

Motivations

- to make the predictions of the model more precise by adding other factors believed to affect the dependent variable to reduce the proportion of error variance associated with SSE
- to support a causal theory by eliminating potential sources of spuriousness

- First Question : which independent variables should be added?

Example					
	River	y_{i} (discharge)	$\mathrm{X}_{\mathrm{i} 1}$ (distance)	$\mathrm{x}_{\mathrm{i} 2}$ (basin)	
$\mathrm{i}=1$	Nile	324	6690	3031.7	
$\mathrm{i}=2$	Amazon	6630	12741	7050	
$\mathrm{i}=3$	Chang Jiang	900	5797	1800	
\vdots	\vdots	\vdots	!	\vdots	
\pm	\vdots	\vdots	\vdots	\vdots	

SPSS output						$\because \because:$ $\because \because:$ $\because: \%$ $\because:$
Coefficients						
		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error	Beta		
1	(Constant)	-970.274	283.6289		-3.42093	0.001935
	basin/1000	0.413899	0.166816	0.481409	2.481173	0.019369
	length	0.21435	0.107501	0.386873	1.993934	0.055981
a	Dependent Variable: discharge cubic km					

	:\%:
$Y($ discharge $)=\alpha+\beta_{1}($ distance $)+\beta_{2}(\mathbf{b a s i n})$	
For the Nile: $\beta_{1}=6690, \beta_{2}=3031.7, \alpha=-970.3$	
$\hat{Y}_{\text {Nile }}=-970.3+.214(6690)+.414(3031.7)=1716.5$	

$$
\min s=\sum_{i=1}^{n}\left(y_{i}-\left[\alpha+\beta_{1} x_{i 1}+\ldots .+\beta_{k} x_{i k}\right]\right)^{2}=\sum_{i=1}^{n} \varepsilon_{i}^{2}
$$

How : Set partial derivatives of functions with respect to $\alpha, \beta_{1}, \beta_{k}$ (the unknowns) equal to zero and solve. End up with what are termed the "NORMAL
EQUATIONS".

- They represent the additional effect of adding the variable if the other variables are controlled for
- Value of the parameter β expresses the relation between the dependent variables and the independent variables while holding the effects of all other variables in the regression constant.
- It is still the amount of change in y for each unit change in X, while holding contributions of other variables constant. Thus as independent variables are added to a $\quad \hat{\beta}$ s regression model, change

- Substantive significance versus statistical significance
- Statistical significance is tested via F tests or t tests
- Substantive can be evaluated several ways
- Examine the unstandardized regression coefficient to see if its large enough to be concerned about
- How much does the independent variable contribute to an increase in r^{2} (as in stepwise regression)

Multiple Correlation Coefficient

- (1) MULTIPLE r 0.88
- (2) R - SQUARE $0.77=0.882$
- (3) ADJUSTED r${ }^{2} 0.76$
- same interpretation of ' r ' of simple correlation coefficient
- the 'gross' correlation between y and $\mathfrak{y} x$, a measure of the scatter of y from the Least Square Surface.

MULTIPLE COEFFICIENT OF DETERMINATION

- $\mathrm{r}^{2}=$ proportion of variance of the dependent variable accounted for by independent variables

$$
r^{2}=\frac{\text { variance accounted for by model }}{\text { total variance of } y}
$$

Adjusted coefficient

- Is r^{2} adjusted for the number of independent variables and sample size. Should report this in results.

$$
r_{\text {adjusted }}^{2}=r^{2}-\frac{k\left(1-r^{2}\right)}{N-k-1}
$$

- If there is much intercorrelation (multicollinearity) between independent variables, adding other independent variables will not raise r^{2} by much thus;
- Adding independent variables not related to each other will raise r^{2} by a lot if these independent variables are, themselves, related to y.

Methods of regression

- All possible equations
- If there are 5 independent variables ($n=5$), the number of 'possible' combinations of models $=31$ plus the null model - for a total of 32
- If there are many independent variables we need a way to pick out the best equation

Forward Selection

- Picks the X variable with the highest r, puts in the model
- Then looks for the X variable which will increase r^{2} by the highest amount
- Test for statistical significance performed (using the F test)
- If statistically significant, the new variable is included in the model, and the variable with the next highest r^{2} is tested
- The selection stops when no variable can be added which significantly increases r^{2}

Backwards Elimination

- Starts with all variables in the model
- Removes the X variable which results in the smallest change in r^{2}
- Continues to remove variables from the model until removal produces a statistically significant drop in r^{2}

Stepwise regression

- Similar to forward selection, but after each new X added to the model, all X variables already in the model are re-checked to see if the addition of the new variable has effected their significance
- Bizarre, but unfortunately true: running forward selection, backward elimination, and stepwise regression on the same data often gives different answers

\square
 :日:

- The existence of suppressor variables may be a reason
- A variable may appear statistically significant only when another a variable is controlled or held constant
- This is a problem associated with the forward stepwise regression
- The RSQUARE method differs from the other selection methods in that RSQUARE always identifies the model with the largest r^{2} for each number of variables considered. The other selection methods are not guaranteed to find the model with the largest r^{2}. The RSQUARE method requires much more computer time than the other selection methods, so a different selection method such as the STEPWISE method is a good choice when there are many independent variables to consider.

