
Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 1

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa

SE203b: OO Design for Software EngineersSE203b: OO Design for Software Engineers

W7W7: OO Design ApproachOO Design Approach
Architecture Architecture & Design patterns& Design patterns

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 2

The Road MapThe Road Map

Introduction to Software Design

Software Design Approaches

Introduction to OO Paradigm

Software Design with OO Paradigm

• Patterns in Design and Architecture

• Selected Design Topics

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 2

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 3

OO Software OO Software Requirements & DesignRequirements & Design ProcessProcess

Requirement capture using Use Cases
Use Case Diagrams

Use Case Description

Analysis & Design Model
Class Diagrams

Data Dictionary

Interaction Diagrams

Statechart Diagrams

Activity Diagrams

• Implementation Model

• Deployment Model

Architecture-centric
• Patterns
• Frameworks

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 4

ArchitectureArchitecture

Problem

Architecture 1

Architecture 2

Architecture 3

System architecture describes

the pattern of the interconnection of the system’s components

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 3

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 5

Software ArchitectureSoftware Architecture

• Software architecture encompasses the set of significant decisions
about the organization of a software system

composition of the structural and behavioral elements into larger
subsystem

o structural elements and their interfaces by which a system is
composed

o behavior as specified by the interaction or patterns among those
elements

architectural style/pattern that guides this organization

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 6

Representing System ArchitectureRepresenting System Architecture

Logical ViewLogical View

End-user
Functionality

Implementation ViewImplementation View

Programmers
Software management

Process ViewProcess View

Performance
Scalability
Throughput

System integrators
Deployment ViewDeployment View

System topology
Delivery, installation

Communication

System engineers

Conceptual Physical

Use Case ViewUse Case ViewUse Case View

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 4

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 7

Architecture and the UMLArchitecture and the UML

Organization Package, subsystem Dynamics Interaction State machine

Logical ViewLogical View Implementation ViewImplementation View

Process ViewProcess View

Components
Classes, interfaces,
collaborations

Active classes

Deployment ViewDeployment View

Nodes

Use Case ViewUse Case View
Use cases

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 8

The importance of software architectureThe importance of software architecture

To enable everyone to better understand the system

To allow software developers to work on individual pieces of the system in
isolation

To prepare for extension of the system

To facilitate reuse and reusability

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 5

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 9

Design Stable ArchitectureDesign Stable Architecture

• To ensure the maintainability and reliability of a system,
The architectural model of the system must be designed to be stable

In other words,

o new features can be easily added

with only small changes to the architecture

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 10

To be a Master …To be a Master …

• Always study the designs of other Masters

There are thousands of existing design patterns, which must be

o understood, memorized, and applied

"Each pattern describes a problem which occurs over and over again in our environment

and then describes the core of the solution to that problem,

in such a way that you can reuse this solution

a million times over,

without ever doing it the same way twice"
… Christopher Alexander

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 6

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 11

Patterns for Design Problems:Patterns for Design Problems:
NonNon--functionalfunctional

• How recursive, tree like structures be modeled?

• How can we reduce the interconnection between classes,
especially between classes that belong to different modules or subsystems?

• How can additional functionality be attached to an object dynamically?

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 12

Design with PatternsDesign with Patterns

• A description of a pattern involves four items:
The name of the pattern

The purpose of the pattern, the problem it solves

How we could accomplish this

The constraints and forces we have to consider in order to accomplish it

• The greatest influential work on this fledging community was
Design Patterns: Elements of Reusable Object-Oriented Software by

Gamma, Helm, Johnson, Gamma, Helm, Johnson, VlissidesVlissides , 1995, 1995In recognition of their important work, these

four authors are commonly and affectionately known as the “Gang of Four”

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 7

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 13

Kinds of Software Design PatternsKinds of Software Design Patterns

• Architectural Patterns
a fundamental structural organization for software systems

o It provides a set of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships between them

• Design Patterns
commonly recurring structure of communicating subsystems or components
that solves a general design problem within a particular context

o a scheme for refining the subsystems or components of a software system, or the
relationships between them

• Idioms (coding) patterns
a low-level pattern specific to a programming language

how to implement particular aspects of components or the relationships
between them using the features of the given language

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 14

Patterns: Design PrinciplesPatterns: Design Principles

• All the design patterns are based on two design concepts

1. programming to an interface

2. using indirection or composition with delegation

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 8

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 15

Program to an interfaceProgram to an interface
Not Not an implementationan implementation

Inheritance: whitewhite--boxbox reusereuse

• Inheritance permits defining a family of objectsfamily of objects with identical interfaces
Polymorphism depends on this!

