Multiple Regression

Motivations

e to make the predictions of the model more
precise by adding other factors believed to
affect the dependent variable to reduce the
proportion of error variance associated with
SSE

e to support a causal theory by eliminating
potential sources of spuriousness

Multiple Regression

e method employed when the dependent
variable is a function of two or more
independent variables.

e necessary because few relations explained
by bivariate models, other are determinants
important.

e To expand methodology to include more than
one independent variable

e First Question : which independent variables
should be added?

e Answer :
o Intuition
e Theory
o Empirical
« Diagnostic Residuals

e Introduction of additional independent variables
reduces STOCHASTIC ERROR - the error that
arises because of inherent irreproducibility of
physical or social phenomenon. i.e. Independent
variables (that effect y) that are omitted.

e Expected (y;) =& + By + BoXpp + ... + BiXy
o Where : k = number of independent variables;

o i = observation (y, x; pairs) B = estimate (from this
sample i =1 .... n) of B, the population parameter




Example

SPSS output

River yi(discharge) | x;; (distance) |x;, (basin)
i=1 |Nile 324 6690 3031.7
i=2 |Amazon 6630 12741 7050
i=3 |Chang lJiang | 900 5797 1800

Coefficients
Unstandardized Standardized
Coefficients Coefficients t Sig.
B Std. Error Beta
1| (Constant) -970.274 | 283.6289 -3.42093 | 0.001935
basin/1000 0.413899 | 0.166816 0.481409 2.481173 | 0.019369
length 0.21435| 0.107501 0.386873 1.993934 | 0.055981
a Dependent Variable: discharge cubic km

Y(discharge) = a+ f (distance) + g, (basin)

For the Nile: B,=6690, 3,=3031.7, 0=-970.3

Yy = —970.3+214(6690)+.414(30317) = 17165

e y - y=residual or an ERROR TERM
EITOr 1) =324-1716.5=-1392.5

e The slope of the plane is described by two
parameters (up to k on a dimensional
hypersurface), in this example :

e (3, = slope in x, direction
e (3, = slope in x, direction

e (3,and B, are called PARTIAL REGRESSION
COEFFIECIENTS (

)
The plane is a least - squares plane that minimizes
the sum of squared deviations in the y dimension.
Ordinary least squares (OLS) - select the combination
of (a, By, By, ... By) that miningjzes the sum of squares
deviations between y;s and x;s
As with simple regression, the y-intercept disappears
if all variables are standardized
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mins=3 (y, -’

mins= i(Yi —[a+ B+ Bx D)7 = igiz

How : Set partial derivatives of functions with respect
to a, B4, By (the unknowns) equal to zero and solve.
End up with what are termed the "NORMAL
EQUATIONS".

e They represent the additional effect of adding
the variable if the other variables are
controlled for

e Value of the parameter 3 expresses the
relation between the dependent variables and
the independent variables while holding the
effects of all other variables in the regression
constant.

e |t is still the amount of change in y for each
unit change in X, while holding contributions
of other variables constant. Thus as .
independent variables are added to a s
regression model, change

e Substantive significance versus statistical
significance
» Statistical significance is tested via F tests or t
tests

o Substantive can be evaluated several ways
Examine the unstandardized regression coefficient to
see if its large enough to be concerned about
How much does the independent variable contribute to
an increase in r? (as in stepwise regression)

Multiple Correlation Coefficient *

e SPSS for Windows outputs three coefficients :
e (1) MULTIPLE r0.88
e (2) R-SQUARE 0.77 = 0.882
* (3) ADJUSTED r20.76

e same interpretation of ‘r’ of simple correlation
coefficient

o the ‘gross’ correlation between y and ¥, a measure
of the scatter of y from the Least Square Surface.

MULTIPLE COEFFICIENT OF
DETERMINATION :

e 12 = proportion of
variance of the
dependent variable
accounted for by
independent variables

variance accounted for by model

2
r -
total variance of y




Adjusted coefficient :

e Is r?2 adjusted for the
number of independent
variables and sample
size. Should report this
in results.

k(1-r?)
N-k-1

2 2
r adjusted = re-

e If there is much intercorrelation
(multicollinearity) between independent
variables, adding other independent variables
will not raise r2 by much thus;

e Adding independent variables not related to
each other will raise r2 by a lot if these
independent variables are, themselves,
related to y.

