
1

Multiple Regression

Motivations

to make the predictions of the model more 
precise by adding other factors believed to 
affect the dependent variable to reduce the 
proportion of error variance associated with 
SSE 
to support a causal theory by eliminating 
potential sources of spuriousness 

Multiple Regression

method employed when the dependent 
variable is a function of two or more 
independent variables.
necessary because few relations explained 
by bivariate models, other are determinants 
important.
To expand methodology to include more than 
one independent variable

First Question : which independent variables 
should be added?

Answer : 
Intuition
Theory
Empirical
Diagnostic Residuals

Introduction of additional independent variables 
reduces STOCHASTIC ERROR - the error that 
arises because of inherent irreproducibility of 
physical or social phenomenon. i.e. Independent 
variables (that effect y) that are omitted.

Expected (yi) = â + β1xi1 + β2xi2 + ... + βkxik
Where : k = number of independent variables;
i = observation (yi, xi pairs) β = estimate (from this 
sample i = 1 .... n) of B, the population parameter
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Example

:::::

:::::

18005797900Chang Jiangi = 3

7050127416630Amazoni = 2

3031.76690324Nilei = 1

xi2 (basin)xi1 (distance)yi(discharge)River

SPSS output

Dependent Variable: discharge cubic kma

0.0559811.9939340.3868730.1075010.21435length

0.0193692.4811730.4814090.1668160.413899basin/1000

0.001935-3.42093283.6289-970.274(Constant)1

BetaStd. ErrorB

Sig.t
Standardized
Coefficients

Unstandardized 
Coefficients

Coefficients

Y( ) ( ) ( )discharge = + +α β β1 2distance basin

$ . . ( ) . ( . ) .YNile = − + + =970 3 214 6690 414 30317 17165

For the Nile: β1=6690, β2=3031.7, α=-970.3

y - = residual or an ERROR TERM
error(Nile) =324-1716.5=-1392.5 

The slope of the plane is described by two 
parameters (up to k on a dimensional 
hypersurface), in this example :
β1 = slope in x1 direction
β2 = slope in x2 direction

$y

β1 and β2 are called PARTIAL REGRESSION 
COEFFIECIENTS (because the coefficient only 
partially explains or predicts changes in Y)
The plane is a least - squares plane that minimizes 
the sum of squared deviations in the y dimension.
Ordinary least squares (OLS) - select the combination 
of (α, β1, β2, ... βk) that minimizes the sum of squares 
deviations between yis and xis
As with simple regression, the y-intercept disappears 
if all variables are standardized 

$y si
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How : Set partial derivatives of functions with respect 
to α, β1, βk (the unknowns) equal to zero and solve. 
End up with what are termed the "NORMAL 
EQUATIONS".

They represent the additional effect of adding 
the variable if the other variables are 
controlled for

Value of the parameter β expresses the 
relation between the dependent variables and 
the independent variables while holding the 
effects of all other variables in the regression 
constant.
It is still the amount of change in y for each 
unit change in X, while holding contributions 
of other variables constant. Thus as 
independent variables are added to a 
regression model, change

$βs

Substantive significance versus statistical 
significance

Statistical significance is tested via F tests or t 
tests
Substantive can be evaluated several ways

Examine the unstandardized regression coefficient to 
see if its large enough to be concerned about
How much does the independent variable contribute to 
an increase in r2 (as in stepwise regression)

Multiple Correlation Coefficient

SPSS for Windows outputs three coefficients : 
(1) MULTIPLE r 0.88
(2) R - SQUARE 0.77 = 0.882
(3) ADJUSTED r2 0.76

same interpretation of ‘r’ of simple correlation 
coefficient
the ‘gross’ correlation between y and  x, a measure 
of the scatter of y from the Least Square Surface.

$y

MULTIPLE COEFFICIENT OF 
DETERMINATION

r2 = proportion of 
variance of the 
dependent variable 
accounted for by 
independent variables 

r 2 =
variance accounted for by model

total variance of y
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Adjusted coefficient
Is r2 adjusted for the 
number of independent 
variables and sample 
size. Should report this 
in results. 

r r
k r
N kadjusted

2 2
21
1

= −
−

− −
( )

If there is much intercorrelation
(multicollinearity) between independent 
variables, adding other independent variables 
will not raise r2 by much thus;
Adding independent variables not related to 
each other will raise r2 by a lot if these 
independent variables are, themselves, 
related to y.

