Bivariate regression

Probably dates back to 1885

e the correlation coefficient measures the association
between 2 sets of paired variates, but it does not
o tell us the way the two variables are related

o does not allow us to predict the value of one variable with
knowledge of the value of the other variable

« doesn’t signal anomalies in the relationship between
individual pairs

e bivariate regression lets us do all of these things

dependent and independent
variables

e regression allows us to
suggest (hypothesize)
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e scattergram - used to plot dependent along y
axis, independent along x axis

e regression involves plotting a ‘best-fit’ line
between the points on a scattergram

e convention is to treat the dependent variable
as PREDICTED and the independent
variable as the PREDICTOR

e prediction/interpolation is one of the main
uses because x and y are sampled.

e As we don’t have complete information on
values for a given x we want to interpolate
intermediate values from the best fit line on
the scattergram
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Scattergram or scatterplots

e Interpretation: how close to a single line?

soe0o0

ece0e

ecee
o0

e Describing relationships (scatterplots) video
e To see the unedited version go to:

« Episode 8. Describing Relationships

e SERETTEE
derivation of best fit line s
example 1: y |2 |6 |8 |14 |22

e easy to place ‘best’ line through these points as the
association is perfect

e correlation coefficient =1

e there are no residuals/anomalies/no deviations of
points from general relationship since every point is
on the regression line

e however variables are rarely perfectly correlated
because of 1) poor/theory/understanding or 2)
measurement error

e can place ‘best-fit’
line through points A '
although r<1 and so -
points representing . i
variates do form a i
straight line =

e deviations/anomalies
[/residuals from
regression are
shown as |1

e residuals: why plot them vertically rather than
perpendicular to the regression line?

e Because residuals are the difference between the
actual/observed values of the dependent variable (y
values) and the expected/predicted value of the
dependent variable (¥) for a particular value of x
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fitting the regression line by least
square method
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e any straight line drawn on an x y coordinate system
can be represented by an equation of the form

soe0o0

ece0e

ecee
o0

Equation review

e Slope/Y-intercept equation

Slope, or coefficient
Independent Variable

Y=a+bx

Dependent variable
Y-intercept

v
X
Equation review s
e Slope
e rise/run
o AY/AX
y=a+hx y=520,000 + $2300 x

income (3)

@ 0k
'\

b=slape SHk

Sk

50
o 1 2 1

3
years of college

Slopes :
y=3+x y=3-x y=3
{b=1) (b=-1) (b=0)

e |east square approach - objective is to find the
combination of intercept and slope values which
minimize the sum of squares of the residual
values, that is, minimize the difference between
the actual and predicted values at particular
values of x

The intercept

e There is no intercept if the data values are
standardized before they’re used

e The intercept is only meaningful if it makes
sense for the independent variable take on a
value of 0

e There should be some values recorded near
zero if it is to be interpreted
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Sample regression function :
e \We've been talking about population
characteristics; we will measure sample:
“Hats” always
indicate A A A
sample —
Yi =6+ 5,X
Y-hat: conditional mean value
of Y in the sample: E(Y|X;)
Our estimate of real
(population) value of Y
(1X]
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o000
o0
[ ]

Sample Regression function :

e We've been talking about population
characteristics; we will measure sample:

This gives us the
stochastic sample
regression
function. We will
use this to infer
things about the
relationship
between X and Y
in population

YAi :ﬁﬁ‘ﬁzxi

00
0000
it
Sample regression function :
e \We've been talking about population
characteristics; we will measure sample:
Yi =5+ 5, X,
This is the definition of a
n A residual
g, =Y, =Y,
o000
0000
-3

Sample Regression function :

e We've been talking about population
characteristics; we will measure sample:

Residual or
error term

Actual X’s in our
sample; correspond
with Y/'s

Y; ::él +ﬁzxi +4

Actual Y's in our
sample; correspond
with X's

Sample coefficients:
define the shape of
the line between X
and Y in our sample

How we do the math

e We choose
ordinary least 5000
squares:
minimize the 00 ]
squared
vertical
difference
between line
and points

regression line: spending= 710 + 1.115"statetax

3000

500 1000 1500 2000 2500
statetax

How we do the math

e Ordinary Least Squares (OLS):
Mathematically minimize the squared vertical
distance between all the points and the line

e Why squared?




