

2 sample X^{2}

- This is an extension of the one sample case, we have a somewhat more complicated formula
- We are testing to see if the data we have which is cross classified by 2 variables is consistent with what we would expect if the 2 variables are independent (unrelated to each other)

$\chi^{2}=\sum_{i=1}^{r} \sum_{j=1}^{k} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}$
r rows k columns in contingency table whose members are $\mathrm{O}_{\mathrm{ij}} \mathrm{S}$ $E_{i j}=\frac{\sum_{i=1}^{r} O_{i} \sum_{j=1}^{k} O_{j}}{\sum_{i=1}^{r} \sum_{j=1}^{k} O_{i j}}$

special case of $X^{2}(2 \times 2$ table)

- for a 2×2 table x^{2} is calculated by

$$
\chi^{2}=\frac{n(|A D-B C|-n / 2)^{2}}{(A+B)(C+D)(A+C)(B+D)}
$$

$\mathrm{df}=($ number of rows -1)(number of columns-1)=1 $\mathrm{n}=$ total number of individuals

Combining cells

- remember the test requires expected cell frequency to be at least 5 , if less than 5 the usual practice is to combine cells
- 2 basic options
- combine each end column with the one next to it only do this if it makes sense, ie. Combining strongly disagree with somewhat disagree
- combine 2 end columns to get a single column combining the extreme positions on a question

Mantel-Haenszel chi-square

- also called the Mantel-Haenszel test for linear association, unlike ordinary and likelihood ratio chisquare, is an ordinal measure of significance. It is preferred when testing the significance of linear relationship between two ordinal variables. If found significant, the interpretation is that increases in one variable are associated with increases (or decreases for negative relationships) in the other greater than would be expected by chance of random sampling.
- Like other chi-square statistics, M-H chi-square should not be used with tables with small cell counts.

Fisher Exact Test of Significance

- The Fisher exact test of significance is used in place of the chi-square test in small 2-by-2 tables. It tests the probability of getting a table as strong as the observed or stronger simply due to the chance of sampling, where "strong" is defined by the proportion of cases on the diagonal with the most cases.

Chi-Square Statistic

Chi-Square

- By combining distribution on one map we can better understand the relationship between the two distributions
- In this example we are using a grid
- The finer the grid, the more precise the measurement
- Four possibilities exist
- Low rainfall, low yield
- Low rainfall, high yield
- High rainfall, low yield
- High rainfall, high yield