Methods of regression

e All possible equations

e If there are 5 independent variables (n = 5),
the number of ‘possible’ combinations of
models = 31 plus the null model
o for a total of 32

e If there are many independent variables we
need a way to pick out the best equation

e Trade - off :

o (a) Adding variables will always increase r?, the
percent of the variance explained, and predictions
will be better.

o (b) Verses explanation, clearer interpretation of
the relationships between independent and
dependent variables, parsimonious, clarity.

o Will MAXIMIZE r2 while MINIMIZING the
number of independent variables.

Forward Selection oot

e Picks the X variable with the highest r, puts in the
model

e Then looks for the X variable which will increase
r2 by the highest amount

e Test for statistical significance performed (using
the F test)

o If statistically significant, the new variable is
included in the model, and the variable with the
next highest r? is tested

e The selection stops when no variable can be
added which significantly increases r?

Backwards Elimination

e Starts with all variables in the model

e Removes the X variable which results in the
smallest change in r2

e Continues to remove variables from the
model until removal produces a statistically
significant drop in r2




Stepwise regression $2

e Similar to forward selection, but after eac
new X added to the model, all X variables
already in the model are re-checked to see
if the addition of the new variable has
effected their significance

e Bizarre, but unfortunately true: running
forward selection, backward elimination,
and stepwise regression on the same data
often gives different answers
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e The existence of suppressor variables may
be a reason
o A variable may appear statistically significant only
when another a variable is controlled or held
constant

e This is a problem associated with the forward
stepwise regression

e The RSQUARE method differs from the other
selection methods in that RSQUARE always
identifies the model with the largest r? for each
number of variables considered. The other selection
methods are not guaranteed to find the model with
the largest r2. The RSQUARE method requires
much more computer time than the other selection
methods, so a different selection method such as
the STEPWISE method is a good choice when there
are many independent variables to consider.

e Adjusted r2 Selection (ADJRSQ)

o This method is similar to the RSQUARE method,
except that the adjusted r? statistic is used as the
criterion for selecting models, and the method
finds the models with the highest adjusted r?
within the range of sizes.

e Mallows' Cp Selection

o This method is similar to the ADJRSQ method,
except that Mallows' C,, statistic is used as the
criterion for model selection. Models are listed in
ascending order of C,..

Alternate approaches :

e Mallow's C, is available
in SPSS using the
command syntax but
not as a selection
method

e SAS does include it
_ SS(k variable model) - SS(p variable model)

G- MS(k variable model) #2p-(k+ D)

If the p variable model is as good as the k variable model
The C, < p+1

Types of errors

e Specification Error
e the wrong model was specified. There are 2 ways
this kind of error can occur :
« a) We may have the proper variables but the wrong
functional form
« model assumes the relationship are linear and additive. If
violated, the least square estimates will be biased.
o b) Wrong Independent Variables. When relevant variable is
excluded, the remaining pick up some of the impact of that
variable. The result is biased estimators, the direction of

bias depends on the direction of the effect of the excluded
variables.




e Measurement Error

o 2 types of error - random and non - random

a) Random - results in lower r2, partial slope
coefficients are hard to achieve statistical significance.
b) Non - Random - brings up the question of the
validity of the measurement.

e Multicollinearity

e Heteroscedasticity
o the error term in a regression model does not have
constant variance.
Situations where it can occur:
a) Where dependent variable is measured with error and
the amount of error varies with the value of the independent
variable.
b) When the unit of analysis is an aggregate and the
dependent variable is an average of values for individual
objects.
c) Interaction between independent variables in the model
and another variable left out of the model.

e When present, the standard error of partial
slope coefficients are no longer unbiased
estimators of the true estimator.

e Standard Deviations - test of statistical
significance based on these standard errors
will be inaccurate.

e How to detect?

e Look at plot of residual against X.

