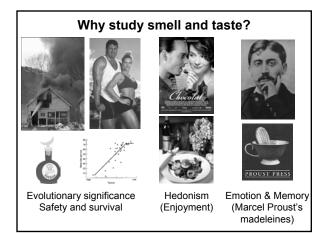

Final Exam


Psychology 215B-002

- Wednesday April 17
- 7:00 p.m.
- SSC2028

Format

- · same as previous two tests
- 50 multiple choice = 50 points
- 3 short answers (each instructor writes two questions, you must answer one from each of the 3 instructors): 3 x 10 points = 50 points
- non-cumulative

Anosmia

"I always thought I would sacrifice smell to taste if I had to choose between the two, but I suddenly realized how much I had misseed. We take it for granted and are unaware that everything smells: people the air, my house, my skin"

--anosmic patient (Birnberg,1988, in Ackerman, 1990)

- ="without smell"
- · complete inability to smell
- "odor blindness"
- · damage by chemicals or drugs or brain damage or illness
- often temporary (e.g., during a cold)
- can cause a loss of appetite and libido

Smell and Taste

Chemical senses

- Smell = olfaction
- Taste = gustatation
- (and by the way Touch = somatosensation = tactile sensation)
- · chemosensation
- rely on chemoreceptors
- · Interdependence between smell and taste

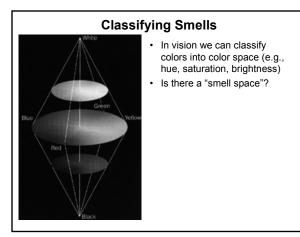
- volatile: substances must give off vapors
 Weber's experiment
- fat-soluble

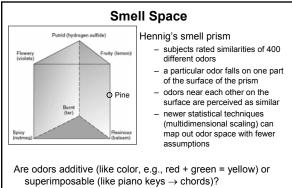
Olfaction

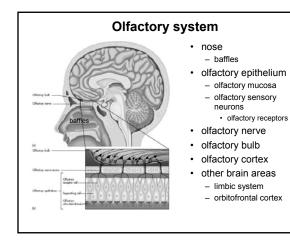
Humans vs. Other Species

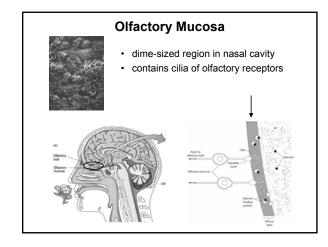
Bloodhounds can pick up a 24hr old trail. Dogs have 1,000,000,000,000 receptors and we have about 10,000,000 (i.e., They have 10,000X more receptors than humans).

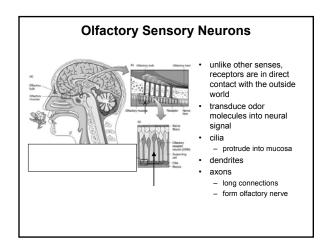
Sniffer rats have been used to detect explosives. Rats are 8-50X more sensitive than humans.

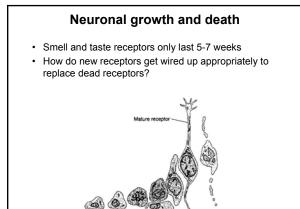


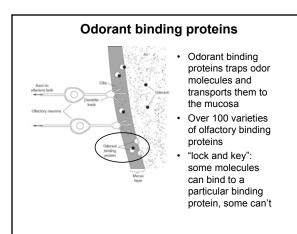

Humans' <u>receptors</u> are as sensitive. We just have fewer of them. Human olfactory receptors can be excited by the action of just one molecule of odorant

