o Use a Facade object to provide a single, simplified interface

> to the more general facilities of a subsystem

= Common design goal

o to minimize the communication and dependencies between subsystems

+ How do you simplify the view that programmers have of a complex package?

Mar 16, 2005

SE203b, ECE UWO, Hamada Ghenniwa 23

Facade Pattern: Subsystems

Client

Client

ﬁinting
Subsystems

o

U1

~

Printer
Server
2
Printer
InkJet Laser
driver driver

N

2/

Mar 16, 2005

Structure of the Facade Pattern
Client Classes D
Facade

jm

Subsystem Classes

SE203b, ECE UWO, Hamada Ghenniwa 24

Patrticipants of the
Facade Pattern

Facade
= Knows which subsystem classes are responsible for a request

= Delegates client requests to appropriate subsystem objects

. Subsystem Classes

= Implement subsystem functionality
= Handle work assigned by the fagade object
= No need to have knowledge of the facade

> i.e., they keep no references to it

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 25

Facade:
Mortgage Application Example

Client1 Client2

Client1 Client2
Sy

MortgageApplication

N\

Bank Loan Credit

Bank Loan Credit

SubSystem

Delegation is used to bind
MortgageApplication with Bank, Loan, and Credit

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 26

Facade —
Code Sample

// "SubSystem ClassA"
class Bank
{
public boolean SufficientSavings(Customer ¢) {
System.out.printin("Check bank for " + c.getName());

return true; /1 "SubSystem ClassC"

} class Loan

} {

public boolean GoodLoan(Customer c) {
System.out.printin("Check loan for " + c.getName());
return true;

// "SubSystem ClassB" }
class Credit }

public boolean GoodCredit(int amount, Customer c) {
System.out.printin("Check credit for " + c.getName());
return true;
}
}

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 27

Facade —
Code Sample

Il "Facade™

class MortgageApplication {
int amount;
private Bank bank = new Bank();
private Loan loan = new Loan();
private Credit credit = new Credit();

public MortgageApplication(int amount){this.amount = amount;}

public boolean IsEligible(Customer c)
{
/I Check creditworthyness of applicant
if(!bank.SufficientSavings(c))
return false;
if(loan.GoodLoan(c))
return false;
if(!credit. GoodCredit(amount, c))
return false;

Il Facade Client
public class FacadeApp
{

public static void main(String[] args)

/I Create Facade
MortgageApplication mortgage =
new MortgageApplication(125000);
/I Call subsystem through Facade
mortgage.IsEligible(
new Customer("Gabrielle McKinsey"));

return true;

}
}

}
}

Mar 16, 2005 SE203b, ECE OWO, Hamada Ghenmwa

The Adapter Pattern

It converts the interface of a class into another interface
= in a way that allow us
o to use an existing class with an interface does not match the one we need

o to create a reusable class that cooperates with unrelated or unforeseen
classes

> i.e., classes that don't necessarily have compatible interfaces
o to use several existing subclasses
> butit's impractical to adapt their interface by sub-classing everyone

> An object adapter can adapt the interface of its parent class

How to effectively use polymorphism when reusing a class whose methods
= have the same function
= but not the same signature

as the other methods in the hierarchy?

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

29

Adapter Pattern

Example: Remote Procedure Call (RPC)

- Server
Client
Client Procedure Called Procedure
arguments results
Client Stub Server Stub
Adapter Adaptee
Network transport Network Transport

Network

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Adapter Pattern : The Structure

<<stereotype>>
Target {abstract}

K <stereotype> 3
Client

Interface inheritance is use to specify the
interface of the Adapter class.

Delegation is used to
bind an Adapter and an Adaptee

Target and Adaptee (usually called legacy
system) exist before Adapter.

trequest() {abstract

[

<<stereotype>> <<stereotype>>
Adapter Adaptee
+request(), +specificRequest()
I
i
i
i
v
S

Request() {
adaptee.specificreque

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

st();

Patrticipants of the
Adapter Pattern

Client

= Collaborates with objects conforming to the target interface

. Target

= Defines the application-specific interface that clients use

- Adapter

= Adapts the interface of the adaptee to the target interface

- Adaptee

= Defines an existing interface that needs adapting

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

Subsystem Design with
Facade and Adapter

The ideal structure of a subsystem - Use design patterns to realize this
consists of subsystem structure
= an interface object = Fagade:
Realization of the Interface Object

= a set of application domain
objects of existing systems o Provides the interface to the

» Some of the application domain subsystem and act as controller

objects are interfaces to existing = Adapter:

systems -
Interface to existing systems

o Provides the interface to existing
system (legacy system)

o The existing system is not
necessarily object-oriented!

