

- To expand methodology to include more than
 - one independent variable

Example							
	River	y _i (discharge)	x _{i1} (distance)	x _{i2} (basin)			
i = 1	Nile	324	6690	3031.7			
i = 2	Amazon	6630	12741	7050			
i = 3	Chang Jiang	900	5797	1800			
<u>:</u>	<u>:</u>	÷	<u>:</u>	<u>:</u>			
:	<u>:</u>	<u>:</u>	<u>:</u>	<u>:</u>			

SP	SS o	utput				
Coeffic	ients					
		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		в	Std. Error	Beta		
1	(Constant)	-970.274	283.6289		-3.42093	0.001935
	basin/1000	0.413899	0.166816	0.481409	2.481173	0.019369
	length	0.21435	0.107501	0.386873	1.993934	0.055981
а	Dependent	Variable: discharg	ge cubic km			

 $Y(discharge) = \alpha + \beta_1(\text{distance}) + \beta_2(\text{basin})$ For the Nile: β_1 =6690, β_2 =3031.7, α =-970.3 $\hat{Y}_{Nile} = -970.3 + .214(6690) + .414(3031.7) = 1716.5$

$$\min s = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$\min s = \sum_{i=1}^{n} (y_i - [\alpha + \beta_i x_{i1} + \dots + \beta_k x_{ik}])^2 = \sum_{i=1}^{n} \varepsilon_i^2$$
How : Set partial derivatives of functions with respect

How : Set partial derivatives of functions with respect to α , β_1 , β_k (the unknowns) equal to zero and solve. End up with what are termed the "*NORMAL* EQUATIONS".

Multiple Correlation Coefficient

- SPSS for Windows outputs three coefficients :
 - (1) MULTIPLE r 0.88
 - (2) R SQUARE 0.77 = 0.882
 - (3) ADJUSTED r² 0.76
- same interpretation of 'r' of simple correlation coefficient
- the 'gross' correlation between y and *j*x, a measure of the scatter of y from the Least Square Surface.

Adjusted coefficient

 Is r² adjusted for the number of independent variables and sample size. Should report this in results.

$$r^{2}_{adjusted} = r^{2} - \frac{k(1-r^{2})}{N-k-1}$$

Methods of regression

- All possible equations
- If there are 5 independent variables (n = 5), the number of 'possible' combinations of models = 31 plus the null model
 - for a total of 32
- If there are many independent variables we need a way to pick out the best equation

Forward Selection

- Picks the X variable with the highest r, puts in the model
- Then looks for the X variable which will increase r² by the highest amount
- Test for statistical significance performed (using the *F* test)
- If statistically significant, the new variable is included in the model, and the variable with the next highest r² is tested
- The selection stops when no variable can be added which significantly increases r²

- Starts with all variables in the model
- Removes the X variable which results in the smallest change in r²
- Continues to remove variables from the model until removal produces a statistically significant drop in r²

Stepwise regression

- Similar to forward selection, but after each new X added to the model, all X variables already in the model are re-checked to see if the addition of the new variable has effected their significance
- *Bizarre, but unfortunately true*: running forward selection, backward elimination, and stepwise regression on the same data often gives different answers

- The RSQUARE method differs from the other selection methods in that RSQUARE always identifies the model with the largest r² for each number of variables considered. The other selection methods are not guaranteed to find the model with the largest r². The RSQUARE method requires much more computer time than the other selection methods, so a different selection method such as the STEPWISE method is a good choice when there are many independent variables to consider.
- Adjusted r² Selection (ADJRSQ)
 This method is similar to the RSQUARE method, except that the adjusted r² statistic is used as the criterion for selecting models, and the method finds the models with the highest adjusted r² within the range of sizes.
 Mallows' C_p Selection
 This method is similar to the ADJRSQ method, except that Mallows' C_p statistic is used as the criterion for model selection. Models are listed in ascending order of C_p.