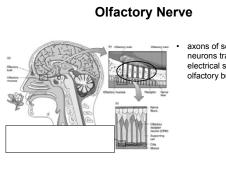

Identification vs. Discrimination

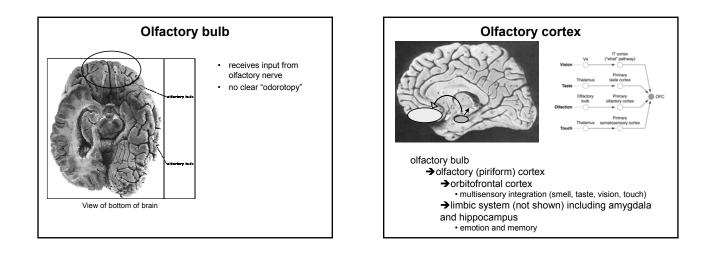

- Odor Identification: Most people can identify fewer than half the odors presented to them in a laboratory experiment.
- "tip of the nose phenomenon": inability to name a familiar odor
- Odor discrimination: Although identification is poor, people can tell the difference between approximately 10,000 odors
- With training and additional clues, people can reach 98% correct odor identification
 - Varies from person to person
 - Females are typically better than males
 Declines with age
 - Worse for smokers than non-smokers

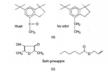





- lemon + balsam ≠ pine
- more like superimposition

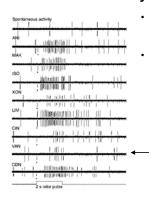




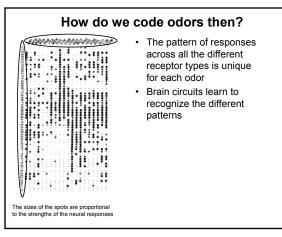


axons of sensory neurons transmit electrical signals to olfactory bulb

How do we code odors then?


- · There's no clear "odor space"
- · There's no "odorotopy"
- There's no clear pattern of which molecules activate
 which receptors

 Molecules with similar structure can smell different


Molecules with different
structures can smell the same

How can we encode different smells?!!!

Olfactory Coding

- Different olfactory receptor neurons respond differently to different compounds
- This neuron responds well to all compounds except vanilla

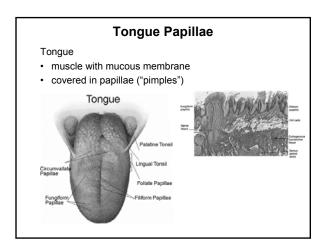
Taste, flavor and heat

Taste

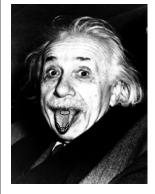

- · only four (debatably five) aspects
 - sweet
 - salty
- bitter
- sour
- umami (e.g., monosodium glutamate; tastes 'meaty' or 'savory')

Flavor

- the complex sensation associated with food, based on the food's taste, temperature, texture and smell
- flavor = taste + olfaction

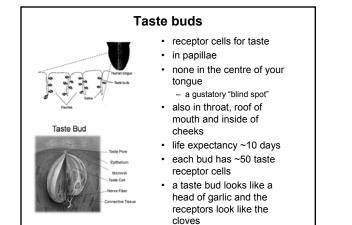

K

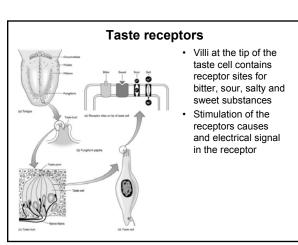
- "Heat"
- pain receptors on tongue register capsaicin, the substance in hot peppers



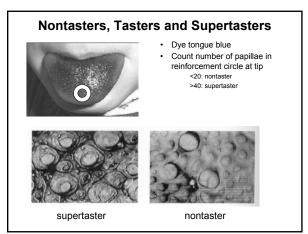
Taste

- substance must be soluable
 you don't taste your fork
- need saliva
 - 25 ounces (1 L) per day!
- mixtures interact in complex ways – whole can be more than sum of parts