For large samples

Even envelope for large
samples if hemoscedastic

e For small samples

e Other forms probably indicate heteroscedasticity :




River data

‘Standardized Residual
Standardized Residual

2000000 | 4000000 6000000 8000000
3000000 7000000 lengih

basin sqkm
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e The impact of collinearity on the precision of
estimation is captured by 1/ (1 - R?) called the
Variance Inflation Factor, VIF. The R? is the multiple
regression of a particular x on the others.

e Probably better look at :

e The table below reveals the linear relationship

between. Among the x’s must be very strong before

collinearity seriously degrades the precision of
estimation.

i.e. Not until r, approaches 0.9 that precision of

estimation is halved.

Variance Inflation Factor

Example A: If R;? =.00 then VIF; = 1:

VIFj=—~ =1 4
: 1-R? 1-0

Example B: If R;? = .90 then VIF; = 10:

S T
1-Rr? 1-.90

VIF j=

Evidence of Multicollinearity

¢ Any VIF > 10
® Sum of VIFs > 10
® High correlation for pairs of predictors X; and X

® Unstable estimates
*(i.e., the remaining coefficients change sharply when a suspect
predictor is dropped from the model)

Example: Estimating Body Fat

The regression equation is

Fat%1 = 18.6 + 0.0685 Age - 0.197 Height - 0.765 Neck - 0.051 Chest
+0.943 Abdomen - 0.731 Hip + 0.530 Thigh

Predictor Coef StDev T P VIF

Constant 18.63 12.44 1.50 0.14

Age 0.06845  0.09268 0.74 0.46 1.7

Height -0.197  0.1087 -1.81 0.08 13

Neck -0.765  0.3836 -1.99 0.05 44

Chest -0.0514  0.1865 -0.28 0.78 A0.9\

Abdomen 09426  0.1731 5.45 0.00 [17.6

Hip 07309  0.2281 -3.20 000  |159 |

Thigh 05299  0.2886 1.84 0.07 ‘\1?.5/ /
S=4.188 R-Sq = 81.8% R-Sa(adi) = 78.7%

Correlation Matrix of Predictors | ¢

Age Height Neck Chest  Abdomen Hip

Height -0.276

Neck 0.176 0.201

Chest 0.376 0.014 0.820

Abdomen 0.442 -0.052 0.781 0.942

Hip 0.314 -0.045 0.804 0.911 0.942

Thigh 0.219 -0.037 0.823 0.859 0.890 0.938

Problem:
Several
VIFs exceed
10.

T T

Age and Height are
relatively independent
of other predictors.

Problem: Neck, Chest,
Abdomen, and Thigh are
highly correlated.




Solution: Eliminate Some

Predictors
The regression equation is
Fat%1 = 0.8 + 0.0927 Age - 0.184 Height - 0.842 Neck + 0.637 Abdomen
Predictor Coef StDev T P VIF
Constant 0.79 10.35 0.08 0.94
Age 0.0927  0.09199 1.01 0.32 14
Height -0.1837 0.1133 -1.62 0.11 1.2
Neck -0.8418 0.3516 -2.39 0.02 3.2
Abdomen 0.63659 0.0846 7.52 0.00 3.6

S =4.542 R-Sa =77.0% R-Sa(adi) = 75.0%

R2is reduced slightly, but all Iﬁ
VIFs are below 10.

Stability Check for Coefficients| ::

Variable | Run 1 | Run 2 | Run 3 | Run 4 | %Chg
Constant 18.63 17.67 19.89 0.79 -95.8%
Age 0.06845 0.0689 0.0200 0.0927 35.4%
Height -0.1970 -0.1978 -0.2387 -0.1837 -6.8%
Neck -0.7650 -0.8012 -0.5717 -0.8418 10.0%
Chest -0.0514

Abdomen 0.9426 0.9158 0.9554 0.6366 -32.5%
Hip -0.7309 -0.7408 -0.5141

Thigh 0.5299 0.5406

Std Err 4.188 4.143 4.266 4.542 8.5%

R-Sq 81.8% 81.7% 80.2% 77.0% -5.9%
R-Sq(adj) 78.7% 79.2% 77.9% 75.0% -4.7%

There are large changes in estimated coefficients as high VIF
predictors are eliminated, revealing that the original estimates were

unstable. But the “fit” deteriorates when we eliminate predictors.