Measurement Error

- 2 types of error random and non random
 - a) Random results in lower r², partial slope coefficients are hard to achieve statistical significance.
 - b) Non Random brings up the question of the
 - validity of the measurement.
- <u>Multicollinearity</u>

- When present, the standard error of partial slope coefficients are no longer unbiased estimators of the true estimator.
 Standard Deviations test of statistical significance based on these standard errors
 - significance based on these standard errors will be inaccurate.
 - How to detect?
 - Look at plot of residual against X.

Variable	Run 1	Run 2	Run 3	Run 4	% Chg
Constant	18.63	17.67	19.89	0.79	-95.8%
Age	0.06845	0.0689	0.0200	0.0927	35.4%
Height	-0.1970	-0.1978	-0.2387	-0.1837	-6.8%
Neck	-0.7650	-0.8012	-0.5717	-0.8418	10.0%
Chest	-0.0514				
Abdomen	0.9426	0.9158	0.9554	0.6366	-32.5%
Hip	-0.7309	-0.7408	-0.5141		
Thigh	0.5299	0.5406			
Std Err	4 188	4 143	4 266	4 542	8.5%
R-Sa	81.8%	81.7%	80.2%	77.0%	-5.9%
R-Sq(adj)	78.7%	79.2%	77.9%	75.0%	-4.7%

- Evidence here of **positive autocorrelation** $(\rho > 0)$ positive errors tend to follow positive errors, negative errors to follow negative errors.
- It looks likely the next error will be negative rather than zero.

		Xvaric	ables er	veluding	the intr	treast						
Obser	rvations	1	10000.00	2	0.00 11.00	3		4		5		
N	Prob.	D-L	D-U	D-L	D-U	D-L	D-U /	D-L	D-U	D-L	D-U	
15	0.05	1.08	1.36	0.95	1.54	0.82	1.75	0.69	1.97	0.56	2.21	
	0.01	0.81	1.07	0.7	1.25	0.59	1.46	0.49	1.70	0.39	1.96	
20	0.05	1.20	1.71	1.10	1.54	1.00	1.68	0.90	1.83	0.79	1.99	
	0.01	0.95	1.15	0.86	1.27	0.77	1.41	0.68	1.57	0.60	1.74	
25	0.05	1.29	1.45	1.21	1.55	1.12	1.66	1.04	1.77	0.95	1.89	
	0.01	1.05	1.21	0.98	1.30	0.90	1.41	0.83	1.52	0.75	1.65	
30	0.05	1.35	1.49	1.28	1.57	1.21	1.65	1.14	1.74	1.07	1.83	
	0.01	1.13	1.26	1.07	1.34	1.01	1.42	0.94	1.51	0.88	1.61	
40	0.05	1.44	1.54	1.39	1.60	1.34	1.66	1.39	1.72	1.23	1.79	
_	0.01	1.25	1.34	1.20	1.40	1.15	1.46	1.10	1.52	1.05	1.58	
50	0.05	1.50	1.59	1.46	1.63	1.42	1.67	1.38	1.72	1.34	1.77	
	0.01	1.32	1.40	1.28	1.45	1.24	1.49	1.20	1.54	1.16	1.59	
60	0.05	1.55	1.62	1.51	1.65	1.48	1.69	1.44	1.73	1.41	1.77	
	0.01	1.38	1.45	1.35	1.48	1.32	1.52	1.28	1.56	1.25	1.60	
80	0.05	1.61	1.66	1.59	1.69	1.56	1.72	1.53	1.74	1.51	1.77	
	0.01	1.47	1.52	1.44	1.54	1.42	1.57	1.39	1.60	1.36	1.62	
100	0.05	1.65	1.69	1.63	1.72	1.61	1.74	1.59	1.76	1.57	1.78	
	0.01	1.52	1.56	1.50	1.58	1.48	1.60	1.45	1.63	1.44	1.65	

- <u>Positive autocorrelation</u> is present if a positive (negative) residual in one period is followed by another positive (negative) residual the next period.
- <u>Negative autocorrelation</u> is present if positive (negative) residuals are followed by negative (positive) residuals.

