

Why not multiple t-tests?

- If you have 5 groups you end up with 10 ttests, too difficult to evaluate
- The greater the number of tests you make, the more likely you commit a type-I error (that is, you reject H₀ when you should accept it)
- There are methods to do pair wise tests that we'll discuss later

 we expect that the sample means will be different, question is, are they significantly different from each other?

- H₀: differences are not significant differences between sample means have been generated in a random sampling process
- H₁: differences are significant sample means likely to have come from different population means

General Form:	X = f(T)		1	I
Specific Form:	$X_{ij} = \mu + \tau_j + \epsilon_{ij}$			
Verbal Form:	Price = f(Store	e Type)		
			This example	e snows
Music Store	Bookstore	Discount Store	that group s	izes can
18.95	14.95	11.50	be unequal.	
14.95	15.95	12.50		
15.95	21.95	9.50		
11.00	13.75	11.75		
17.00		13.75		
14.50				
13.00				

- deviation of the group mean from the overall mean is taken to represent the effect of belonging to a particular group
- deviation from the group mean is taken to represent the effect of all other variables other than the group variable

Example 1

X

consider the numbers below as constituting One data set

	obs	ervat	$\frac{1}{x}$		
Sample 1	1		7	3	3.7
Sample 2	3	3	4		3.3
Sample 3	3	7	1	2	3.3

- as stated before, the variability in all observations can be divided into 3 parts
- 1) variations due to differences within rows
- 2) variations due to differences between rows
- 3) variations due to sampling errors

 	 	_

Example 2

much of the variation is **between** each row, it is easy to tell if the means are significantly different [note: 1 way ANOVA does not need equal numbers of observations in each row]

observ	\overline{x}			
1	1	1	2	1.25
3	3	4		3.33
7	7	8	7	7.25
	observa 1 3 7	observations113377	observations 1 1 3 3 4 7 7 8	observations 1 1 2 3 3 4 7 7 8 7

• conclude there is a significant difference

Sar	Sample 1 vs Sample 2													
	ob	os			\overline{x}			ot	os			x]
S ₁	1		7	3	3.7		S ₁	1	1	1	2	1.	25	1
S ₂	3	3	4		3.3		S ₂	3	3	4		3.	33	
S ₃	3	7	1	2	3.3		S ₃	7	7	8	7	7.	25	1
3	3	1	<u> </u>	2	3.3		3	1	/	0	1	1.	20	l

- having calculated 2 estimates of the population variance how probable is it that 2 values are estimates of the same population variance
- to answer this we use the statistic known as the F ratio

 $F ratio = \frac{between row variation}{within row variation}$

F ratio

 $F ratio = \frac{estimate of variance between samples}{estimate of variance within samples}$

Example Test winning times for the men's Olympic 100 meter dash over several time periods									
	winning	X _k							
1900- 1912	10.8	11	10.8	10.8	10.8	5			
1920- 1932	10.8	10.6	10.8	10.3	10.6	25			
1936- 1956	10.3	10.3	10.4	10.5	10.3	75			

Hypotheses	
 H₀: There is no significant difference in winning times. The difference in means ha been generated in a random sampling process 	ave
 H₁: There are significant differences in winning times. Given observed differences sample means, it is likely they have been drawn from different populations. 	s in
 Confidence at p=0.01, 99% confident from different population 	ı

1900-1912	1920-1932	1936-1956	
10.8	10.8	10.3	
11	10.6	10.3	
10.8	10.8	10.4	
10.8	10.3	10.5	X _G =0.62
∑x=43.4	∑x=42.5	∑x=41.5	
n=4	n=4	n=4	
<u>⊼</u> =10.85	<u></u> <i>x</i> =10.625	<u>⊼</u> =10.375	

1900-1912	1920-1932	1936-1956	1900-1912	1920-1932	1936-1956
$(x-\overline{x})$	$(x-\overline{x})^2$	$(x-\overline{x})$	$(x-\overline{x})^2$	$(x-\overline{x})$	$(x-\overline{x})^2$
05	.175	075	.0025	.0306	.0056
.15	025	075	.0225	.0006	.0056
05	.175	.025	.0025	.0306	.0006
05	325	.125	.0025	.1056	.0156
$\Sigma(x-\overline{x})^2=.03$		$\sum (x - \overline{x})^2 =$.1674	$\sum (x - \overline{x})^2 =$.0274

$$\sigma_w^2 = \frac{\sum_{i=1}^k \sum_{j=1}^n (x - \bar{x})^2}{N - k} = \frac{0.2248}{12 - 3} = 0.025$$

calculation of between samples variance estimate $\sigma_B^2 = \frac{\sum n(\bar{x} - \bar{x}_G)^2}{k-1} = \frac{0.2116 + 0 + 0.24}{3-1} = 0.2258$									
1900- 1912	X=10.85	n=4	n(X-X _G)	4(10.85-10.62) ²	4(.0529)	.2116			
1920- 1932	X=10.625	n=4	n(X-X _G)	4(10.625-10.62) ²	4(.0000)	0			
1936- 1956	X=10.375	n=4	n(X-X _G)	4(10.375-10.62) ²	4(.0600)	.24			

SST :	= SSR +	SSE				I
1900- 1912	X ²	1920- 1932	X ²	1936- 1956	X ²	
10.8	116.64	10.8	116.64	10.3	106.09	
11	121	10.6	112.36	10.3	106.09	
10.8	116.64	10.8	116.64	10.4	108.16	
10.8	116.64	10.3	106.09	10.5	110.25	
	470.92		451.73		430.59	1353.24

$MSR = \frac{SSR}{k-1} = \frac{0.45}{3-1} = 0.225$	I
$MSE = \frac{SSE}{N-k} = \frac{0.23}{12-3} = 0.0255$	
$F = \frac{MSR}{MSE} = \frac{0.225}{0.0255} = 8.82$	
$df_1 = k - 1 = 2 \ df_2 = N - k = 12 - 3 = 9$	

Source of variation	df	sum of squares	mean square	F-statistic
between rows/groups /samples	k-1 (2)	SSR (0.45)	SSR/k-1 (0.225)	MSR/MSE (8.82)
within rows/groups /samples	N-k (9)	SSE (0.23)	SSE/N-k (0.0255)	
Total	N-1	0.68		

Nonnormality

- Do a histogram to check
- If sample size is small it may be difficult to detect
- If the samples are not seriously imbalanced in size skewness won't have much impact
- Do a normal Q-Q plot or normal quantile-quantile plot, it's a plot of the ordered data values (as Y) against the associated quantiles of the normal distribution (as X)

