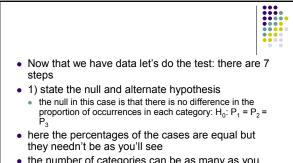
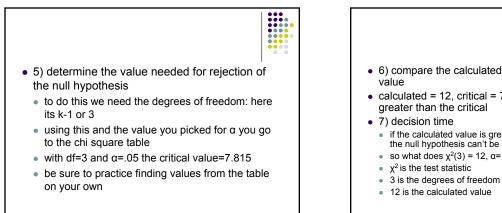

## 1 sample test

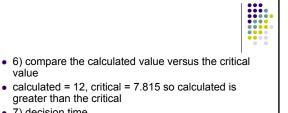

- Research question: are wheat growing farms located with respect to soil type? That is, is wheat grown in particular soil-type areas?
- 1) take a random sample of 100 wheat farms and determine the soil types underlying the farms
- 2) there are 4 'classes' of soil type

| Soil class                                                      |         |               |          |            | •     |
|-----------------------------------------------------------------|---------|---------------|----------|------------|-------|
|                                                                 | clay    | sand          | loam     | limestone  |       |
| frequency<br>of wheat<br>farms                                  | 30      | 30            | 30       | 10         | Σ=100 |
| this is the 'ot                                                 | served  | l' distributi | on of wh | neat farms |       |
| 3) under a nu<br>distribution?<br>the rationale<br>you would ex | for the | test is tha   |          | ·          |       |



Σ=100

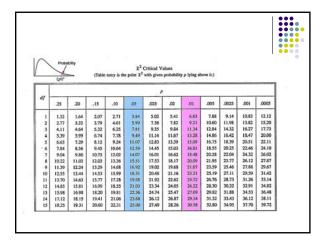



the number of categories can be as many as you want as long as the categories are mutually exclusive

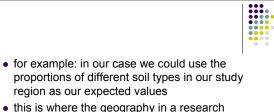
- the alternate hypothesis is:  $H_1 P^1 \neq P^2 \neq P^3$
- 2) set the level of significance (or type I error): α
- typically in geography  $\alpha = .05$  or  $\alpha = .01$
- 3) select the appropriate test statistic
- · any test between frequencies of mutually exclusive categories requires chi square

| • 4) comp | outation of   | of the        |                 |                    |                       |   |
|-----------|---------------|---------------|-----------------|--------------------|-----------------------|---|
| test stat | istic         |               |                 |                    |                       |   |
| category  | O<br>observed | E<br>expected | D<br>difference | (O-E) <sup>2</sup> | (O-E) <sup>2</sup> /E |   |
| clay      | 30            | 25            | 5               | 25                 | 1                     |   |
| sand      | 30            | 25            | 5               | 25                 | 1                     | 1 |
| loam      | 30            | 25            | 5               | 25                 | 1                     |   |
| limestone | 10            | 25            | 15              | 225                | 9                     |   |
| Total     |               |               |                 |                    | 12                    | ] |



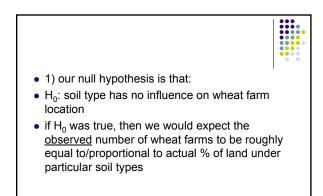



- if the calculated value is greater than the critical value then the null hypothesis can't be accepted
- so what does  $\chi^2(3) = 12$ ,  $\alpha = .05$  mean?

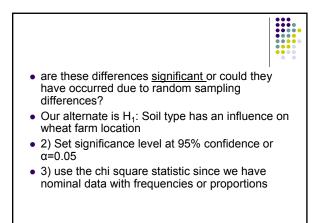



 α=.05 the probability is less than or equal to 5% on any one test of the null hypothesis that the frequency of farms is equally distributed across all categories

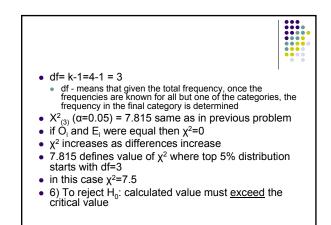


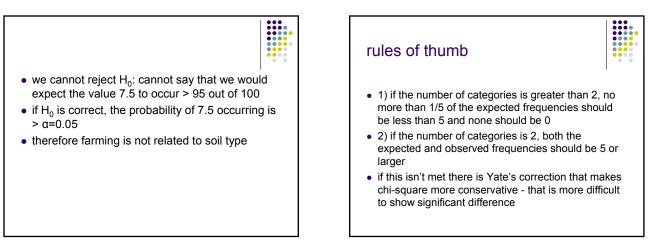



- there are cases where you might not want to use the number of occurrences/number of categories as you expected value
- if you have some other way of determining what the expected values might be you can use that




- this is where the geography in a research question is important
- the distribution of land in each soil type is shown next

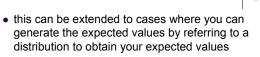

| class                                     |      |      |      |           | 1     |
|-------------------------------------------|------|------|------|-----------|-------|
|                                           | clay | sand | loam | limestone |       |
| actual %<br>of land<br>under<br>soil type | 30   | 40   | 20   | 10        | Σ=100 |