= one or more control objects

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 33

Composite Pattern

Intent
= to represent part-whole hierarchies of objects

= to treat individual objects and compositions of objects uniformly

o i.e., to be able to ignore the difference between compositions of objects and
individual objects

Motivation

= If not used, client-object must treat primitive and container classes differently

o Thus, making the application more complex than is necessary

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 34

Consider...

Application Window

Legend

Windows &
Widget Container

Buttons
Menus
Text Area
etc.

How does the window hold and deal with the different items it has to manage?

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

35

+hadidlcompone unfn) -l

Bl drferenft drigonent | o i enl] B0k
-+t Mbdired oc ind] - Component

O perabiary |

Composite Pattern: The Structure

chadren

m\
/ N\

alereobyper
Lead Companfe
E = TN = LA] L] vl
aFtemovmc ompanent Camparen | ool sn
=G e bl dlind e ink) - oo e
aCipantiony |

T

Oipeefion(]§
a3 i bl e |
@ Openfion],
1

i

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

A Possible Solution

Component Component
implements default behavior for widgets wedgetOperations()
when possible

Button, Menu, etc.

overrides Component methods ’ | Button | | Menu | |TextArea|

when needed - -
WidgetContainer

will have to override all WidgetOperations

A container is a subclass of component, but
a container retains a list of other components that it can display inside of itself

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 37

Patrticipants of Composite Pattern

Component
Declares the interface for objects in the composition

Implements default behavior for the interface common to all classes

+ Leaf
Represents leaf objects in the composition

Defines behavior for primitive objects in the composition
« Composite

Defines behavior for components having children
= Implements child-related operations in the component interface
Stores child components
. Client

Manipulates objects in the composition through the component interface

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 38

Application Examples

File systems
= Individual files are leaves
= directories and subdirectories are composite files (that contain files)
Most WEB URL's are composites that contain many other URL's
= Some URL's are leaves
o documents without links; images; email addresses

Java AWT is based on the Composite pattern

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 39

Java AWT library with the component pattern

Graphics
Component .
getGraphics()
Text Button | Label | Container
C
— add(Component c)
paint(Graphics g)
| TextField | | TextArea

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 40

{ Allcomposites maintain a list of
contained strategies. Therefore,
define a common superclass
CompositePricingStrategy that
defines this list (named
pricingStrategies).

return pricingStrategy.getT otal(this)
}

Sale
* «interface» -
date 1 ISalePricingStrategy -
pricingStrategy getTotal(Sale) : Money pricingStrategies

getTotal()

PercentageDiscount
PricingStrategy

AbsoluteDiscount
OverThreshold

Composite
PricingStrategy

PricingStrategy
percentage : float

discount : Money
threshold : Money

getTotal(Sale) : Money add(ISalePricingStrategy)

getTotal(Sale) : Money

getTotal(Sale) : Money

}

CompositeBestForCustomer
PricingStrategy

CompositeBestForStore

return sale.getPreDiscountTotal() * percentage PricingStrategy

getTotal(Sale) : Money getTotal(Sale) : Money

{
lowestTotal = INTEGER.MAX
for each ISalePricingStrategy stratin pricingS trategies

total := strat.getT otal(sale
lowestTotal = min(total, lowestTotal)

return lowestTotal

}

UML notation: this is a way to indicate objects that impl
some interface, when we don't want to declare what the
specific implementation classes are

ISalePricingStrategy ISalePricingStrategy
s Sde SalesLinelt :CompositeBestForCustomer \O .
* ~=desinellem PricingStrats Object

t:=getTotal(s)