Why we like OLS

e Mathematical properties
o Point estimators
o Pass through sample means
e Mean of residuals = 0
o Residuals uncorrelated with X and Y

Why we like OLS

e Mathematical properties
e Statistical properties:
o There is some real relationship (+, -, or zero)
between X’s and Y’s in the population
o We evaluate the relationship between X; and Y, in
our sample

o The relationship between our sample parameters and
the population parameters is similar to relationship
between sample statistics and population parameters

e That is: our sample beta-hats are drawn from a
sampling distribution around the real population
parameters

OLS assumptions and Gauss-
Markov

e For population beta sampling distribution:
e GM theorem proves thatﬁ’s are BLUE:

o Best: least variance

o Linear (descriptive of process)

e Unbiased: centered around real 8

o Consistent: as N — =, ,[3’» B

Interpretation of Coefficients HE

e Recall our basic equation:

e B, Yi =B+ B X +0; = E(Y [ X)
o The “constant,” or Y-intercept
« Predicted value of Y when X = zero (why?)

Interpretation of Coefficients

e Recall our basic equation:

o By Y, =B+ BX +0; =E(Y | X))
e The “constant,” or Y-intercept
o Predicted value of Y when X = zero (why?)
This may or may not be logically useful concept

Always exercise caution paying too much
attention to constant predictions anyway
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Interpretation of Coefficients

e Recall our basic equation:

e, Yi=B+BX+0=EY[X)

» Slope coefficient; recall

5, =s|ope=@=ﬂ
run  AX

Interpretation of Coefficients

e Recall our basic equation:

o B2 Yi:ﬁ1+lé2xi+0i:E(Y‘Xi)

» So what does that mean for a slope of 0.44 (say)?

rise AY
=slope=—=—
P Pe=Tn T Ax

Interpretation of Coefficients

e Units matter
» Always interpret equations in light of units on both
sides
» Should always use logical units, but may choose
the logical unit which makes regression most
tractable:
Aim for coefficients between zero and 10
Avoid (non-zero) coefficients <.05 or so

e Things we cannot draw with a Y=a+bX
equation:
e Infinite slope
e Interrupted line (discontinuous function)
» Non-functions

e Functions may be non-linear though

Conceptual overview

e Regression line shows relationship between
fixed values of X and average values of Y
e Regression assumes relationship contains
stochastic element
o Outcomes follow probability distribution

Regression: conceptual :
overview s

e Relationship between fixed independent
variables and average values of stochastic
dependent variable:

Obviously contrived data

0.75

0.7

0.65

P(voting)

0.6

0.55

05

7 8 9 10 1" 12 13 14
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Regression: conceptual ot
overview :
e For each value of X, Y follows a probability
distribution:
e The probability distribution of a discrete
random variable is a list of probabilities
associated with each of its possible values
o We would like these distributions to be normal
. eoee
Regression: conceptual ot
overview tH

e Why is the dependent variable stochastic?

o Incomplete model on theoretical level

o Not possible to collect quantitative data on
everything

o Measurement errors

o Parsimony: not worth trying to develop perfect
model

« Wrong functional form

Regression: conceptual seoe
overview :
e For each value of X, Y follows a probability
distribution
Obviously contrived data
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overview
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Regression: conceptual ot
overview :

e Regression vs. Correlation

o Correlation is symmetric
Linear association
No “dependent” and “independent” variables
Both variables are assumed to be random

» Regression analysis is asymmetric
Independent variable not random, but fixed in repeated
samples
We assume only dependent variable is random, or that it
follows probability function

o Inference for relationships video
e To view the video on your own go to:

» Episode 25
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How we do the math: OLS

e The whole exercise is about fitting a line to
points in our sample scatterplot, using the
equation Y = a +bX

» By changing values of a and b, this equation will
give us any straight line which exists in a plane

o We will use OLS to figure out which values of a
and b provide the best fit

The slope

b = the amount of change in y with a change in 1 unit of x
b = gradient of the regression line

n Zln: Xizin: yi
Zi:]xiyi _%

covariation
= A=
Zn Xz_(zi:lxi) variation in x
n

i=1

The intercept

"y, "X
a= % - b[z'nl'] = intercept with y axis when x = 0

e The intercept is normally of little interest

e Often the y range doesn’t even include the
intercept

e There are occasions when the intercept is
relevant

o Example would be a regression of crop yield
versus fertilizer use, when a=0 would denote no
use of fertilizer

How we do the math: OLS

e We will use OLS to figure out which values of
a and b best fit the dots in our picture

e Note that depending on how we define “best,”
we’ll end up with different lines for same
picture

Example
River basin sq km (x) | Discharge km3 (y)
Nile 3031700 324
Amazon 7050000 6630
Chang Jiang 1800000 900
Huang Ho Yellow) 445000 50
Mackenzie 1805200 11
Mississippi 3226300 620
Indus 1138800 146
Nelson-