Methods of regression

All possible equations
If there are 5 independent variables (n = 5), 
the number of ‘possible’ combinations of 
models = 31 plus the null model

for a total of 32
If there are many independent variables we 
need a way to pick out the best equation

Trade - off :
(a) Adding variables will always increase r2, the 
percent of the variance explained, and predictions 
will be better.
(b) Verses explanation, clearer interpretation of 
the relationships between independent and 
dependent variables, parsimonious, clarity.

Will MAXIMIZE r2 while MINIMIZING the 
number of independent variables.

Forward Selection

Picks the X variable with the highest r, puts in the 
model
Then looks for the X variable which will increase 
r2 by the highest amount
Test for statistical significance performed (using 
the F test)
If statistically significant, the new variable is 
included in the model, and the variable with the 
next highest r2  is tested
The selection stops when no variable can be 
added which significantly increases r2 

Backwards Elimination

Starts with all variables in the model

Removes the X variable which results in the 
smallest change in r2

Continues to remove variables from the 
model until removal produces a statistically 
significant drop in r2
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Stepwise regression
Similar to forward selection, but after each 
new X added to the model, all X variables 
already in the model are re-checked to see 
if the addition of the new variable has 
effected their significance

Bizarre, but unfortunately true: running 
forward selection, backward elimination, 
and stepwise regression on the same data 
often gives different answers

The existence of suppressor variables may 
be a reason

A variable may appear statistically significant only 
when another a variable is controlled or held 
constant
This is a problem associated with the forward
stepwise regression

The RSQUARE method differs from the other 
selection methods in that RSQUARE always 
identifies the model with the largest r2 for each 
number of variables considered. The other selection 
methods are not guaranteed to find the model with 
the largest r2. The RSQUARE method requires 
much more computer time than the other selection 
methods, so a different selection method such as 
the STEPWISE method is a good choice when there 
are many independent variables to consider. 

Adjusted r2 Selection (ADJRSQ)
This method is similar to the RSQUARE method, 
except that the adjusted r2 statistic is used as the 
criterion for selecting models, and the method 
finds the models with the highest adjusted  r2

within the range of sizes. 
Mallows' Cp Selection

This method is similar to the ADJRSQ method, 
except that Mallows' Cp statistic is used as the 
criterion for model selection. Models are listed in 
ascending order of Cp. 

Alternate approaches
Mallow’s Cp is available 
in SPSS using the 
command syntax but 
not as a selection 
method
SAS does include it

C
SS(k  variable  model) SS(p variable model)

MS(k variable  model)
2p (k 1)p =

−
+ − +

If the p variable model is as good as the k variable model
The Cp ≤ p+1

Types of errors
Specification Error
the wrong model was specified. There are 2 ways 
this kind of error can occur :

a) We may have the proper variables but the wrong 
functional form
model assumes the relationship are linear and additive. If 
violated, the least square estimates will be biased.
b) Wrong Independent Variables. When relevant variable is 
excluded, the remaining pick up some of the impact of that 
variable. The result is biased estimators, the direction of 
bias depends on the direction of the effect of the excluded 
variables.
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Measurement Error
2 types of error - random and non - random

a) Random - results in lower r2, partial slope 
coefficients are hard to achieve statistical significance.
b) Non - Random - brings up the question of the 
validity of the measurement.

Multicollinearity

Heteroscedasticity
the error term in a regression model does not have 
constant variance.

Situations where it can occur:
a) Where dependent variable is measured with error and 
the amount of error varies with the value of the independent 
variable.
b) When the unit of analysis is an aggregate and the 
dependent variable is an average of values for individual 
objects.
c) Interaction between independent variables in the model 
and another variable left out of the model.