• All derived classes share the base class interface
Subclasses extend (add) or override operations,

o But NOT to block (hiding) operations

• All subclasses respond to requests in the interface of the abstract
class

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 16

Inheritance for Inheritance for
Program to an interfaceProgram to an interface

•• ClientsClients should be unaware of types of
objects:

“explicit case analysis on the type of an object
is usually an error. The designer should use
polymorphism”.

•• ClientsClients only know about the abstract classes
defining the interface.

: “All base classes should be abstract”.

• This reduces implementation dependencies

Component

wedgetOperations()

Button Menu TextArea

WidgetContainer

ContainerOperations()

Client

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 9

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 17

However, However,
Inheritance for reuseInheritance for reuse

• Parent classes often define part of their subclasses physical
representation

Inheritance exposes the parent implementation
o it’s said to “break encapsulation”

• Change in parent change in subclass

• Can’t change inherited implementation at run-time

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 18

Object Composition:Object Composition:
BlackBlack--box Reusebox Reuse

• Object composition: blackblack--boxbox reusereuse

• In object composition
objects are accessed solely through their interfaces

o no break of encapsulation

any object can be replaced by another at runtime
o as long as they are the same type

Component

wedgetOperations()

Button Menu TextArea

WidgetContainer

ContainerOperations()

Client

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 10

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 19

DelegationDelegation

• Delegation is “a way of making composition as
powerful for reuse as inheritance” through:

The receiverreceiver passes itself to the delegatedelegate to let the
delegated operation refer to the receiver!

These objects handle a request

o analogous to subclass deferring request to parent

• Can change behaviors at run-time
o For example: button can become text at run-time by

replacing Button with TextArea, (assuming Button &
TextArea are same type!)

o However, there are run-time costs.

Component

wedgetOperations()

Button Menu TextArea

WidgetContainer

ContainerOperations()

Client

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 20

Delegation:Delegation:
ExampleExample

Window

area()

Rectangle

rectangle

area()

return rectangle->area() return width*height

width
height

Window delegates area() to rectangleWindow Window delegatesdelegates area()area() to rectangleto rectangle

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 11

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 21

Design Pattern TemplateDesign Pattern Template

Intent

o short description of pattern and its purpose

Motivation

o motivation scenario demonstrating pattern’s use

Applicability

o circumstances in which pattern applies

Structure

o graphical representation of the pattern

Participants

o participating classes and/or objects and their responsibilities

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 22

Some Reusable OO Design PatternsSome Reusable OO Design Patterns

• Façade

• Composite

• Adapter

• Proxy

• Observer

• Abstract Factory

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 12

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 23

The Façade Pattern The Façade Pattern

• Provides a unified interface to a set of interfaces in a subsystem

Façade defines a higher-level interface

o that makes the subsystem easier to use

o Use a Façade object to provide a single, simplified interface

to the more general facilities of a subsystem

Common design goal
o to minimize the communication and dependencies between subsystems

• How do you simplify the view that programmers have of a complex package?

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 24

Façade Pattern: SubsystemsFaçade Pattern: Subsystems

Printer
Server
Printer
Server

PrinterPrinter

InkJet
driver
InkJet
driver

Laser
driver
Laser
driver

1

1

2

Printing
Subsystems

Façade

Structure of the FaçadeStructure of the Façade PatternPatternClient Client

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 13

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 25

Participants of the Participants of the
Façade PatternFaçade Pattern

• Façade
Knows which subsystem classes are responsible for a request

Delegates client requests to appropriate subsystem objects

• Subsystem Classes
Implement subsystem functionality

Handle work assigned by the façade object

No need to have knowledge of the façade

i.e., they keep no references to it

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 26

Façade: Façade:
Mortgage Application ExampleExample

Bank Loan Credit

Client1 Client2

SubSystem

Bank Loan Credit

MortgageApplication

Client1 Client2

• Delegation is used to bind
MortgageApplication with Bank, Loan, and Credit

• Delegation is used to bind
MortgageApplication with Bank, Loan, and Credit

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 14

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 27

Façade Façade ––
Code SampleCode Sample

// "SubSystem ClassA"

class Bank
{

public boolean SufficientSavings(Customer c) {

System.out.println("Check bank for " + c.getName());

return true;