Example: College Graduation Rate

Dropout !
Ed3pendis ' Minor problem?
Incore i <:| The sum of the VIFs
' exceeds 10 (but few
Utban i statisticians would
I worry since no single
bge i VIF is very large)
Feralab 1
Meast !
Seast |
West |
1 2 5 10 20 50 100 200 500 1000
Variance Inflation Factor (lag 10)

e Autocorrelation means that the error is not
truly random, but depends upon its own past
values, e.g.
°e=peyty
o where p measures the correlation between

successive errors and v is another error term, but
a truly random one.

e Why does autocorrelation matter? If e is not truly
random then it is, to some extent, predictable. If so,
we ought to include that in our model. If our model
exhibits autocorrelation, then it cannot be the best
model for explaining y.

e If autocorrelation exists in the model, then the
coefficient estimates are unbiased, but the standard
errors are not. Hence inference is invalid. tand F
statistics cannot be relied upon.

Detecting autocorrelation

e Graph the residuals — they should look
random.

Plot of Residuals and Two Standard
Error Bands




e Evidence here of positive autocorrelation
(o > 0) — positive errors tend to follow positive
errors, negative errors to follow negative
errors.

e |t looks likely the next error will be negative
rather than zero.

The Durham Watson Statistic | *

e => Test for
Autocorrelation

n
e Small values indicate Z(et - 91,1)2
positive correlation and D=tz _——
large values indicate Zetz
negative correlation 1

Durbin-Watson Test

Bounded by 0 and 4

1
i

Conclude that Conclude that a Conclude that

)

1 1 1 1 1
1 1 1 1 1
) ) ) ) )
| positive | Zoneof | autocorrelationis | Zoneof negative 1
| autocorrelation | indecision | absent | indecision | autocorrelation }
1 exists 1 1 1 1 exists 1
1 1 1 1 1 1
1 1 1 1 1 1
0 do du 2 4-du 4-do 4

lower bound d, and upper bound d,, are dependent upon the data
and must be calculated for each analysis

A table of values can be found at
http://hadm.sph.sc.edu/courses/J716/Dw.html
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e To formally test for serial correlation in your
residuals:

» Find the box corresponding to the number of X variables in
your equation and the number of observations in your data.
Choose the row within the box for the significance level
("Prob.") you consider appropriate. That gives you two
numbers, a D-L and a D-U. If the Durbin-Watson statistic
you got is less than D-L, you have serial correlation. If it is
less than D-U, you probably have serial correlation,
particularly if one of your X variables is a measure of time.

From: http://hadm.sph.sc.edu/courses/J716/Dw.html

River colinearity stats

Model Summary
Std. Error of
the Durbin-
Model | R R Square Adjusted R Square Estimate Watson
0.83399

1 4 0.695546 0.673799 672.5264 1.545644
a Predictors: (Constant), length, basin/1000
b Dependent Variable: discharge cubic km




e Positive autocorrelation is present if a
positive (negative) residual in one period is
followed by another positive (negative)
residual the next period.

e Negative autocorrelation is present if positive
(negative) residuals are followed by negative
(positive) residuals.
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Multiple Regression: Caveats
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e Try not to include predictor variables which
are highly correlated with each other

e One X may force the other out, with strange
results

e Overfitting: too many variables make for an
unstable model

e Model assumes normal distribution for
variables - widely skewed data may give
misleading results

Spatial Autocorrelation :

e First law of geography: “everything is related to
everything else, but near things are more related
than distant things” — Waldo Tobler

Many geographers would say “l don’t understand
spatial autocorrelation” Actually, they don’t
understand the mechanics, they do understand the
concept.

Spatial Autocorrelation :

e Spatial Autocorrelation — correlation of a variable
with itself through space.

e If there is any systematic pattern in the spatial
distribution of a variable, it is said to be spatially
autocorrelated

o If nearby or neighboring areas are more alike, this is
positive spatial autocorrelation

o Negative autocorrelation describes patterns in which
neighboring areas are unlike

o Random patterns exhibit no spatial autocorrelation

Why spatial autocorrelation is
important 3

e Most statistics are based on the assumption that the
values of observations in each sample are
independent of one another

e Positive spatial autocorrelation may violate this, if
the samples were taken from nearby areas

e Goals of spatial autocorrelation

e Measure the strength of spatial autocorrelation in a
map
e test the assumption of independence or randomness

Spatial Autocorrelation

e |t measures the extent to which the
occurrence of an event in an areal unit
constrains, or makes more probable, the
occurrence of an event in a neighboring areal
unit.
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Spatial Autocorrelation

o Non-spatial independence suggests many statistical
tools and inferences are inappropriate.