When present, the standard error of partial 
slope coefficients are no longer unbiased 
estimators of the true estimator.
Standard Deviations - test of statistical 
significance based on these standard errors 
will be inaccurate.
How to detect?
Look at plot of residual against X.

For large samples

For small samples Other forms probably indicate heteroscedasticity : 
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River data
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The impact of collinearity on the precision of 
estimation is captured by 1 / (1 - R2) called the 
Variance Inflation Factor, VIF. The R2 is the multiple 
regression of a particular x on the others.
Probably better look at :
The table below reveals the linear relationship 
between. Among the x’s must be very strong before 
collinearity seriously degrades the precision of 
estimation.
i.e. Not until r, approaches 0.9 that precision of 
estimation is halved.

Variance Inflation Factor

1  
0 - 1

1 
R - 1
1  VIF 2

j
j ===

Example A: If Rj
2 =.00 then VIFj = 1:

Example B: If Rj
2 = .90 then VIFj = 10:

10  
.90 - 1
1 

R - 1
1  VIF 2

j
j ===

Evidence of Multicollinearity

• Any VIF > 10

• Sum of VIFs > 10

• High correlation for pairs of predictors Xj and Xk

• Unstable estimates
•(i.e., the remaining coefficients change sharply when a suspect 
predictor is dropped from the model) 

Example: Estimating Body Fat

Problem: 
Several 

VIFs exceed 
10.

The regression equation is
Fat%1 = 18.6 + 0.0685 Age - 0.197 Height - 0.765 Neck - 0.051 Chest
           + 0.943 Abdomen - 0.731 Hip + 0.530 Thigh

Predictor Coef StDev T P VIF
Constant 18.63 12.44 1.50 0.14
Age 0.06845 0.09268 0.74 0.46 1.7
Height -0.197 0.1087 -1.81 0.08 1.3
Neck -0.765 0.3836 -1.99 0.05 4.4
Chest -0.0514 0.1865 -0.28 0.78 10.9
Abdomen 0.9426 0.1731 5.45 0.00 17.6
Hip -0.7309 0.2281 -3.20 0.00 15.9
Thigh 0.5299 0.2886 1.84 0.07 10.5

S = 4.188 R-Sq = 81.8% R-Sq(adj) = 78.7%

Correlation Matrix of Predictors

Problem: Neck, Chest, 
Abdomen, and Thigh are 
highly correlated.

Age Height Neck Chest Abdomen Hip
Height -0.276
Neck 0.176 0.201
Chest 0.376 0.014 0.820
Abdomen 0.442 -0.052 0.781 0.942
Hip 0.314 -0.045 0.804 0.911 0.942
Thigh 0.219 -0.037 0.823 0.859 0.890 0.938

Age and Height are 
relatively independent 
of other predictors.
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Solution: Eliminate Some 
Predictors

R2 is reduced slightly, but all 
VIFs are below 10.

The regression equation is
Fat%1 = 0.8 + 0.0927 Age - 0.184 Height - 0.842 Neck + 0.637 Abdomen

Predictor Coef StDev T P VIF
Constant 0.79 10.35 0.08 0.94
Age 0.0927 0.09199 1.01 0.32 1.4
Height -0.1837 0.1133 -1.62 0.11 1.2
Neck -0.8418 0.3516 -2.39 0.02 3.2
Abdomen 0.63659 0.0846 7.52 0.00 3.6

S = 4.542 R-Sq = 77.0% R-Sq(adj) = 75.0%

Stability Check for Coefficients

There are large changes in estimated coefficients as high VIF 
predictors are eliminated, revealing that the original estimates were 
unstable.  But the “fit” deteriorates when we eliminate predictors.

Variable Run 1 Run 2 Run 3 Run 4 % Chg
Constant 18.63 17.67 19.89 0.79 -95.8%
Age 0.06845 0.0689 0.0200 0.0927 35.4%
Height -0.1970 -0.1978 -0.2387 -0.1837 -6.8%
Neck -0.7650 -0.8012 -0.5717 -0.8418 10.0%
Chest -0.0514
Abdomen 0.9426 0.9158 0.9554 0.6366 -32.5%
Hip -0.7309 -0.7408 -0.5141
Thigh 0.5299 0.5406

Std Err 4.188 4.143 4.266 4.542 8.5%
R-Sq 81.8% 81.7% 80.2% 77.0% -5.9%
R-Sq(adj) 78.7% 79.2% 77.9% 75.0% -4.7%

Example: College Graduation Rates

Minor problem?