}

}

// "SubSystem ClassA"

class Bank
{

public boolean SufficientSavings(Customer c) {

System.out.println("Check bank for " + c.getName());

return true;

}

}

// "SubSystem ClassB"
class Credit
{
public boolean GoodCredit(int amount, Customer c) {
System.out.println("Check credit for " + c.getName());
return true;

}
}

// "SubSystem ClassB"
class Credit
{
public boolean GoodCredit(int amount, Customer c) {
System.out.println("Check credit for " + c.getName());
return true;

}
}

// "SubSystem ClassC"
class Loan
{
public boolean GoodLoan(Customer c) {
System.out.println("Check loan for " + c.getName());
return true;

}
}

// "SubSystem ClassC"
class Loan
{
public boolean GoodLoan(Customer c) {
System.out.println("Check loan for " + c.getName());
return true;

}
}

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 28

// "Facade"
class MortgageApplication {

int amount;
private Bank bank = new Bank();
private Loan loan = new Loan();
private Credit credit = new Credit();

public MortgageApplication(int amount){this.amount = amount;}

public boolean IsEligible(Customer c)
{
// Check creditworthyness of applicant
if(!bank.SufficientSavings(c))
return false;

if(!loan.GoodLoan(c))
return false;

if(!credit.GoodCredit(amount, c))
return false;

return true;
}

}

// "Facade"// "Facade"
class MortgageApplication {

int amount;
privateprivate Bank bankbank = new Bank();
privateprivate Loan loanloan = new Loan();
private private Credit creditcredit = new Credit();

public MortgageApplication(int amount){this.amount = amount;}

public boolean IsEligible(Customer c)
{
// Check creditworthyness of applicant
if(!bank.SufficientSavings(c))
return false;

if(!loan.GoodLoan(c))
return false;

if(!credit.GoodCredit(amount, c))
return false;

return true;
}

}

/// Facade Client
public class FacadeApp
{
public static void main(String[] args)
{
// Create Facade
MortgageApplication mortgage =

new MortgageApplication(125000);
// Call subsystem through Facade
mortgage.IsEligible(

new Customer("Gabrielle McKinsey"));
}

}

/// Facade Client/// Facade Client
public class FacadeApp
{
public static void main(String[] args)
{
// Create Facade
MortgageApplication mortgage =

new MortgageApplication(125000);
// Call subsystem through Facade
mortgage.IsEligible(

new Customer("Gabrielle McKinsey"));
}

}

Façade Façade ––
Code SampleCode Sample

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 15

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 29

The Adapter PatternThe Adapter Pattern

• It converts the interface of a class into another interface
in a way that allow us

o to use an existing class with an interface does not match the one we need

o to create a reusable class that cooperates with unrelated or unforeseen
classes

i.e., classes that don't necessarily have compatible interfaces

o to use several existing subclasses

but it's impractical to adapt their interface by sub-classing everyone

An object adapter can adapt the interface of its parent class

• How to effectively use polymorphism when reusing a class whose methods
have the same function

but not the same signature

as the other methods in the hierarchy?

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 30

Network

Adapter PatternAdapter Pattern
Example: Remote Procedure Call (Example: Remote Procedure Call (RPCRPC))

Client
Server

Client Procedure Called Procedure

arguments results

Client Stub
Adapter

Server Stub
Adaptee

Network transport Network Transport

Network

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 16

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 31

Adapter Pattern : The StructureAdapter Pattern : The Structure

<<stereotype>>
Target {abstract}

+request() {abstract}

<<stereotype>>
Adapter

+request()

<<stereotype>>
Adaptee

+specificRequest()

Request() {
adaptee.specificrequest();
}

<<stereotype>>
Client

• Interface inheritance is use to specify the
interface of the Adapter class.