Saskatchewan 1109400 87




%y,.8768

Tx= 19606.4

XO-9T0-2) .
- ” =40958
Y PN -

(5x)?=384410921

SX?=78527122

SPSS output

xy; =51648967

Revised output with basin
rescaled

Coefficients
Unstandardized Standardized
Coefficients Coefficients t Sig.
B Std. Error Beta
(Constant) -1329.44 559.4231 -2.37644 0.055035
BASIN00O 0.989651 0.178556 0.914658 5.542508 0.001456
Dependent Variable: DISCHARG
19606.4(876)
51648967 —| ——————
b [ 8 } 301603522
785271227384410921“ 304757523
8
8768 19606.4
A== " 099 ) =-13303

Coefficients
Unstandardized Standardized
Coefficients Coefficients Sig.
B Std. Error Beta
(Constant) -1329.44 559.4231 -2.37644 0.055035
BASIN 0.00099 0.000179 0.914658  5.542508 0.001456
Dependent Variable: DISCHARG
ama:
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Predicted values

y:a+bx i=1 |-1330.3+[0.99*3031.7] = |1671.1
i=2 |-1330.3+[0.99*7050] = |5649.2
i=3 |-1330.3+[0.99*1800] = |451.7

e the standard method of measuring the
goodness of fit of a regression is to calculate
the extent to which the regression accounts
for the variation in the observed values of the
dependent variable

e this is done by calculating the variance of the
observed value of y

—y’ = regression variance

2

s’ =—Zy
n

2V

s2 =4 -y’ = total variance
n

2

r’=

(ﬂ‘(ﬂ

<

= coefficient of determination

e tests on the residuals
e a complementary test of goodness of fit
involves looking at the residuals

e there should be no systematic variation in the
residuals

Coefficient of determination

Basin km?

(000s)
River X km3y y2 y hat
Nile 3031.7 324 104976 | 1671.1
Amazon 7050| 6630| 43956900 | 5649.2
Chang Jiang

(Yangtze) 1800 900 810000 | 451.7 448.3
Huang Ho

(Yellow) 445 50 2500 | -889.8 939.8
Mackenzie 1805.2 1 121| 456.8 -445.8
Mississippi 3226.3 620 384400 | 1863.7 -1243.7
Indus 1138.8 146 21316 | -202.9 348.9
Nelson-

Saskatchew

an 1109.4 87 7569 | -232.0 319.0
Total 19606.4 8768 45287782

—1201216= 3733644

s== oy

L 29 o 39478877
n 8

—1201216 = 4459757

L XY 2 45287782
SV:Tiy ===

, 3733644

= Jas9757 - 083

10



Regression diagnostics :
@ )
1 1
EARLE I DOD v m/f%
51806 5
0 — T 1] ° — T
0 51015 20 0 51015 20
© @
1 1
¥ 10 ) ¥ 10
? % ’ /§/
R R
Regression diagnostics :
®
1
¥ 10 g C
5
1] D. — 0
0 51015 20
Figure (b) - is obviously curvilinear.

Regression diagnostics

Figure (c) - one data point has undue influence.
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Regression diagnostics :
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Figure (a) - is a reasonable description of y and x.
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Regression diagnostics :
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Regression diagnostics

Figure (d) - can only fit a line to last point.
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residuals tend to increase as
we increase the value of x

ib)

there is no systematic variation
apparent in the residuals

{&)

a curved line would be a better
fit s

(o]

autocorrelation :

e test if there is no correlation between the
absolute values of the residuals
o this is known as serial correlation or
autocorrelation
e the calculation for autocorrelation makes use
of pairs of values

o the first residual paired with the second, the
second with the third and so on

absolute values of residuals

1st7 last 7 a? b2 ab
1347.1 980.8 1814632.6 961968.6 1321219.0
980.8 448.3 961968.6 200972.9 439692.6
448.3 939.8 200972.9 883130.1 421289.9
939.8 445.8 883130.1 198780.4 418985.7
4458 1243.7 198780.4 1546881.7 554517.7
1243.7 348.9 1546881.7 121722.8 433924.9
348.9 319.0 121722.8 101757.2 111293.2
5754.4 4726.3 5728089.2 4015213.8 3700923.0

n=7

57544

a=""""-82206
7
b= @ =67519

2
5= /2%752 = 740157213'8—(675.19)2 =3431

a’ - [5728089.2 )
S, :\/ZF*a :\/ff(xzzoe)‘ =3775

12



3700923.0
? T 822.06(675.2) _

-20

5.5, 377.5(343.1)

a value close to 1 or -1 suggests a relationship between
successive residuals
a complete absence of a relationship would give a value of 0.0
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¢ A Confidence Interval is the estimation of a
mean response for a given Xi.