The sum of the VIFs
exceeds 10 (but few 
statisticians would 
worry since no single 
VIF is very large).

Minor problem?

The sum of the VIFs
exceeds 10 (but few 
statisticians would 
worry since no single 
VIF is very large).

Autocorrelation means that the error is not 
truly random, but depends upon its own past 
values, e.g.

et = ρ et-1 + vt
where ρ measures the correlation between 
successive errors and v is another error term, but 
a truly random one.

Why does autocorrelation matter?  If e is not truly 
random then it is, to some extent, predictable.  If so, 
we ought to include that in our model.  If our model 
exhibits autocorrelation, then it cannot be the best 
model for explaining y.
If autocorrelation exists in the model, then the 
coefficient estimates are unbiased, but the standard 
errors are not.  Hence inference is invalid.  t and F
statistics cannot be relied upon.

Detecting autocorrelation

Graph the residuals – they should look 
random.

 Plot of Residuals and Two Standard
Error Bands

Years

-0.02
-0.04
-0.06
-0.08
-0.10

0.00
0.02
0.04
0.06
0.08
0.10

1970 1972 1974 1976 1978 1980 1982 1984 1986 19881988
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Evidence here of positive autocorrelation
(ρ > 0) – positive errors tend to follow positive 
errors, negative errors to follow negative 
errors.
It looks likely the next error will be negative 
rather than zero.

The Durham Watson Statistic 
=> Test for 
Autocorrelation
Small values indicate 
positive correlation and 
large values indicate 
negative correlation

D
e e
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t t
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∑
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1

Durbin-Watson Test

Conclude that
positive

autocorrelation
exists

Zone of
indecision

Conclude that
autocorrelation is

absent
Zone of

indecision

Conclude that
negative

autocorrelation
exists

0 dL dU 2 4-dU 4-dL 4

lower bound dL and upper bound dU are dependent upon the data 
and must be calculated for each analysis

Bounded by 0 and 4

A table of values can be found at 
http://hadm.sph.sc.edu/courses/J716/Dw.html

To formally test for serial correlation in your 
residuals: 

Find the box corresponding to the number of X variables in 
your equation and the number of observations in your data. 
Choose the row within the box for the significance level 
("Prob.") you consider appropriate. That gives you two 
numbers, a D-L and a D-U. If the Durbin-Watson statistic 
you got is less than D-L, you have serial correlation. If it is 
less than D-U, you probably have serial correlation, 
particularly if one of your X variables is a measure of time. 

From: http://hadm.sph.sc.edu/courses/J716/Dw.html

River colinearity stats

Dependent Variable: discharge cubic kmb

Predictors: (Constant), length, basin/1000a

1.545644672.52640.6737990.695546
0.83399

41

Durbin-
Watson

Std. Error of 
the 
EstimateAdjusted R SquareR SquareRModel

Model Summary
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Positive autocorrelation is present if a 
positive (negative) residual in one period is 
followed by another positive (negative) 
residual the next period. 
Negative autocorrelation is present if positive 
(negative) residuals are followed by negative 
(positive) residuals.

Multiple Regression: Caveats
Try not to include predictor variables which 
are highly correlated with each other

One X may force the other out, with strange 
results

Overfitting: too many variables make for an 
unstable model

Model assumes normal distribution for 
variables - widely skewed data may give 
misleading results

Spatial Autocorrelation
First law of geography:  “everything is related to 
everything else, but near things are more related 
than distant things” – Waldo Tobler
Many geographers would say “I don’t understand 
spatial autocorrelation”  Actually, they don’t 
understand the mechanics, they do understand the 
concept.

Spatial Autocorrelation
Spatial Autocorrelation – correlation of a variable 
with itself through space.