• Delegation is used to
bind an Adapter and an Adaptee

• Target and Adaptee (usually called legacy
system) exist before Adapter.

• Interface inheritance is use to specify the
interface of the Adapter class.

• Delegation is used to
bind an Adapter and an Adaptee

• Target and Adaptee (usually called legacy
system) exist before Adapter.

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 32

Participants of theParticipants of the
Adapter PatternAdapter Pattern

• Client
Collaborates with objects conforming to the target interface

• Target
Defines the application-specific interface that clients use

• Adapter
Adapts the interface of the adaptee to the target interface

• Adaptee
Defines an existing interface that needs adapting

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 17

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 33

Subsystem Design withSubsystem Design with
Façade and AdapterFaçade and Adapter

• The ideal structure of a subsystem
consists of

an interface object
a set of application domain
objects of existing systems

o Some of the application domain
objects are interfaces to existing
systems

one or more control objects

• The ideal structure of a subsystem
consists of

an interface object
a set of application domain
objects of existing systems

o Some of the application domain
objects are interfaces to existing
systems

one or more control objects

• use design patterns to realize this
subsystem structure

Façade:
Realization of the Interface Object
o Provides the interface to the

subsystem and act as controller

Adapter:
Interface to existing systems
o Provides the interface to existing

system (legacy system)
o The existing system is not

necessarily object-oriented!

• use design patterns to realize this
subsystem structure

Façade:
Realization of the Interface Object
o Provides the interface to the

subsystem and act as controller

Adapter:
Interface to existing systems
o Provides the interface to existing

system (legacy system)
o The existing system is not

necessarily object-oriented!

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 34

Composite PatternComposite Pattern

• Intent
to represent part-whole hierarchies of objects

to treat individual objects and compositions of objects uniformly
o i.e., to be able to ignore the difference between compositions of objects and

individual objects

• Motivation
If not used, client-object must treat primitive and container classes differently

o Thus, making the application more complex than is necessary

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 18

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 35

Consider…Consider…

Application Window

How does the window hold and deal with the different items it has to manage?How does the window hold and deal with the different items it has to manage?

Windows &
Widget Container

Buttons
Menus
Text Area
etc.

LegendLegend

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 36

Composite Pattern: The StructureComposite Pattern: The Structure

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 19

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 37

A Possible SolutionA Possible Solution

Component
implements default behavior for widgets
when possible

Button, Menu, etc.
overrides Component methods
when needed

WidgetContainer
will have to override all WidgetOperations

A container is a subclass of component, but
a container retains a list of other components that it can display inside of itself

Component
wedgetOperations()

Button Menu TextArea

WidgetContainer
ContainerOperations()

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 38

Participants of Composite PatternParticipants of Composite Pattern

• Component
Declares the interface for objects in the composition

Implements default behavior for the interface common to all classes

• Leaf
Represents leaf objects in the composition
Defines behavior for primitive objects in the composition

• Composite
Defines behavior for components having children
Implements child-related operations in the component interface

Stores child components

• Client
Manipulates objects in the composition through the component interface

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 20

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 39

Application ExamplesApplication Examples

• File systems
Individual files are leaves

directories and subdirectories are composite files (that contain files)

• Most WEB URL's are composites that contain many other URL's

Some URL's are leaves
o documents without links; images; email addresses

• Java AWT is based on the Composite pattern

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 40

Java AWTJava AWT library with the component patternlibrary with the component pattern
Graphics

Component

Button

TextField

Label

*

TextArea

Text
Component

Container
add(Component c)
paint(Graphics g)

getGraphics()

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 21

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 41

P e r c e n ta g e D is c o u n t
P r ic in g S t r a t e g y

p e r c e n t a g e : f lo a t

g e tT o t a l(S a le) : M o n e y

A b s o lu t e D is c o u n t
O v e r T h r e s h o ld
P r ic in g S t r a t e g y

d is c o u n t : M o n e y
t h r e s h o ld : M o n e y

g e tT o t a l(S a le) : M o n e y

« in te r f a c e »
I S a le P r ic in g S t r a te g y

g e t T o ta l(S a le) : M o n e y

{
 r e t u r n s a le .g e t P r e D is c o u n t T o ta l () * p e r c e n ta g e
}

