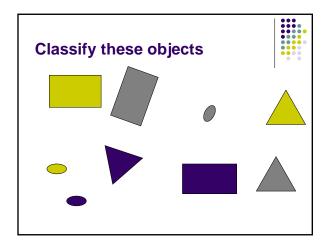
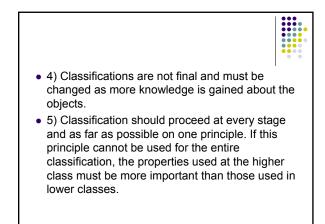
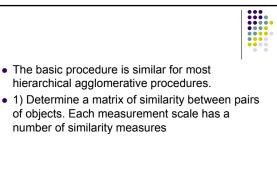


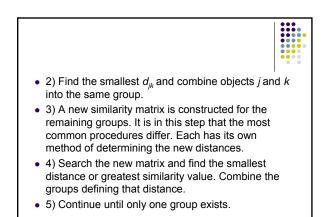
- 4. How should a relevant measure of dissimilarity be constructed from a pattern matrix?
- 5. Which clustering and graphical procedures should be used in the analysis of data?
- 6. How should the results of the study be validated and summarized?



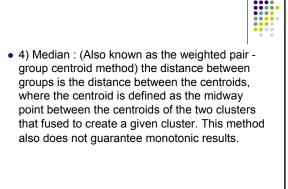


- Cluster analysis is not as much a typical statistical test as it is a "collection" of different algorithms that "put objects into clusters."
- The point here is that, unlike many other statistical procedures, cluster analysis methods are mostly used when we do not have any *a priori* hypotheses, but are still in the exploratory phase of our research

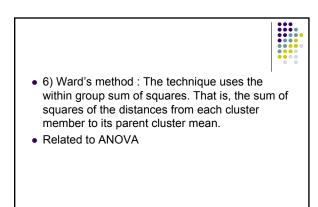

• 3) The differentiating characteristics must be important for the purpose of classification or else the classification is trivial.



- Classification methods may be grouped into two categories :
- 1) The testing of a Priori Classification.
 i.e. X², ANOVA, discriminant analysis.
- 2) The Development of a Classification.
 i.e. Factor analysis, clustering procedures.
- Cluster analysis is a general term for multivariate techniques that find groups or clusters of similar objects. Typically they use measures of similarity to determine if two objects should be fused into a group.

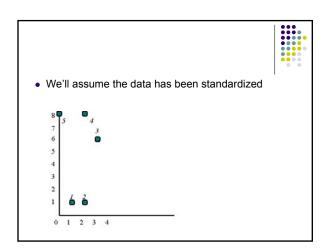

There are six common approaches to clustering :

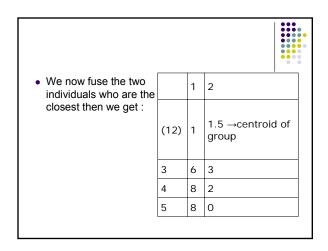
- 1) Nearest Neighbour : (also known as single linkage clustering) The distance between groups is the minimum distance between any pair of members of the two groups. This technique is prone to chaining - the appearance of elongated groups.
- 2) Furthest neighbour : (also known as complete linkage clustering) the distance between groups is the distance between the most remote pair. The method generally leads to tight, hyperspherical discrete clusters.



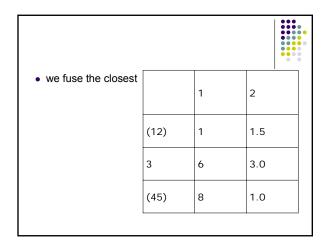
- 3) Centroid : The distance between two groups is the distance between their centroids. The procedure does not yield monotonic results. The procedure suffers from reversals in the joining of objects (clusters).
 - A reversal occurs when an object joins a cluster after the cluster has formed, but joins at a higher similarity level than at which the cluster formed

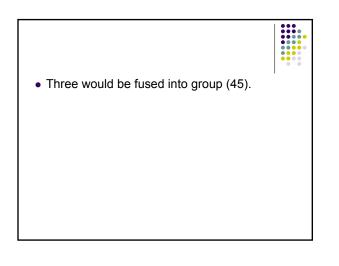
• 5) Group average : (Also known as the unweighted pair - group method using arithmetic averages) the distance between groups is the average between all pairs of the members of two clusters. It is probably the most used technique.



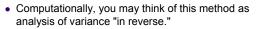


- 1) Correlation Coefficient
- 2) Distance Measures
- 3) Association Coefficients, i.e. Jaccard's (similarity ratio), Gower's.


Example: Using centroid cluster analysis.				
			Variable	
		1	2	
Individual	1	1.0	1.0	
	2	1.0	2.0	
	3	6.0	3.0	
	4	8.0	2.0	
	5	8.0	0.0	


Distance Matrix is						
	1	2	3	4	5	
1	0	1	29	50	50	
2	1	0	26	49	53	
3	29	26	0	5	13	
4	50	49	5	0	4	
5	50	53	13	4	0	
matrix	is square	d Euclidea	n distance	9		

	(12)	3	4	5	
(12)	0	27.25	49.25	51.25	
3	27.25	0	5	13	
4	49.25	5	0	4	
5	51.25	93	4	0	


	(12)	3	(45)	
(12)	0.0	27.25	49.25	
3	27.25	0.00	8.00	
(45)	49.25	8.0	0.00	

• Suppose that you already have hypotheses concerning the number of clusters in your cases or variables.

- You may want to "tell" the computer to form exactly 3 clusters that are to be as distinct as possible.
- This is the type of research question that can be addressed by the k- means clustering. In general, the k-means method will produce exactly *k* different clusters of greatest possible distinction.

- The program will start with *k* random clusters, and then move objects between those clusters with the goal to (1) minimize variability within clusters and (2) maximize variability between clusters.
- In k-means clustering, the program tries to move objects (e.g., cases) in and out of groups (clusters) to get the most significant ANOVA results.