¢ Confidence Bands show an interval
estimate for the entire regression line.

e The Prediction Interval is the prediction of a

response of a single new observation of a
given X,

e Video clip on confidence intervals
e Web video available at:

« Episode 19, Confidence Intervals

Confidence Interval s

e How "wide" you have to cast your "net" to be
sure of capturing the true population
parameter.

« | might say that my 95% Confidence Interval is
plus or minus 2%, meaning that odds are 95 out
of 100 hundred that the true population parameter
is somewhere between 8 and 12%.

Confidence band

e Measurement of the certainty of the shape of
the fitted regression line. A 95% confidence
band implies a 95% chance that the true
regression line fits within the confidence
bands. It's a measurement of uncertainty.

e The sample regression equation is an
estimate of the population regression
equation. Like any other estimate, there is an
uncertainty associated with it.

e The uncertainty is expressed in confidence
bands about the regression line. They have
the same interpretation as the standard error
of the mean, except that the uncertainty
varies according to the location along the
line.

13
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e The uncertainty is least at the sample mean
of the Xs and gets larger as the distance from
the mean increases. The regression line is
like a stick nailed to a wall with some wiggle
toit.

Confidence band for river
discharge (95%)

6000

5000

4000

3000

2000

1000

discharge cubic km

-1000

0 1000 2000 3000 4000 5000 6000 7000 8000

BASINOOO

Confidence band formula

(X" =x)’*

, %)’
R

ts, |1+

e

S, is standard error of the estimate

X* is the is the location along the X-axis where the distance is being calculated

The distance is smallest when x* = mean of x

Confidence band for river i
discharge :
5000 P so00 /
i i
Ao e
Prediction Band (or Prediction 3ot
Interval)

e Measurement of the certainty of the scatter
about a certain regression line. A 95%
prediction band indicates that, in general,
95% of the points will be contained within the
bands.

e Used to estimate for a single value, not the
mean of Y

Prediction interval for an
individual y (based on existing
data)
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(x=X)"

gyt 1+1+

ORSS
Y-
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prediction band or prediction
interval

e Prediction intervals estimate a random value
where confidence limits estimate population
parameters

e it is possible to establish limits within which
predictions are made from regression
equations

e when the regression equation is used to

predict a confidence interval for the expected
value can be calculated

280

270

Esiimalsd Avarage Prassure
255

255

Dala Sef

Summary of prediction issues | ::

e We cannot be certain of the mean of the
distribution of Y.

e Prediction limits for Y, must take into
account:

e variation in the possible mean of the distribution
of Y

o variation in the responses Y within the probability
distribution

Prediction interval for a new
response

e the prediction interval is

given by: 5
t Ze [1+ (Xu*;)z ]

n—1" Xxn

where Ze? is the sum of squares of the

residuals from the regression

X is the mean of the values of the independent variable x
X, is the particular value for whichy is being predicted

n is the number of pairs of measurements

t is the particular value taken from the t table

15
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Implications on precision

e The greater the spread in the x values, the
narrower the confidence interval, the more
precise the prediction of E(Y,).

¢ Given the same set of x; values, the further x,
is from the (sample) mean of the X, the wider
the confidence interval, the less precise the
prediction of E(Y,).

in \

| L

| i
Comments on assumptions

e X, is a value within scope of model, but it is not
necessary that it is one of the x values in the data
set.

e The confidence interval formula for E(Y,) works
okay even if the error terms are only approximately
normally distributed.

e If you have a large sample, the error terms can
even deviate substantially from normality without
greatly affecting appropriateness of the confidence
interval.

e Confidence band most applicable for causal
modeling

e Prediction interval most applicable for
predictive uses

significance of b

e is the sample coefficient (an estimate)
significantly different from the population
coefficient

e b=0.99 is an estimate of the population
parameter

e Hy: Y and X (in the population) are not related,
i.e. b is not significantly different from 0

e H,: Y and X (in the population) are related, b is
significantly different than 0

T-test forb

t= F—S where B = population parameter H,:B =0
s.e

sot=""withdf =n—2
s.e.b

-9
i n-2

n

1 Z(Xi _§)2

s.eb=

16



the denominator can be
calculated via the

2 (z X)*
X —  d
formula )2 n

s.e.b:M
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we can reject Hy, b is significantly different than 0

Transforms

Seme Dats

b
That Correct for

nonlinear regression

e semilog transform:

Figuure 1: Conceiration of X remmining s a functian of
Flgure 2: Semi-Logarithmic Plet of the Concentration of
reactiontime X as 2 Function of Reactian Time
iy
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L e
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e double log
o log y=a + BlogX or Y=AXB
o log y=a - BlogX or Y=AX"®

a=0.5, B=2
double log transform
x y 2
2 2 -
4 8 0
6 18 m
8 32 w
10 50 g ® =
12 72 B o0
4 e .
16 128

e reciprocal transform
o Y=a+B/X
o Y=a-BIX
a=0.5, p=2

reciprocal transform

why transform?

e To approach normality in the data
« a)if data is positively skewed (that is a long tail to
the right)
a square root transform might be the answer
if more extreme, a logarithm transform might be

necessary
if even more extreme higher roots might be necessary

o b) if data is negatively skewed a power transform
might be the answer

Confidence Intervals

e If the correlation is perfect, the predictions are
completely accurate; if the correlation is not
perfect, what is our level of confidence in our
prediction?

e Calculate the Standard Error of the Estimate, it
expresses the degree of spread of the
observations (y, values) around the regression
line in units of y.

S (y-9)°

— _ [5829846 _ oo -
n-2 8-2

68 % of the observations within 1 S.E.’s.

95 % of the observations within 2 S.E.’s.
y=a+bx+ (2SE)@ x =2000

y = (-1330.3) + (0.99*2000) = 649.7 + 985.7

s.e.y=

e This expression is essentially an average error
for the regression.

e The standard error of the estimate is useful in
determining the range of potential Y values for a
particular X value.

18



e 95 % of y values (19 out of 20) will lie within (-336
to 1635.4 range.

e This is high as this example, i.e. If you predicted a
discharge at 2000 units of catchment area, the
prediction would be 649.7, but could be much
higher or lower.

7000

6000
5000
4000

Confidence Interval

3000 .
Prediction Interval
2000

1000 Cl

-1000

discharge cubic km

o 2000000 4000000 GO000O00O 8000000
1000000 3000000 5000000 7000000

basin s km

Dummy variables

oY =qa+fD +uy
e How does this work if D; = {0,1}?

e If hemisphere =n, dummy =1

e If hemisphere =s, dummy=0

e A simple regression using a dummy variable
is similar to a one-way analysis of variance

basin sq Discharge km3

River km (x) (y) d | hemisphere
Nile 3031700 324| o S
Amazon 7050000 6630| 0 S
Chang Jiang 1800000 900 1 N
Huang Ho 445000 50| 1 N
Mackenzie 1805200 11 1 N
Mississippi 3226300 620 1 N
Indus 1138800 146 1 N
Nelson-

Saskatchewan 1109400 87| 1 N

Dummy variables

oY =a+pD,+e,
e How does this work if D, = {0,1}?
e When D =0:
Y=a+p0+e
Y=ateg
e WhenD =1:
Y=a+p*"1+e
Y=(atp)+e
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Dummy variables

oY =ou+fD, +uy,
e How does this work if D, = {0,1}?
e Thus:
e o is average value of Y when D;=0
e o + B is average value when D=1

e Statistical significance of B is t-test for difference
of means between the two categories

Outliers

e In particular outliers (i.e., extreme cases) can
seriously bias the results by "pulling" or
"pushing" the regression line in a particular
direction, thereby leading to biased regression
coefficients.

e Often, excluding just a single extreme case can
yield a completely different set of results.

Outliers

= BEFORE THE OUTLIER HA!
BEEN REMOVED, r= B8

Influential observation

e If a point lies far from the other data in the
horizontal direction, it is known as an influential
observation.

e Their removal may substantially change the
regression equation

Lurking variables

e Alurking variable exists when the relationship
between two variables is significantly affected by
the presence of a third variable which has not
been included in the modeling effort.

e Such a variable might be a factor of time (for
example, the effect of political or economic
cycles)

e Sometimes the lurking variable is a 'grouping’
variable of sort. This is often examined by using a
different plotting symbol to distinguish between the
values of the third variables. For example, consider
the following plot of the relationship between salary
and years of experience for nurses.

The individual lines show a positive relationship, but
the overall pattern when the data are pooled, shows
a negative relationship.
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Lurking variable

Salar:

ears of experience

Extrapolation

e Whenever a linear regression model is fit to a group
of data, the range of the data should be carefully
observed. Attempting to use a regression equation
to predict values outside of this range is often
inappropriate, and may yield incredible answers.

o For example, a linear model which relates weight gain to
age for young children. Applying such a model to adults, or
even teenagers, would be absurd, since the relationship
between age and weight gain is not consistent for all age
groups.
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