If there is any systematic pattern in the spatial 
distribution of a variable, it is said to be spatially 
autocorrelated
If  nearby or neighboring areas are more alike, this is 
positive spatial autocorrelation
Negative autocorrelation describes patterns in which 
neighboring areas are unlike
Random patterns exhibit no spatial autocorrelation

Why spatial autocorrelation is 
important

Most statistics are based on the assumption that the 
values of observations in each sample are 
independent of one another
Positive spatial autocorrelation may violate this, if 
the samples were taken from nearby areas
Goals of spatial autocorrelation

Measure the strength of spatial autocorrelation in a 
map 
test the assumption of independence or randomness

Spatial Autocorrelation
It measures the extent to which the 
occurrence of an event in an areal unit 
constrains, or makes more probable, the 
occurrence of an event in a neighboring areal
unit.
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Spatial Autocorrelation
Non-spatial independence suggests many statistical 
tools and inferences are inappropriate.

Correlation coefficients or ordinary least squares regressions 
(OLS) to predict a dependent variable assumes random 
samples
If the observations, however, are spatially clustered in some 
way, the estimates obtained from the correlation coefficient or 
OLS estimator will be biased and overly precise.
They are biased because the areas with higher concentration 
of events will have a greater impact on the model estimate and 
they will overestimate precision because, since events tend to 
be concentrated, there are actually fewer number of 
independent observations than are being assumed.

Indices of Spatial Autocorrelation

Moran’s I
Geary’s C
Ripley’s K
Join Count Analysis

Spatial regression

The existence of spatial autocorrelation can 
be used to improve regression analysis
One can use spatial regression to allow the 
regression to make use of variables 
exhibiting like values of neighboring 
observations
Use of this technique is often covered in GIS 
courses but is beyond the scope of this 
course

How Many Predictors?
Regression with an intercept can be performed as long as n 
exceeds p+1.  However, for sound results desirable that n 
be substantially larger than p. Various guidelines have been 
proposed, but judgment is allowed to reflect the context of 
the problem. 

Rule 1  (maybe a bit lax)
n/p ≥ 5 (at least 5 cases per predictor)
Example: n = 50 would allow up to10 predictors

Rule 2 (somewhat conservative)
n/p ≥ 10 (at least 10 cases per predictor
Example: n = 50 would allow up to 5 predictors

.

Binary Model Form

If X2 = 0 then Yi = β0 + β1X1 + β2(0) + εi

Yi = β0 + β1X1 + εi

If X2 = 1 then Yi = β0 + β1X1 + β2(1) + εi

Yi = (β0+β2) + β1X1 + εi

The binary (also called dummy) variable 

shifts the intercept

Yi = β0 + β1X1 + β2X2 + εi

Explanation
X2 is binary (0 or 1)

Example: Binary Predictors

Define: Stick = 1 if manual transmission
Stick =  0 if automatic

If Stick = 0 then MPG = 27.52 - .00356 Weight + 2.52(0)
i.e., MPG = 27.52 –.00356 Weight

If Stick = 1 then MPG = 27.52 - .00356 Weight + 2.51
i.e., MPG = 30.03 – .00356 Weight

The binary variable shifts the intercept

MPG = 27.52 – .00356 Weight + 2.51 Stick 

Explanation



12

Binaries Shift the Intercept

Separate Regressions by Gender

y = 1.8391x + 17.699
R2 = 0.9659

y = 1.8391x + 10.412
R2 = 0.9688

0
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Linear (Female)

Linear (Male)

Same slope, 
different 
intercepts

k-1 Binaries for k Groups?

Gender (male, female) requires only 1 binary (e.g., male) 
because male=0 would be female.

Season (fall, winter, spring, summer) requires only 3 
binaries (e.g., fall, winter, spring) because fall=0, winter=0, 
spring=0 would be summer.

For provincial data, we might divide Canada into 4 regions, 
but in a regression, we omit one region.

The omitted binary is the base reference point.  No 
information is lost.

That's right, for k groups, 
we only need k-1 binaries

That's right, for k groups, 
we only need k-1 binaries

What about polynomials?

