

Assumptions of t-test and ANOVA

3. Independent observations.

More of an experimental design issue than an analysis issue but very important.

For example, Monoxidil experiment...

Departures from Normality.

--> there are specific tests determine if your data are normal or not.

However, the tests are not that good.

Luckily, t-test and ANOVA do just fine if this assumption is not violated too badly.

So, use your eye to determine if normal or not

For ANOVA, probably ok most of the time.

--> particularly true if sample with biggest variance also has biggest sample size

--> however, if other way round, big variance and small sample size - may want to do something besides ANOVA.

Effects of Non-normality on your analysis:

Inflate your probability of error (Types I and II)

Analyses we've discussed so far are robust to non-normality

BUT, sometimes just too much departure

Then what?

Transform your data

Non-parametric methods for comparing samples

--> do not require the estimation of population mean and variance

--> do not require normality

--> do not require homogeneity of variance

For example, suppose we had two samples of mice given different levels of growth hormone and we wanted to compare the number of days until adult weight is attained.

Group 1	Group 2	
152	155	
148	168	
136	162	
158	168	
162	169	

For example, suppose we had two samples of mice given different levels of growth hormone and we wanted to compare the number of days until adult weight is attained.

Group 1	Rank	Group 2	Rank
152	8	155	7
148	9	165	3
136	10	161	5
158	6	168	2
162	4	169	1

Group 1	Rank	Group 2	Rank
152	8	155	7
148	9	165	3
136	10	161	5
158	6	168	2
162	4	169	1
	37		18

$U = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - R_1$	
$=5*5+\frac{5(6)}{2}-37=25+15-37$	
= 3	
$U' = n_2 n_1 + \frac{n_2 (n_2 + 1)}{2} - R_2$	
$=5*5+\frac{5*6}{2}-18=25+15-18$	
= 22	
L	

If either U or U' is greater than the critical value of U, then you should reject the
$$\rm H_{o}$$

$$U_{Critical} = U_{0.05,(2),n_1,n_2}$$
 if $n_1 < n_2$
 $U_{Critical} = U_{0.05,(2),n_2,n_1}$ if $n_1 > n_2$

$$U_{Critical} = U_{0.05,(2),n_1,n_2} = U_{0.05,(2),5,5} = 23$$

U = 3 and U' = 22, therefore, do not reject H_o

or example, ifferent leve ompare the r	suppose we h ls of growth h number of day	ad two samples o ormone and we w rs until adult weig	f mice given vanted to the is attained.
Group 1	Rank	Group 2	Rank
152	8	160	6
148	9	162	3.5
136	10	160	6
160	6	168	2
162	3.5	169	1

U or U' depending on whether you expect sample 1 or					
ne 2 to be bigger					
	$H_0: G_1 \ge G_2$	$H_0: G_1 \leq G_2$			
	$H_A: G_1 < G_2$	$H_A: G_1 > G_2$			
Ranking is low to high	U	U'			
Ranking is	U'	U			

Group 1	Rank	Group 2	Rank
152	8	160	6
148	9	162	3.5
136	10	160	6
160	6	168	2
162	3.5	169	1
$H_0: G_1 \ge G_2$			18.5
$H_A: G_1 \leq G_2$			
$U' = n_2 n_1 + \frac{n_2(n_1 + n_2)}{n_1 + n_2}$	$\frac{n_2+1)}{2} - R_2$	$U_{0.0}$	$_{5,(1),5,5} = 21$
$=5*5+\frac{5*6}{2}-$	18 = 25 + 15 - 18	3.5	. Reject H _o
= 21.5			

Wilcoxor	paired s	sample to	est		
 > set-up	same as	paired sa	ample t-	est	
>	calculat	e the dif	rerence	Derween	Signed
Door	Front	Баск	Diff	Kank	Signed Bank Idi
Deel	142	120		u	Kalik u
1	142	136	4		
2	140	136	4		
3	144	147	-3		
4	144	139	5		
5	142	143	-1		
6	146	141	5		
7	149	143	6		
8	150	145	5		
9	142	136	6		
10	148	146	2		

	Front	Back		Rank	Signed
Deer	Leg	Leg	Diff	d	Rank d
1	142	138	4	4.5	4.5
2	140	136	4	4.5	4.5
3	144	147	-3	3	-3
4	144	139	5	7	7
5	142	143	-1	1	-1
6	146	141	5	7	7
7	149	143	6	9.5	9.5
8	150	145	5	7	7
9	142	136	6	9.5	9.5
10	148	146	2	2	2

Can also do these one tailed:	K Yie
H · Measurement 1 < Measurement 2	
H_{A} : Measurement 1 > Measurement 2	
Λ	
> reject H_0 if $T_1 \le T_{0.05}$ (1) n	
• • • • • • • • • • • • • • • • • • •	
H.: Measurement $1 \ge$ Measurement 2	
H_A : Measurement 1 < Measurement 2	n
	R
$>$ reject H ₀ if T ₊ \leq T _{0.05 (1) n}	IX.

	Control	K+N	K+P	N+P
	40(1)	82 (14)	57 (2)	71 (7)
	61 (4)	84 (15.5)	59 (3)	78 (11)
	72 (8.5)	96 (20)	63 (5)	79 (12)
	76 (10)	99 (21.5)	64 (6)	87 (17)
	84 (15.5)	104 (23)	72 (8.5)	91 (18)
	99 (21.5)	105 (23)	81 (13)	92 (19)
n	6	6	6	6
P	60.5	117	37.5	84

	Control	K+N	K+P	N+P
	40(1)	82 (14)	57 (2)	71 (7)
	61 (4)	84 (15.5)	59 (3)	78 (11)
	72 (8.5)	96 (20)	63 (5)	79 (12)
	76 (10)	99 (21.5)	64 (6)	87 (17)
	84 (15.5)	104 (23)	72 (8.5)	91 (18)
	99 (21.5)	105 (24)	81 (13)	92 (19)
n	6	6	6	6
R	60.5	117	37.5	84

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(N+1)$$

= $\frac{12}{24(25)} (60.5^2 + 117^2 + 37.5^2 + 84^2) - 3(25)$
= $0.02(3660.25 + 13689 + 1406.25 + 7056) - 75$
= $516.23 - 75$
= 441.23

Correction factor for tied ranks

$$C = 1 - \frac{\sum t}{N^3 - N} \qquad \sum t = \sum_{i=1}^{m} t_i^3 - t_i$$

$$= 1 - \frac{18}{24^3 - 24} \qquad = 2^3 - 2 + 2^3 - 2 + 2^3 - 2$$

$$= 1 - 0.0013$$

$$= 0.9987$$

$$H_c = \frac{H}{C} = \frac{441.23}{0.9987} = 441.80$$

Critical value:

$$\chi^2_{0.05,k-1} = \chi^2_{0.05,3} = 7.815$$

 $H_C > \chi^2_{0.05,3}$
Reject Ho