C o m p o s it e
P r ic in g S t r a te g y

a d d (IS a le P r ic in g S t r a t e g y)
g e t T o ta l(S a le) : M o n e y

{
lo w e s t T o t a l = I N T E G E R .M A X
f o r e a c h IS a le P r ic in g S t r a t e g y s t r a t in p r ic in g S t r a te g ie s
 {
 t o ta l : = s t r a t . g e t T o ta l (s a le)
 lo w e s tT o t a l = m in (t o t a l , lo w e s t T o ta l)
 }
r e t u r n lo w e s tT o t a l
}

1 . . *

C o m p o s i te B e s t F o r C u s t o m e r
P r ic in g S t r a t e g y

g e t T o t a l(S a le) : M o n e y

C o m p o s i t e B e s t F o r S t o r e
P r ic in g S t r a t e g y

g e t T o t a l(S a le) : M o n e y

p r ic in g S t r a t e g ie s

A l l c o m p o s i te s m a in t a in a l is t o f
c o n t a in e d s t r a t e g ie s . T h e r e f o r e ,
d e f in e a c o m m o n s u p e r c la s s
C o m p o s it e P r ic in g S t r a t e g y t h a t
d e f in e s t h is l i s t (n a m e d
p r ic in g S t r a t e g ie s) .

S a le

d a t e
. . .

g e t T o t a l()
. . .

1*
p r ic in g S t r a te g y

{
. . .
r e tu r n p r ic in g S t r a t e g y .g e tT o t a l(t h is)
}

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 42

:CompositeBestForCustomer
PricingStrategy

ISalePricingStrategy

s : Sale

* : st := getSubtotal()

t := getTotal()

:SalesLineItem
:SalesLineItem

t := getTotal(s)

the Sale object treats a Composite Strategy that contains other
strategies just like any other ISalePricingStrategy

* : x := getTotal(s)

:SalesLineItem
:Object

ISalePricingStrategy

UML notation: this is a way to indicate objects that implement
some interface, when we don't want to declare what the
specific implementation classes are

{ t = min(set of all x) }

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 22

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 43

public abstract class CompositePricingStrategy implements ISalePricingStrategy {
protected List pricingStrategies = new ArrayList();
public void add(ISalePricingStrategy s) { pricingStrategies.add(s); }
public abstract Money getTotal(Sale sale);

} // end of class

public class CompositeBestForCustomerPricingStrategy
extends CompositePricingStrategy

{
public Money getTotal(Sale sale) {

Money lowestTotal = new Money(Integer.MAX_VALUE);

for(Iterator i = pricingStrategies.iterator(); i.hasNext();)
{

ISalePricingStrategy strategy = (ISalePricingStrategy)i.next();
Money total = strategy.getTotal(sale);
lowestTotal = total.min(lowestTotal);

}
return lowestTotal;

}
} // end of class

public abstract classabstract class CompositePricingStrategy implements ISalePricingStrategy {
protected List pricingStrategies = new ArrayList();
public void add(ISalePricingStrategy s) { pricingStrategies.add(s); }
public abstract Money getTotal(Sale sale);

} // end of class

public class CompositeBestForCustomerPricingStrategy
extends CompositePricingStrategy

{
public Money getTotal(Sale sale) {

Money lowestTotal = new Money(Integer.MAX_VALUE);

for(Iterator i = pricingStrategies.iterator(); i.hasNext();)
{

ISalePricingStrategy strategy = (ISalePricingStrategy)i.next();
Money total = strategy.getTotal(sale);
lowestTotal = total.min(lowestTotal);

}
return lowestTotal;

}
} // end of class

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 44

Proxy PatternProxy Pattern

• A proxy acts on behalf of a real object
both have the same interface

to improve the security of the system

o by checking access before loading an object to the memory

to improve the performance of a system

o by delaying expensive computations and using memory only when needed

to have a stand-in for the real object

o to control how the real object behaves

• How to reduce the need to create instances of a heavyweight class?