Note that: 
y = ax3 + bx2 + cx + d + e
can be expressed as: 
y = ß0 + ß1x1+ ß2x2 + ß3x3 + e
if x1 = x1, x2 = x2, x3 = x3

So polynomial regression is considered a 
special case of linear regression. 
This is handy, because even if polynomials do 
not represent the true model, they take a 
variety of forms, and may be close enough for 
a variety of purposes. 
Fitting a response surface is often useful: 
y = α + ß1x1+ ß2x1

2 + ß3x2 + ß4x2
2 + ß4x1x2 + ε

This can fit simple ridges, peaks, valleys, pits, 

slopes, and saddles.
Interaction Terms

Pro
Detects interaction between any two predictors
Multiple interactions are possible (e.g., X1X2X3)

Con
Becomes complex if many predictors
Difficult to interpret the coefficient

Yi = β0 + β1X1 + β2X2 + β3X1X2 + εi

If we can reject β3 = 0 there is 
a significant interaction effect
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R
ai

n

0.00

0.25

0.50

0.75

1.00

29 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8

Pressure

0

1

Intercept
Pressure

Term
405.362669
-13.823388

Estimate
169.29517
5.7651316

Std Error
  5.73
  5.75

ChiSquare
0.0166
0.0165

Prob>ChiSq

For log odds of 0/1

Parameter Estimates

Logistic Fit of Rain By Pressure

If the dependent variable Y is binary (0 or 1) and the X's are continuous, a linear 
regression model is inappropriate.  The logistic regression is a non-linear model with 
the form Y = 1/{1+exp[-(b0 + b1X1 + b2X2 + ... +  bpXp)]}.  Y interpreted as the 
probability of the binary event.   Rain = f(Barometric Pressure).  The binary Y is Rain = 0, 
1.

Logistic Regression
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1

1.25

R
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n

29 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8
Pressure

Linear Fit

Rain = 53.241865 - 1.7992749 Pressure

Intercept
Pressure

Term
53.241865
-1.799275

Estimate
13.80328
 0.46911

Std Error
  3.86
 -3.84

t Ratio
0.0006
0.0007

Prob>|t|

Parameter Estimates

Linear Fit

Bivariate Fit of Rain By Pressure

77

Results of Regression 
Assumption violations

The assumption of the absence 
of perfect multicollinearity

if there is perfect multicollinearity then there are 
an infinite number of regressions that will fit the 
data
3 ways this can happen

a) you mistakenly put in independent variables that 
are linear combinations of each other
b) putting in as many dummy variables as the number 
of classes of the nominal variable you are trying to 
use
c) if the sample size is too small, ie the number of 
cases is less than the number of independent 
variables

for example if you use 3 independent 
variables and 2 data points, the job is to find 
the plane of best fit but you only have 2 data 
points

a line perfectly fits the 2 points, so any plane 
containing that line also fits

The estimates of the partial slope coefficients 
will have high standard errors so that there 
will be high variability of the estimates 
between samples
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Specification error: Leaving out a 
relevant independent variable

Consequences: Biased partial slope 
coefficients

The assumption that the mean of 
the error term is zero

can happen in 2 cases
1) the error is a constant across all cases
2) the error term varies - this is the more serious 
case
for case 1 - intercept is biased by an amount 
equal to the error term

it can happen with measurement error equal to a 
constant

for case 2 - causes bias in the partial slope 
coefficients

The assumption of measurement 
without error

a) random measurement error
if it affects the dependent variable the r2 is 
attenuated and estimates are less efficient but 
unbiased
If it affects independent variable the parameter 
estimates are biased 

b) nonrandom measurement error 
always leads to bias but amount and type 
depends on the error

The assumptions of linearity and 
additivity

errors of this type are a kind of specificity 
error
difficult to predict the effect

The assumptions of 
homoscedasticity and lack of 
autocorrelation

assumption that the variance of the error term 
is constant

accuracy of data is constant across data
i.e. it doesn’t get better or worse over time

significance tests are invalid
likely a problem in time series models but also in 
cases of spatial autocorrelation

The assumption that the error 
term is normally distributed

important for small samples to allow for 
significance testing

for large samples you can test even if its not 
normal