« Correlation coefficients or ordinary least squares regressions
(OLS) to predict a dependent variable assumes random
samples
If the observations, however, are spatially clustered in some
way, the estimates obtained from the correlation coefficient or
OLS estimator will be biased and overly precise.

They are biased because the areas with higher concentration
of events will have a greater impact on the model estimate and
they will overestimate precision because, since events tend to
be concentrated, there are actually fewer number of
independent observations than are being assumed.

Indices of Spatial Autocorrelation

e Moran’s |
e Geary's C
e Ripley’s K
e Join Count Analysis

Spatial regression

e The existence of spatial autocorrelation can
be used to improve regression analysis

e One can use spatial regression to allow the
regression to make use of variables
exhibiting like values of neighboring
observations

e Use of this technique is often covered in GIS
courses but is beyond the scope of this
course

How Many Predictors? HH

Regression with an intercept can be performed as long as n
exceeds p+1. However, for sound results desirable that n
be substantially larger than p. Various guidelines have been
proposed, but judgment is allowed to reflect the context of
the problem.

Rule 1 (maybe a bit lax)
n/p>5 (atleast5 cases per predictor)
Example: n = 50 would allow up to10 predictors
Rule 2 (somewhat conservative)

n/p =10 (at least 10 cases per predictor
Example: n = 50 would allow up to 5 predictors

Binary Model Form

Yi=Bo+ BuXy +BX; t g
™~

X X, is binary (0 or 1)
Explanation

If X, =0then Y, = By + B Xy + B,(0) + &
Yi=Bot B Xt g

If X, =1then Y, = Bo + B Xy + Bo(1) + &
Yi = (BotB2) + BXy * 8

The binary (also called dummy) variable

shifts the intercept

Example: Binary Predictors
MPG = 27.52 — .00356 Weight + 2.51 Stick

Explanation

Define: Stick = 1 if manual transmission
Stick = 0 if automatic

If Stick =0then MPG =27.52 - .00356 Weight + 2.52(0)
i.e, MPG=27.52-.00356 Weight

If Stick = 1then  MPG = 27.52 - .00356 Weight + 2.51
ie., MPG = 30.03 - .00356 Weight

The binary variable shifts the intercept
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Binaries Shift the Intercept

Separate Regressions by Gender

Same slope,
different
50 intercepts
y = 1.8391x + 17.699 o
404 R? =0.9659
” ¢ Female
‘g‘ 30 4 @ Male
; 20 Linear (Female)
- y =1.8391x +10.412 Linear (Male)
il Re =0.9688
0
0 5 10 15

Age

k-1 Binaries for k Groups?

That's right, for k groups,
we only need k-1 binaries

Gender (male, female) requires only 1 binary (e.g., male)
because male=0 would be female.

Season (fall, winter, spring, summer) requires only 3
binaries (e.g., fall, winter, spring) because fall=0, winter=0,
spring=0 would be summer.

For provincial data, we might divide Canada into 4 regions,
but in aregression, we omit one region.

The omitted binary is the base reference point. No
information is lost.

What about polynomials?

e Note that:
y=ax3+hbx2+cx+d+e
e can be expressed as:
y = B0+ Bxy+ Byox, + Byx; + €
o if x; = X", x, = X2, x3 = X3

e So polynomial regression is considered a
special case of linear regression.

e This is handy, because even if polynomials do
not represent the true model, they take a
variety of forms, and may be close enough for
a variety of purposes.

e Fitting a response surface is often useful:
Y=o+ Byxt Box,? + Bx2 + B,x,2 + ByxyX, + €

This can fit simple ridges, peaks, valleys, pits,

slopes, and saddles.