Alternate approaches

- Mallow's C_{p} is available in SPSS using the command syntax but not as a selection method
- SAS does include it

$$
C_{p}=\frac{S S(k \text { variable model })-S S(p \text { variable model })}{M S(k \text { variable model })}+2 p-(k+1)
$$

If the p variable model is as good as the k variable model The $C_{p} \leq p+1$

- Measurement Error

- 2 types of error - random and non - random
- a) Random - results in lower r^{2}, partial slope coefficients are hard to achieve statistical significance.
-b) Non - Random - brings up the question of the validity of the measurement.
- Multicollinearity
- Heteroscedasticity
- the error term in a regression model does not have constant variance.
- Situations where it can occur:
- a) Where dependent variable is measured with error and the amount of error varies with the value of the independent variable.
- b) When the unit of analysis is an aggregate and the dependent variable is an average of values for individual objects.
- c) Interaction between independent variables in the model and another variable left out of the model.

位的 present, the standard error of partial slope coefficients are no longer unbiased estimators of the true estimator.

- Standard Deviations - test of statistical significance based on these standard errors will be inaccurate.
- How to detect?
- Look at plot of residual against X .

Stability Check for Coefficients

Variable Run 1 Run 2 Run 3 Run 4 \%Chg Constant 18.63 17.67 19.89 0.79 -95.8% Age 0.06845 0.0689 0.0200 0.0927 35.4% Height -0.1970 -0.1978 -0.2387 -0.1837 -6.8% Neck -0.7650 -0.8012 -0.5717 -0.8418 10.0% Chest -0.0514 Abdomen 0.9426 0.9158 0.9554 0.6366 -32.5% Hip -0.7309 -0.7408 -0.5141 Thigh 0.5299 0.5406 Std Err 4.188 4.143 4.266 4.542 8.5% R-Sq 81.8% 81.7% 80.2% 77.0% -5.9% R-Sq(adj) 78.7% 79.2% 77.9% 75.0% -4.7%
There are large changes in estimated coefficients as high VIF
predictors are eliminated, revealing that the original estimates were
unstable. But the "fit" deteriorates when we eliminate predictors.

- Autocorrelation means that the error is not truly random, but depends upon its own past values, e.g.
- $e_{t}=\rho e_{t-1}+v_{t}$
- where ρ measures the correlation between successive errors and v is another error term, but a truly random one.

Detecting autocorrelation

- Graph the residuals - they should look random.

- Evidence here of positive autocorrelation ($\rho>0$) - positive errors tend to follow positive errors, negative errors to follow negative errors.
- It looks likely the next error will be negative rather than zero.

The Durham Watson Statistic

- => Test for Autocorrelation
- Small values indicate positive correlation and large values indicate negative correlation

$$
D=\frac{\sum_{t=2}^{n}\left(e_{t}-e_{t-1}\right)^{2}}{\sum_{t=1}^{n} e_{t}^{2}}
$$

- To formally test for serial correlation in your residuals:
- Find the box corresponding to the number of X variables in your equation and the number of observations in your data. Choose the row within the box for the significance level ("Prob.") you consider appropriate. That gives you two numbers, a D-L and a D-U. If the Durbin-Watson statistic you got is less than D-L, you have serial correlation. If it is less than D-U, you probably have serial correlation, particularly if one of your X variables is a measure of time.
- Try not to include predictor variables which $\because \because \%$ are highly correlated with each other
- One X may force the other out, with strange results
- Overfitting: too many variables make for an unstable model
- Model assumes normal distribution for variables - widely skewed data may give misleading results

Spatial Autocorrelation

- First law of geography: "everything is related to everything else, but near things are more related than distant things" - Waldo Tobler
- Many geographers would say "I don't understand spatial autocorrelation" Actually, they don't understand the mechanics, they do understand the concept.

Spatial Autocorrelation

- Spatial Autocorrelation - correlation of a variable with itself through space.
- If there is any systematic pattern in the spatial distribution of a variable, it is said to be spatially autocorrelated
- If nearby or neighboring areas are more alike, this is positive spatial autocorrelation
- Negative autocorrelation describes patterns in which neighboring areas are unlike
- Random patterns exhibit no spatial autocorrelation

Why spatial autocorrelation is important

- Most statistics are based on the assumption that the values of observations in each sample are independent of one another
- Positive spatial autocorrelation may violate this, if the samples were taken from nearby areas
- Goals of spatial autocorrelation
- Measure the strength of spatial autocorrelation in a map
- test the assumption of independence or randomness

Spatial Autocorrelation

- It measures the extent to which the occurrence of an event in an areal unit constrains, or makes more probable, the occurrence of an event in a neighboring areal unit.