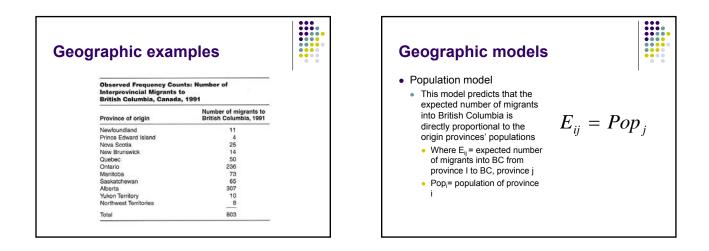

| observed                 | 30     | 40 | 20       | 10 |   |
|--------------------------|--------|----|----------|----|---|
|                          |        | -  | -        |    | - |
| Expected                 | 30     | 40 | 20       | 10 |   |
| Expected<br>what we four | nd was |    |          |    |   |
|                          |        | 40 | 20<br>30 | 10 |   |

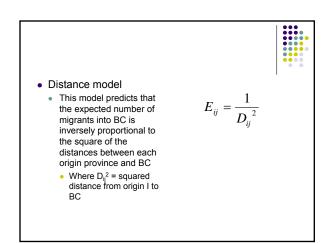


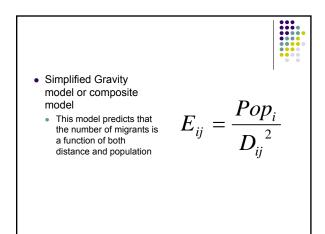
| $\chi^2 =$ | $\sum_{i=1}^{k} \frac{(O_i)}{i}$ | $\frac{(-E_i)^2}{E_i}$ |                 |                    |                       |
|------------|----------------------------------|------------------------|-----------------|--------------------|-----------------------|
| category   | O<br>observed                    | E<br>expected          | D<br>difference | (O-E) <sup>2</sup> | (O-E) <sup>2</sup> /E |
| clay       | 30                               | 30                     | 0               | 0                  | 0                     |
| sand       | 30                               | 40                     | 10              | 100                | 2.5                   |
| loam       | 30                               | 20                     | 10              | 100                | 5.0                   |
| limestone  | 10                               | 10                     | 0               | 0                  | 0                     |
| Total      |                                  |                        |                 |                    | 7.5                   |
|            |                                  |                        |                 |                    |                       |



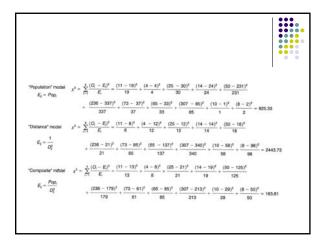


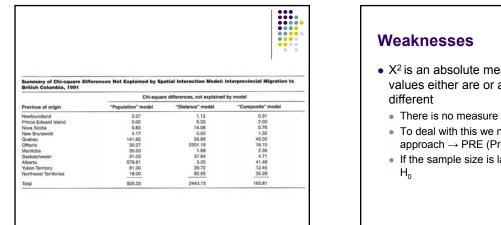



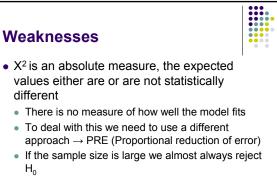


• also known as continuity correction


- these illustrate an important restriction on χ<sup>2</sup> in that for many categories there should not be small frequencies
- also the data must be in frequencies, χ<sup>2</sup> will give false results if used on proportions or percentages of occurrences in categories
- this last example illustrates a case where you can use external information for choosing your expected values




- an example is using the poisson distribution to generate your expected values
- an alternative test for this purpose is the Kolmogorov-Smirnov test (k-s test)






| Summary Table for Chi<br>British Columbia, Cana | square Goodness-of-Fit Proport                    | tional: Interprovincial I                   | Migration to        |                      |
|-------------------------------------------------|---------------------------------------------------|---------------------------------------------|---------------------|----------------------|
| Province of origin                              |                                                   | Expected number of interprovincial migrants |                     |                      |
|                                                 | Observed number of<br>interprovincial<br>migrants | "Population"<br>model                       | "Distance"<br>model | "Composite"<br>model |
| Newfoundland                                    | 11                                                | 19                                          | 8                   | 13                   |
| Prince Edward Island                            | 4                                                 | 4                                           | 12                  | 8                    |
| Nova Scotia                                     | 25                                                | 30                                          | 12                  | 21                   |
| Vew Brunewick                                   | 14                                                | 24                                          | 14                  | 19                   |
| Duebec                                          | 50                                                | 231                                         | 18                  | 125                  |
| Ontario                                         | 236                                               | 337                                         | 21                  | 179                  |
| /anitoba                                        | 73                                                | 37                                          | 85                  | 61                   |
| Saskatchewan                                    | 65                                                | 33                                          | 137                 | 85                   |
| Uberta                                          | 307                                               | 85                                          | 340                 | 213                  |
| lukon Territory                                 | 10                                                | 1                                           | 58                  | 29                   |
| forthwest Territories                           | 8                                                 | 2                                           | 98                  | 50                   |
| lotal                                           | 803                                               | 803                                         | 803                 | 803                  |