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 23

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 45

Proxy: The StructureProxy: The Structure

<<stereotype>>
Subject {abstract}

+request() {abstract}

<<stereotype>>
RealSubject

+request()

<<stereotype>>
Proxy

+request() Request() {
realSubject.request();
}

Client

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 46

Subject

Request()

Proxy:Proxy:
The Structure & BehaviorThe Structure & Behavior

• Interface inheritance is use to specify the interface of the proxy
through class Subject

In Java Subject can be implemented with an interface

Proxy

Request()

Client

Delegation

Inheritance

The Client always calls Request() in Proxy

RealSubject

Request()

RealSubject ist also subclass of the abstract class Subject

Proxy is a subclass of the abstract class Subject

The Implementation of Request() in class Proxy then uses Delegation, to
access Request() in RealSubject

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 24

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 47

Proxy PatternProxy Pattern
ApplicationsApplications

• Distributed Programming:
Reduction of the access cost for remote objects

Virtual Objects

• Authentication:
Checking the access rights of a caller

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 48

Categories of ProxyCategories of Proxy

• Remote Proxy
The actual object is on a remote
machine (remote address space)

Hide real details of accessing the
object

o Used in CORBA, Java RMI

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 25

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 49

Proxy Example: Proxy Example:
Web Web Browser (Browser (RealImageRealImage))

• Images are stored and displayed separately from Text

• The client cannot tell, if it is using ProxyImage instead of RealImage

• The draw() can be implemented differently in ProxyImage and in RealImage
ProxyImage draws an empty rectangle

RealImage draws the full picture

• Images are stored and displayed separately from Text

• The client cannot tell, if it is using ProxyImage instead of RealImage

• The draw() can be implemented differentlyimplemented differently in ProxyImage and in RealImage
ProxyImage draws an empty rectangle

RealImage draws the full picture

Image

boundingBox()
draw()

realSubject
RealImage

boundingBox()
draw()

ProxyImage

boundingBox()
draw()

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 50

Web page accessWeb page access
via via RealImageRealImage

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 26

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 51

Web page accessWeb page access
via via ProxyImageProxyImage

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 52

Activation of the Proxy ClassActivation of the Proxy Class

Times 16

Courier 13

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 27

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 53

Image
boundingBox()

draw()

realSubject RealImage
boundingBox()

draw()

ProxyImage
boundingBox()

draw()

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 54

Categories of ProxyCategories of Proxy(Cont.)(Cont.)

• Virtual Proxy
Provides different objects with different levels of access to original object

Creates/accesses expensive objects on demand
o to delay creating an expensive object until it is really accessed

• Cache Proxy (Server Proxy)
Multiple local clients can share results from expensive operations

o remote accesses or long computations

• Firewall Proxy
Protect local clients from outside world

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 28

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 55

The Observer PatternThe Observer Pattern

• Defines a one-to-many dependency between objects
When one object changes state

o all its dependents are notified and updated automatically

A common side-effect of partitioning a system into a collection of cooperating classes

o the need to maintain consistency between related objects

without making the classes tightly coupled

• How to reduce the interconnection between classes,
especially between classes that belong to different modules or subsystems

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 56

Observer Pattern: Example Observer Pattern: Example

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 29

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 57

Structure of the Observer PatternStructure of the Observer Pattern

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 58

ExampleExample

• The dialog frame below defines a color
model (red marked).

• Whenever the color model is changed

• the dependant colorbar as well as
the image (green marked) are
notified.

• Java supports this concept by introducing
Observable and Observer classes

Hamada Ghenniwa 3/15/2006

SE203b, ECE UWO 30

Mar 16, 2005 SE203b, ECE UWO, Hamada Ghenniwa 59

Participants of theParticipants of the
Observer PatternObserver Pattern

• Subject
Knows its observers

Provides an interface for attaching and detaching observers

Sends a notification to its observers when its state changes

• Concrete Subject
Stores state of interest to concrete observers

• Observer
Defines an updating interface for concrete observers

• Concrete Observer
Maintains a reference to a concrete subject object

Stores state that should stay consistent with the subject's

Implements the updating interface

