

- a form of point pattern analysis
- computational process involves the measurement of distances between points
- a coordinate system is created and the horizontal (X) coordinate and the vertical (Y) coordinates for the points are recorded
- for each point the nearest neighbor is determined
- distances can be derived as straight line Pythagoran form or measured directly
- the general formula is: $\bar{d}_{E}=\frac{\beta_{1}}{\sqrt{\frac{n}{A}}}$
where β_{1} is available from a table to follow

$$
\bar{d}_{E}=\frac{\beta_{1}}{\sqrt{\frac{n}{A}}}
$$

once the observed distances are found we can compare the mean observed distance to a hypothesized distance

- clustered - the theoretical distance d_{E} is zero since the distance between each point and its nearest neighbour would be zero

$$
\bar{d}_{E}=\frac{0.5}{\sqrt{\frac{n}{A}}}
$$

regular

$$
\bar{d}_{E}=\frac{1}{\sqrt{\frac{n}{A}}}
$$

Where n / A is the density

- the test is similar in form to a t test - the test statistic is $c=\frac{\bar{d}_{o}-\bar{d}_{E}}{S E_{\bar{d}}}$
\bar{d}_{o} is mean of observed nearest neighbour distances \bar{d}_{E} is expected mean of nearest neighbour distances for an arrangement SE_{d} is the standard error of the mean nearest neighbour distances

- c is a standard normal deviate, like Z, so significance is determined by reference to the cumulative normal frequency table,
- so if $\alpha=.05, c_{c}=1.96$
- direct comparison of results from different problems or different regions is difficult

- to overcome this there is a standardized nearest neighbor index R - Where \bar{d}_{E} is calculated for random situation	$R=\frac{\bar{d}_{o}}{\bar{d}_{E}}$	

problems
 :日:
 $\because:$

- the procedure as it stands suffers from serious drawbacks
- 1) measuring distance only to the closest nearest neighbor can result in observed mean distance values d_{E} that are not logically consistent
- to get around this problem the approach can be modified to take the average distance from k closest points
- k is called the order
\qquad
?
元
 t

Municipio	Area	X	Y	neighbour	distance	
Aguada	30.21	20.0314	54.6399	Rincon	3.44	
Aguadilla	35.57	23.1881	61.1065	Moca	5.74	
Anasco	40.05	23.8571	50.1807	Mayaguez	5.18	
Cabo Rojo	72.35	22.6322	34.4176	Hormigueros	6.36	
Guanica	36.52	36.6477	30.8942	Sabana Grande	6.76	
Hormigueros	11.16	24.7229	40.4245	Mayaguez	4.67	
Isabela	55.47	29.103	60.8053	Moca	6.38	
Lajas	60.23	29.4894	32.815	San German	6.23	
Las Marias	47.03	32.1001	47.2462	Maricao	5.02	
Maricao	36.85	34.9884	43.1383	Las Marias	5.02	
Mayaguez	56.95	24.8361	45.0923	Hormigueros	4.67	
Moca	50.43	25.8709	56.0336	Aguadilla	5.74	
Rincon	14.14	17.0815	52.8758	Aguada	3.43	
Sabana Grande	35.24	35.0721	37.4654	Maricao	5.67	
San German	53.9	29.2389	39.0352	Hormigueros	4.72	
San Sebastian	70.8	32.6112	53.1334	Las Marias	5.91	
	706.9				84.94	

- Test for randomness	
$\bar{d}_{E}=\frac{.50}{\sqrt{16 / 706.9}}=3.3234$	$\bar{d}_{o}=\frac{84.94}{16}=5.3088$
$S E_{\bar{d}}=\frac{.26136}{\sqrt{16^{2} / 706.9}}=.4343$	$c=\frac{5.3088-3.3234}{0.4343}=4.5715$