Spatial Autocorrelation

- Non-spatial independence suggests many statistical tools and inferences are inappropriate.
- Correlation coefficients or ordinary least squares regressions (OLS) to predict a dependent variable assumes random samples
- If the observations, however, are spatially clustered in some way, the estimates obtained from the correlation coefficient or OLS estimator will be biased and overly precise.
- They are biased because the areas with higher concentration of events will have a greater impact on the model estimate and they will overestimate precision because, since events tend to be concentrated, there are actually fewer number of independent observations than are being assumed.

Spatial regression

- The existence of spatial autocorrelation can be used to improve regression analysis
- One can use spatial regression to allow the regression to make use of variables exhibiting like values of neighboring observations
- Use of this technique is often covered in GIS courses but is beyond the scope of this course

How Many Predictors?

Regression with an intercept can be performed as long as n exceeds $p+1$. However, for sound results desirable that n be substantially larger than p. Various guidelines have been proposed, but judgment is allowed to reflect the context of the problem.
Rule 1 (maybe a bit lax)
$\mathrm{n} / \mathrm{p} \geq 5$ (at least 5 cases per predictor)
Example: $\mathrm{n}=50$ would allow up to 10 predictors
Rule 2 (somewhat conservative)
$\mathrm{n} / \mathrm{p} \geq 10$ (at least 10 cases per predictor
Example: $\mathrm{n}=50$ would allow up to 5 predictors

Example: Binary Predictors

MPG $=27.52$ - .00356 Weight +2.51 Stick

Explanation

Define: \quad Stick = 1 if manual transmission Stick $=0$ if automatic

If Stick $=0$ then \quad MPG $=27.52-.00356$ Weight $+2.52(0)$
i.e., MPG = 27.52-. 00356 Weight

If Stick $=1$ then \quad MPG $=27.52-.00356$ Weight +2.51
i.e., MPG = 30.03-. 00356 Weight

The binary variable shifts the intercept

What about polynomials?

- Note that:
$y=a x^{3}+b x^{2}+c x+d+e$
- can be expressed as:
$y=\beta O+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+e$
- if $x_{1}=x^{1}, x_{2}=x^{2}, x_{3}=x 3$

k-1 Binaries for k Groups?

That's right, for k groups,
we only need k-1 binaries

Gender (male, female) requires only 1 binary (e.g., male) because male $=0$ would be female.

Season (fall, winter, spring, summer) requires only 3 binaries (e.g., fall, winter, spring) because fall $=\mathbf{0}$, winter $=\mathbf{0}$, spring $=0$ would be summer.

For provincial data, we might divide Canada into 4 regions, but in a regression, we omit one region.

The omitted binary is the base reference point. No information is lost.

- So polynomial regression is considered a special case of linear regression.
- This is handy, because even if polynomials do not represent the true model, they take a variety of forms, and may be close enough for a variety of purposes.
- Fitting a response surface is often useful: $y=\alpha+\beta_{1} x_{1}+\beta_{2} x_{1}^{2}+\beta_{3} x^{2}+\beta_{4} x_{2}^{2}+\beta_{4} x_{1} x_{2}+\varepsilon$

This can fit simple ridges, peaks, valleys, pits, slopes, and saddles.

Interaction Terms

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\varepsilon_{i}
$$

If we can reject $\beta_{3}=0$ there is
a significant interaction effect
Pro

* Detects interaction between any two predictors * Multiple interactions are possible (e.g., $X_{1} X_{2} X_{3}$) Con
* Becomes complex if many predictors
* Difficult to interpret the coefficient

Results of Regression Assumption violations

The assumption of the absence of perfect multicollinearity

- if there is perfect multicollinearity then there are an infinite number of regressions that will fit the data
- 3 ways this can happen
- a) you mistakenly put in independent variables that are linear combinations of each other
- b) putting in as many dummy variables as the number of classes of the nominal variable you are trying to use
- c) if the sample size is too small, ie the number of cases is less than the number of independent variables

Specification error: Leaving out a relevant independent variable
 $\because:$
 $\because \because$

- Consequences: Biased partial slope coefficients

The assumption that the mean of the error term is zero

- can happen in 2 cases
- 1) the error is a constant across all cases
- 2) the error term varies - this is the more serious case
- for case 1 - intercept is biased by an amount equal to the error term
- it can happen with measurement error equal to a constant
- for case 2 - causes bias in the partial slope coefficients

The assumption of measurement without error

- a) random measurement error
- if it affects the dependent variable the r^{2} is attenuated and estimates are less efficient but unbiased
- If it affects independent variable the parameter estimates are biased
- b) nonrandom measurement error
- always leads to bias but amount and type depends on the error

The assumptions of linearity and additivity

- errors of this type are a kind of specificity error
- difficult to predict the effect

The assumptions of homoscedasticity and lack of autocorrelation

- assumption that the variance of the error term is constant
- accuracy of data is constant across data
- i.e. it doesn't get better or worse over time
- significance tests are invalid
- likely a problem in time series models but also in cases of spatial autocorrelation

The assumption that the error term is normally distributed

- important for small samples to allow for significance testing
- for large samples you can test even if its not normal

