

Exc	ample	e: Po	lluti	on		
General Form:	X = f(T,B)			(There is on	hu one	
Specific Form:	$X_{ik} = \mu + \tau_i + \phi$	k + ε _{ik}		observation	iy one	
Verbal Form:	Pollution = f(Time of Dav.	Freeway)	obset vation	i per treatment.	
		, ,		\rightarrow \sim		
			Time of Day			1
Freeway	12:00A - 6:00A	6:00A - 10:00A	10:00A - 3:00P	3:00P - 7:00P	7:00P - 12:00A	
Chrysler	145	364	300	475	300	
Davidson	125	205	215	301	201	
Reuther	85	150	150	225	104	
Lodge	150	346	294	450	274	
X = nitric oxide po T = time of day (5 B = freeway (4 blo	ollution level (p treatments) ocks)	om)				

		River	Stage			
	Headwater	Middle	Mouth		\overline{x}_i	Deviation from x
River 1 (Shield)	0.30	0.40	0.45	i=1	0.38	-0.08
River 2 (Till)	0.35	0.32	0.32	i=2	0.33	-0.13
River 3 (Limestone)	0.60	0.71	0.72	i=3	0.67	0.21
	j=1	j=2	j=3			
\overline{x}_{j}	0.41	0.47	0.49			
Deviation from	-0.05	0.01	.03			
where r=number k= number of col	of rows lumns		•			

- There are *three* possible sources of variation in this data :
- (i) Variation between rows (streams) MSR estimate of population variance based on between row variation.
- (ii) Variation between columns (stages) MSC estimate of population variance based on between column variation.
- (iii) Remainder / residual variance MSE estimate of population variance based on overall variance.

(ii) H_{0k}: The is no significant difference in CaCO₃ content between the different rivers. That is, the distance over which the river flows over its bedrock does not influence CaCO₃ content.

•
$$\mu_{(j=1)} = \mu_{(j=2)} = \mu_{(j=3)}$$

SSC = 1.94324 - 1.9320 = 0.0104 $SSC = \frac{1}{3}(1.25^{2} + 1.43^{2} + 1.49^{2}) = \frac{1}{9}(4.17^{2})$ $MSC = \frac{0.0104}{3 - 1} = 0.0052$

Presentation of results					
Source of variation	df	Sum of Squares	Mean square	F ratio	
Between rows	r-1 (2)	SSR (0.2091)	SSR/r-1 (0.1046)	MSR/M3 (39.10)	SE
Between columns	k-1 (2)	SSC (0.0104)	SSC/k-1 (0.0052)	MSC/MS (1.94)	SE
Error	(r-1)(k-1) (4)	SSE (0.0107)	SSE/(r-1)(k-1) (0.0027)		
Total	n-1	(0.2302)			

- F_{COLS} < Critical Value :
- Cannot reject H_{0k} There is no significant difference in CaCO₃ content between river stages. Thus, the distance over which rivers flows does not influences CaCO₃ content of H_2O .

5) then using the fact that
TSS = SSC + SSR + SSI + SSE
find the residual sum of squares

- If you don't, you have a ANOVA with no interaction. Why?
- If at all possible the design should be balanced

- Balanced/Unbalanced Factorial Designs. A balanced factorial design is one that has the same number of observations in every cell. Unbalanced designs do not have the same number.
- The calculations for unbalanced designs are more complex and the interpretation can be very unclear.
- It is best to avoid these unbalanced data, but in survey research such analyses are common.

Example					
	T	country		mean	
		Germany	US		
	Low	5	7		
		4	5	5.25	
Education		(4.5)	(6.0)		
Buueense		4	6		
	High	4	6	1.83	
	Fiigh	3	6	4.05	
		(3.67)	(6.0)		
Mean		4.0	6.0	5.00	

eta squared

- for country: 14 (.42+.38+3.2)/14 = 10/14 = .714
- for education: 14 (10+.38+3.2)/14=.03
- for interaction 14 (10+.42+3.2)/14=.03

Source of variation	Sum of squares	df	Mean square	F	
country	10.0	(r-1) 1	10.0	18.87	
education	.42	(k-1) 1	.42	.79	
interaction	.38	(r-1)(k-1) 1	.38	.74	
residual	3.2	rk(n-1)	.53		
total	14.0	N-1			

- critical value is df=6,1 5.99 at α =0.05
- when n is number of replications in a cell formula only good for same number of replications per cell
- for nonequal number of observations per cell residual df seems to be N-k-r as in this example
- the best way to calculate df for residual is to subtract total df for SSC+SSR +SSI from N-1