Multiple Regression: Caveats

- Try not to include predictor variables which are highly correlated with each other
- One X may force the other out, with strange results
- Overfitting: too many variables make for an unstable model
- Model assumes normal distribution for variables - widely skewed data may give misleading results

Spatial Autocorrelation

- First law of geography: "everything is related to everything else, but near things are more related than distant things" Waldo Tobler
- Many geographers would say "I don't understand spatial autocorrelation" Actually, they don't understand the mechanics, they do understand the concept.

Why spatial autocorrelation is important

- Most statistics are based on the assumption that the values of observations in each sample are independent of one another
- Positive spatial autocorrelation may violate this, if the samples were taken from nearby areas
- Goals of spatial autocorrelation
 - Measure the strength of spatial autocorrelation in a map
 - test the assumption of independence or randomness

Spatial Autocorrelation

 It measures the extent to which the occurrence of an event in an areal unit constrains, or makes more probable, the occurrence of an event in a neighboring areal unit.

Spatial Autocorrelation

- Non-spatial independence suggests many statistical tools and inferences are inappropriate.
 - Correlation coefficients or ordinary least squares regressions (OLS) to predict a dependent variable assumes random samples
 - If the observations, however, are spatially clustered in some way, the estimates obtained from the correlation coefficient or OLS estimator will be biased and overly precise.
 - They are biased because the areas with higher concentration
 of events will have a greater impact on the model estimate and
 they will overestimate precision because, since events tend to
 be concentrated, there are actually fewer number of
 independent observations than are being assumed.

Indices of Spatial Autocorrelation

- Moran's I
- Geary's C
- Ripley's K
- Join Count Analysis

Spatial regression

- The existence of spatial autocorrelation can be used to improve regression analysis
- One can use spatial regression to allow the regression to make use of variables exhibiting like values of neighboring observations
- Use of this technique is often covered in GIS courses but is beyond the scope of this course

PROPRIATE PROCE	DURE FOR MULTIVAR	IABLE ANALYSIS: ANALYSIS OF ONE
DEPENDENT VAR	IABLE AND MORE THA	IN ONE INDEPENDENT VARIABLE
Characterization of V	ariables to be Analyzed	
Dependent Variable	Independent Variables*	Appropriate Procedure(s)
Continuous	All categorical	ANOVA
Continuous	Some categorical, some continuous	ANOVA
Continuous	All continuous	Multiple linear regression
Ordinal	-	No formal multivariate procedure. Treat variables as if continuous (see above procedures) or perform log- linear analysis
Dichotomous	All categorical	Logistic regression; log-linear analysis
Dichotomous	Some categorical, some continuous	Logistic regression†
Dichotomous	All continuous	Logistic regression; discriminant function analysis
Nominal	All categorical	Log-linear analysis
Nominal	Some categorical, some continuous	Group the continuous variables and perform log- linear analysis
Nominal	All continuous	Discriminant function analysis; group the continuous variables and perform lop-linear analysis.

Specification error: Leaving out a relevant independent variable

Consequences: Biased partial slope coefficients

The assumption that the mean of the error term is zero

- can happen in 2 cases
 - 1) the error is a constant across all cases
 - 2) the error term varies this is the more serious case
 - for case 1 intercept is biased by an amount equal to the error term
 - it can happen with measurement error equal to a constant
- for case 2 causes bias in the partial slope coefficients

The assumption of measurement without error

- a) random measurement error
 - if it affects the dependent variable the r² is attenuated and estimates are less efficient but unbiased
 - If it affects independent variable the parameter estimates are biased
- b) nonrandom measurement error
 - always leads to bias but amount and type depends on the error

The assumptions of linearity and additivity • errors of this type are a kind of specificity error

• difficult to predict the effect

The assumptions of homoscedasticity and lack of autocorrelation

k of

- assumption that the variance of the error term is constant
 - accuracy of data is constant across data
 - i.e. it doesn't get better or worse over time
- significance tests are invalid
 - likely a problem in time series models but also in cases of spatial autocorrelation

The assumption that the error term is normally distributed

- important for small samples to allow for significance testing
- for large samples you can test even if its not normal