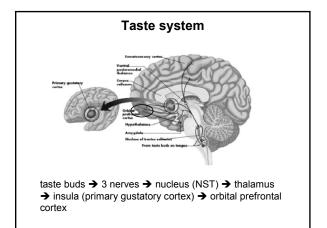

Tongue Map

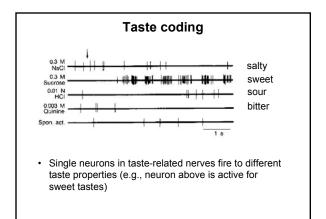
Textbooks used to say that you could only taste certain things in different regions of the tongue

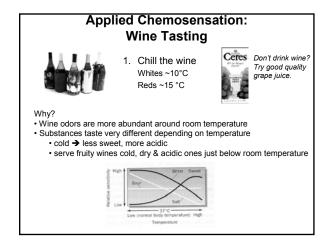

- Those maps only apply to weak solutions
- With stronger solutions, you can taste any of the aspects anywhere you have taste buds

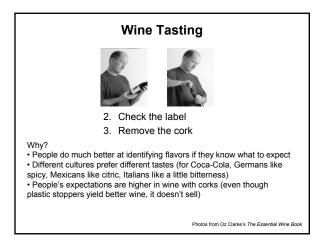
Individual differences

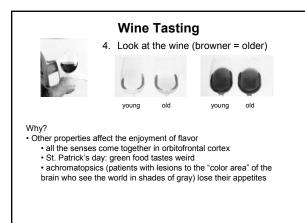
- Different people have different sensitivity to certain substances
- Ability to taste certain substances (PTC, PROP) is genetically determined
 - nontasters
 - report little taste
 - · 25% of people
 - tasters
 - · report bitter taste
 - 50% of people
 - supertasters
 - report extremely bitter taste
 - 25% of people
- Other substances may taste different to nontasters, tasters and supertasters (e.g., bitterness of coffee)




Taste variability


"I do not like broccoli. And I haven't liked it since I was a little kid and my mother made me eat it. And I'm President of the United States and I'm not going to eat any more broccoli."


-- George Bush (Sr., "the elected")


- Individual differences in taste ability may account for people's taste preferences
- · Does cilantro taste like soap to you?
- (People also differ in their ability to smell certain substances too... "asparagus pee")
- Conditioned taste aversion: can easily develop an aversion to tastes (Garcia effect)
- Sensory-specific satiety: changes in enjoyablility with fullness

Wine Tasting

5. For rich-tasting wines, use a glass that's narrowed at the top. Don't fill the glass too full (~1/3). Swirl the wine in the glass.

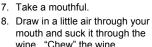
Why?

- · Flavor is largely related to smell.
- The swirling releases the volatile aromas.
- The narrowed top captures the aromas.

Wine Tasting

6. Give it a gentle swirl and take a good steady sniff. Characterize the scent. What does it remind you of (honey, chocolate, apples, black current)?

Why?


- · Smelling is an active process you must sniff
- Sniffing activates olfactory (piriform) cortex
- · More isn't always better
 - · odor constancy: perceived strength of an odor remains constant despite variations in the flow rate

· People's odor identification abilities are so poor (~50% for simple smells), your friends won't be able to tell you you're wrong (even if they're wine snobs)

Whv? · back door flavor: some argue that odors arriving in the nostrils from the mouth are processed differently than those arriving through the nose · this may explain why some foods smell bad but taste good or vice versa · slurping and chewing help cover the whole tongue and make the wine more volatile

Wine Tasting

wine. "Chew" the wine.

9. Assess the wine's taste

- acidity
- tannin (bitter, astringent)
- fruit alcohol (burning)

Evaluate the wine with common terms (good, bad, fruity, grapy, spicy, sweet) or more pretentious terms (buttery, earthy, green, honeyed, oaky, petrolly, plummy, steely)

Why?

• While taste is actually quite limited (5 aspects), the flavor and texture add a lot ("full-bodied" = high in alcohol and/or tannin)

· Wine is complex - remember flavors don't add in a straightforward manner, they're a "complex tapestry"

Have fun! It's all subjective anyway.