Interaction Terms

Yi=Bo + BoXy + BoX; + BaX X, + g

If we can reject B, = 0 there is
a significant interaction effect

<

» Detects interaction between any two predictors
Multiple interactions are possible (e.g., X;X,;X5)

X3

RS

@]
o
=1

RS

-

Becomes complex if many predictors
» Difficult to interpret the coefficient

<
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Logistic Regression

If the dependent variable Y is binary (0 or 1) and the X's are continuous, a linear
regression model is inappropriate. The logistic regression is a non-linear model with
the form Y = 1/{1+exp[-(by + byX; + b, X, + ...+ bX))]}. Y interpreted as the
probability of the binary event. Rain = f(Barometric Pressure). The binary Y is Rain = 0,
1.

[Bivariae Fiof e By Pressure Togisic Fitor Ram By Pressire
1 T T

075

0

201 292 293 20.4 205 206 297 298

——tinear i
Parameter Estmates

e e Tom EstmateStEror ChSquare Prob>Chisa

ssoeen we2s7 573 0018

Parameter Estimates -13.823388 57651316 575 00165

o Estimate 10 Eror {Ratlo Prob>
Itorcopt 53241865 1380328 386 00006
Pressure 799275 046911 384 00007

Forlog odds of o/t

APFROPRIATE PROCEDURE FOR MULTIVARIABLE ANALYSIS: ANALYSIS OF ONE .
DEPENDENT VARIABLE AND MORE THAN ONE INDEPENDENT VARIABLE

Charactoruzatson of Vanables to be Analyzed

Dipencirt Victabie Independnt Varsablen® Appropeiate Procedire(s)
Contimin Sorns catogerical, some ANOVA
gl
Contiman Al conttimio Multipie lincar regresion
Ordisul - Mo formal naitivasiate procedere. Trest varisbles s
. . |
lirsar analisin
h perical Lo dox, log:inear aralysin
Dichoternos Sorme categerical, sorme Logitic regressint
wEiman
= _— e —
Neminal Al categerical Logpfinear analysis
Nl Some calegerical some Gre the continous vasiabics and perform bog-
p——— lipear snalysis
Waminal JU P Discrisinant finction anahysis; group the contiros
variabies and perform logincar analysis
i ke ool = p=rry
1 Ity is & time-related, dich i lrveidie), th J. hceards {Conc) mocels are ”

Results of Regression
Assumption violations :

The assumption of the absence
of perfect multicollinearity

o if there is perfect multicollinearity then there are
an infinite number of regressions that will fit the
data
e 3 ways this can happen
o a) you mistakenly put in independent variables that
are linear combinations of each other

o b) putting in as many dummy variables as the number
of classes of the nominal variable you are trying to
use

o c) if the sample size is too small, ie the number of
cases is less than the number of independent
variables

e for example if you use 3 independent
variables and 2 data points, the job is to find
the plane of best fit but you only have 2 data
points

e a line perfectly fits the 2 points, so any plane
containing that line also fits

e The estimates of the partial slope coefficients
will have high standard errors so that there
will be high variability of the estimates
between samples
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Specification error: Leaving out a
relevant independent variable

e Consequences: Biased partial slope
coefficients

The assumption that the mean of
the error term is zero

e can happen in 2 cases
o 1) the error is a constant across all cases
o 2) the error term varies - this is the more serious
case
o for case 1 - intercept is biased by an amount
equal to the error term
it can happen with measurement error equal to a
constant
e for case 2 - causes bias in the partial slope
coefficients

The assumption of measurement
without error

e a) random measurement error
o if it affects the dependent variable the r2 is
attenuated and estimates are less efficient but
unbiased
o [f it affects independent variable the parameter
estimates are biased
e b) nonrandom measurement error
o always leads to bias but amount and type
depends on the error

The assumptions of linearity and

additivity

e errors of this type are a kind of specificity
error

o difficult to predict the effect

The assumptions of
homoscedasticity and lack of :
autocorrelation

e assumption that the variance of the error term
is constant
e accuracy of data is constant across data
o i.e. it doesn’t get better or worse over time

e significance tests are invalid

o likely a problem in time series models but also in
cases of spatial autocorrelation

The assumption that the error e
term is normally distributed :

e important for small samples to allow for
significance testing

e for large samples you can test even if its not
normal
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