{t=min(setof al) }

:

the Sale object treats a Composite Strategy that contains o
strategies just like any other ISalePricingStrategy

public abstract class CompositePricingStrategy implements ISalePricingStrategy {
protected List pricingStrategies = new ArrayList();
public void add(ISalePricingStrategy s) { pricingStrategies.add(s); }
public abstract Money getTotal(Sale sale);

}// end of class

public class CompositeBestForCustomerPricingStrategy
extends CompositePricingStrategy
{
public Money getTotal(Sale sale) {
Money lowestTotal = new Money(Integer.MAX_VALUE);

for(Iterator i = pricingStrategies.iterator(); i.hasNext();)

{
ISalePricingStrategy strategy = (ISalePricingStrategy)i.next();

Money total = strategy.getTotal(sale);
lowestTotal = total.min(lowestTotal);

}

return lowestTotal;

} 1/ end of class

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 43

Proxy Pattern

- A proxy acts on behalf of a real object

= both have the same interface

= to improve the security of the system

o by checking access before loading an object to the memory
= to improve the performance of a system

o by delaying expensive computations and using memory only when needed
= to have a stand-in for the real object

o to control how the real object behaves

- How to reduce the need to create instances of a heavyweight class?

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 44

Proxy: The Structure

<<stereotype>>

Subject {(abstract}
) i Client

+request() {abstract}

[F
| |

<<stereotype>> <<stereotype>>
RealSubject Proxy
+request() +request() -------- - --->| Request() {

realSubject.request();
}

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 45

Proxy:

The Structure & Behavior

Client) Subject
I e s _-" Request()
T o = s 3
— T - : |
Proxy 7 RealSubject
o
Request) |77 = T » Request()

Delegation

Interface inheritance is use to specify the interface of the proxy
through class Subject
= In Java Subiect can be implemented with an interface
Proxy is a subclass of the abstract class Subject
The Client always calls Request() in Proxy

The Implementation of Request() in class Proxy then uses Delegation, to
access Request() in RealSubject

RealSubject ist also subclass of the abstract class Subject

Proxy Pattern
Applications

Distributed Programming:

= Reduction of the access cost for remote objects

= Virtual Objects

Authentication:

= Checking the access rights of a caller

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

47

Categories of Proxy

Remote Proxy

The actual object is on a remote
machine (remote address space)

Hide real details of accessing the
object

o Used in CORBA, Java RMI

Machine A Machine B
HelloClient HelloServer
SayHela)
i) |\
| Helo
Hello Hello
Serler Client
Proxy Proxy

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

48

Proxy Example: image

Web Browser (Reallmage) boundingBox()
draw()
[I |
Proxylmage Reallmage
boundingBox() reslSublect boundingBox()
draw() draw()

- Images are stored and displayed separately from Text
- The client cannot tell, if it is using Proxylmage instead of Reallmage

- The draw() can be implemented differently in Proxylmage and in Reallmage
= Proxylmage draws an empty rectangle

= Reallmage draws the full picture

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 49
|nn Amaron.com Wlcem
|+ = [& + FQin 1w amaron.comensc /otucon 1t morme. home miml) 102-£361067-6635074=0-
Web page access Wiy (V) SRAIONCOM sl Wrmew | e
aWatches

via Reallmage

i ” n,

5)

FREE rd inatanily with Caighalcn
: Dne infused Ancdized

COORWE'E.

Signin 1 see whats
e for You.

on- w custamer?

Po e Event
Save up 1o T0% on Polo Ralph Lauren apparsl and
8 foatwear for men, women, and children
B Shoo e sale

Mew and Future Feleases
Pirates of the Caribbean - The Curse of the Black Pearl

Amazon.com
ou won® noad a botte of rum 1o enjoy Piraes of e
Caribbean: The Curse of the Black Peari, especially il

you've experienced the Disneyland heme-park ride hat
rspined it There's a galieon's. . Aead moes (Raie o Sem)
e New and Future Releases

John Grisham {Author) i
Maciin] by Apple Computer (Rat 1)
Videscrean Eciion) DVD - Scarleft

= Norah Joows (Bamn)

