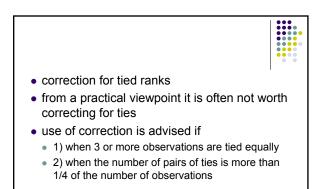
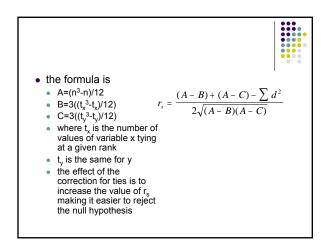
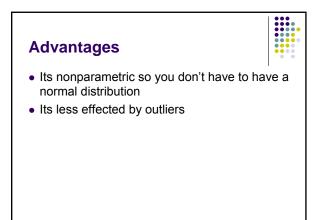


exam	ple					
river	Catchment	rank	Discharge	rank	d	d²
yellow	672	7	3.3	7	0	0
ganges	956	5	11.7	4	1	1
amazon	5775	1	175.0	1	0	0
missi.	3269	2	18.4	3	1	1
mekong	795	6	11.0	5	1	1
indus	969	4	5.6	6	2	4
yangtze	1942	3	22.0	2	1	1
					Σd ²	8

• but more generally the test statistic is • where n is the number of observations • this might be a case where a one tailed test is desirable since most researchers have an idea $t = r_s \sqrt{\frac{n-2}{1-r_s^2}}$


Example 2


of the direction of the sign of the coefficient


- It has been suggested that nonmetropolitan growth is increasing
- If so then there should be a relationship between population density and population growth
- Let's test and see

	Original di	ata population	Ranked data	Ranked data population		
State*	Percentage change 1990–95	Density** 1990	Percentage change 1990-95	Density 1990	Difference (d)	ď
Alabama	5.47	79.60	28	26	2	4
Alaska	5.80	1.00	32	1	31	961
Arizona	17.54	32.29	49	14	35	1225
Arkansas	5.53	45.14	29	16	13	169
California	6.04	190.40	33	39	-6	36
Colorado	13.60	31.80	46	13	33	1089
Vermont	3.55	60.71	15	21	-6	36
Virginia	6.69	155.83	35	36	-1	1
Washington	11.69	73.18	45	23	22	484
W. Virginia	1.62	74.34	8	25	-17	289
Wisconsin	4.52	89.88	22	27	-5	25
Wyoming	5.29	4.68	26	2	24	576
*Data listed for only **Parsons per square $r_a = 1 - \frac{6(\Sigma d^2)}{N^3 - N}$ $r_a = 1 - \frac{6(28968}{50^3 - 56})$	r mile	1.391 =391				

	n Coefficients for State
Population Change and Time period	Spearman r _s
1960-1965	+.166
1965-1970	+.176
1970-1975	539
1975-1980	561
	406
1980–1985	
1980–1985 1985–1990	+.177

- In principle, r_s is simply a special case of the Pearson product-moment coefficient in which the data are converted to ranks before calculating the coefficient.
- As we've seen, a simpler procedure is normally used to calculate it