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 50

Amazon com: Welcome

13/ W Amazon Com enec/ obedos fubit Mome home.bmi) L0

Web page access
via Proxylmage

Hello. San i 10 get personalized roenmen

A1 Prourm

Brown. sear.
L ﬁen n Visa Card | and Save $30 and cock the
; v 5 p Wiy you want
FREE S St ;‘Jc;;l:]a;onﬁmkﬁmrﬁgﬁw,AFRh.]Zr’mms..y'\d with Calohat
Shipping on orders ower . i (e Infused Anodized
a5l cooKware
Besirichons apciy
B v [wursien |
Take a definousty dishy 1our feough the ugly
underbedly of the enertainment industry in Andegw | AIrEadY .
Brerbart and Mark Ebmer's Holtwood, Sign 00 see whal's
G niz 1 N for You

e

Sawe up 1o 70% on Polo Ralph Lauren apparel

and footwear for men, women. and children.

(Beta - What is 57 Ll
- Jewglry § Walches .
[Beta - What is fu57)
« Gt Food
Bats - What s $ie?)

Palo R:

New and Future Releases =
Pirates of the Caribbean - :
. i
Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 51

Activation of the Proxy Class

enn Appearance =

U4 @ =7 & @

General | Appearance | Bookmarks Tabs AutoFill Security Advanced

P T —.
Standard font: Times 16 (Select...)

Fixed-width font: Courier 13 (Select..)

@w images when the p@

Default Encoding: | Western (ISO Latin 1) “"'J

M

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 52

Image
boundingBox()
draw()

A

Proxylmage . Reallmage
boundinaBox() realSubject boundingBox()
draw() < draw())

s e e R

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 53

Categories of Proxycon)

Virtual Proxy
= Provides different objects with different levels of access to original object

= Creates/accesses expensive objects on demand

o to delay creating an expensive object until it is really accessed

- Cache Proxy (Server Proxy)

= Multiple local clients can share results from expensive operations

o remote accesses or long computations

- Firewall Proxy

= Protect local clients from outside world

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 54

The Observer Pattern

Defines a one-to-many dependency between objects

When one object changes state

o all its dependents are notified and updated automatically

A common side-effect of partitioning a system into a collection of cooperating classes

o the need to maintain consistency between related objects

» without making the classes tightly coupled

How to reduce the interconnection between classes,

especially between classes that belong to different modules or subsystems

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 55

Observer Pattern: Example

=

Sm
e [

=]
=

c

110
20|
10

NF'N

w
=
L]

80

-—
change notification requests, modifications

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 56

Structure of the Observer Pattern

ol eredkrpes
Timbect

Palstet)
+fach chaercar Dltnarver) il
+Cheba b8 Bt drver CHi drver]l vnid

ceredyper
CHimmreer

ah{br] |
T ", &
| I
1 H
‘
1
|
S et E e — e E—
TEEEETREY EECI
CanereleSubjeet Cancrel e0ba erver
!
SHUNECI IR E Sl E d ondde |
[TN C T dubyet
o+ Gl el of b Slade] | void
Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 57

Example

Netscape: JIPA V1.1
File Edit View Go Comrnunicator

Java Image Preview Applet JIPA
HST Dataset U2460107T

Hela

= 321 ysouul RA=12:22:57 59 Dec= 15:49
: TT_SCALEDI382L[1/1]

800 = 800

Mar 16, 2005

The dialog frame below defines a color
model (red marked).

e Whenever the color model is changed

¢ the dependant colorbar as well as
the image (green marked) are
notified.

Java supports this concept by introducing
Observable and Observer classes

Color Table

Red Temperature —

Coler Madel:

' Histegram Eq

Loldx: 50

Disrniss

& Unsigned Java, Applet Wincow

SE203b, ECE UWO, Hamada Ghenniwa 58

Patrticipants of the
Observer Pattern

+ Subject
= Knows its observers
= Provides an interface for attaching and detaching observers
= Sends a notification to its observers when its state changes
» Concrete Subject

= Stores state of interest to concrete observers

+ Observer
= Defines an updating interface for concrete observers

» Concrete Observer

= Maintains a reference to a concrete subject object
= Stores state that should stay consistent with the subject's

= Implements the updating interface

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 59

