

Bacteria are the most ancient life forms - signs from ~3,500 m.y.a. can tolerate great physical extremes from ocean deeps to the stratosphere to inside rocks & earth's crust essentials = only H₂0 + energy + matter Vast metabolic diversity, mostly unique; - many sources of energy & matter

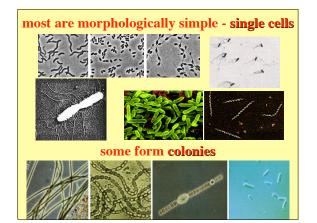
mostly extremely tiny - 0.1 - 10 x 10⁻⁶ m.

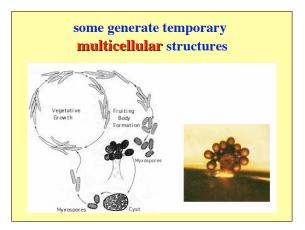
but extremely numerous: 1 spoon garden soil - 10¹⁰ cells 1 cm² gum scrape - 10⁹ cells

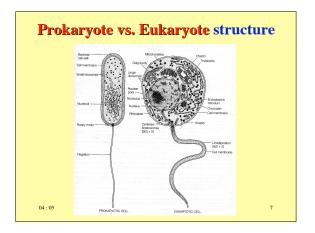
total weight of all earth's bacteria = $\frac{1}{10}$ all earth's mammals

cover all surfaces, interior & exterior; <u>mainly benign or beneficial</u>

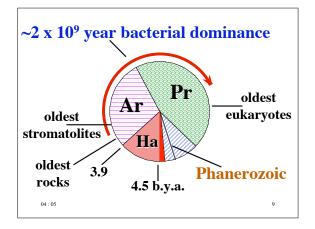
open genetic exchange; sex ≠ reproduction

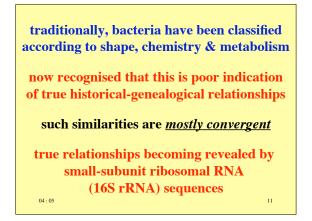

bacterial metabolic activities exchange all major reactive gases with atmosphere :

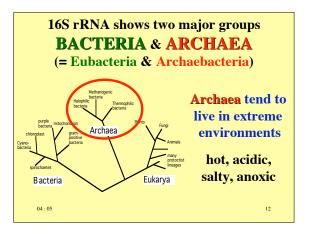

 N_2 , N_2O , O_2 , CO_2 , CO, H_2 , CH_4 , NH_3 , H_2S and many others


also central in cycling C, P, S

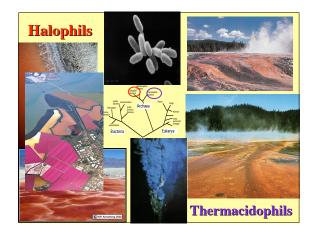
several of these re-cyclings are <u>restricted</u> to bacteria - notably N₂


photosynthetic bacteria began the change in character of earth's atmosphere ~3 b.y.a.





Prokaryotes vs. Eukaryotes	
1-10 x 10 ⁻⁶ m	10 - 100 x 10 ⁻⁶ m
nucleoid, genophore	nucleus, chromosomes
no organelles mitochondria, Golgi, E.R.	
simple flagellum	tubulin cilia
highly diverse metabolism 04:05	uniform metabolism mostly aerobic s

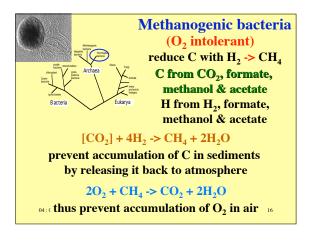

many Archaea live in environments typical of very early earth:

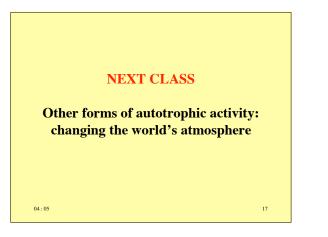
extremely hot (**up to ~300°C**), acidic and osmotically challenging conditions

hot springs; super-hot deep-sea vents

hypersaline seashores - 3-5 Molar NaCl

anoxic muds and soils, sewage, guts

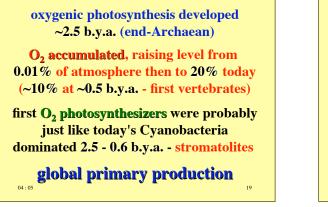

in early earth environment, physical processes (lightning, heat, UV) generated stew of organic molecules, rich in energy

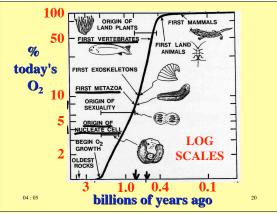

anaerobic fermentation thought probably the **earliest global metabolism**

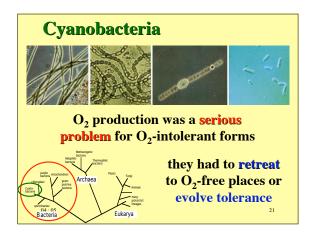
as life grew, organic supplies dwindled...

strong selection for **autotrophic** capability: energy and C from **inorganic** sources

this is exactly what methanogens can do

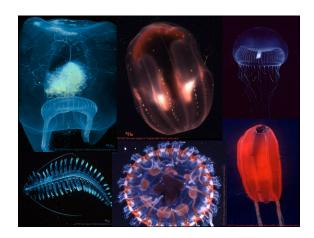

eventually, use of sunlight energy evolved **PHOTO-AUTOTROPHY** we think of photosynthesis as generating O₂


but first forms, probably still O₂-intolerant, used H₂, H₂S etc. as reducing agents for CO₂


 $2H_2X + CO_2 \rightarrow CH_2O + 2X + H_2O$

use of water + sunlight a stunning technique

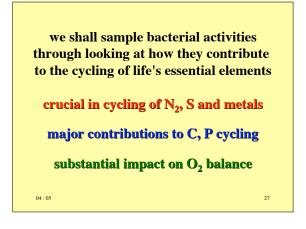
massive consequences for earth's atmosphere and its life.....

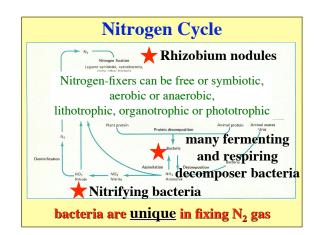


OXYGEN AS A PROBLEM highly reactive; oxidises organics to CO₂ O₂⁻, OH⁻, H₂O₂ seriously disruptive O₂ -> O₃, which screens UV; this further reduces production of organics selection for new metabolic styles and ways of dealing with free O₂ catalases, peroxidases to convert free radicals USE O₂ to oxidise organics - respiration ^{04:05} fermenting - 1:18 - respiring ²²

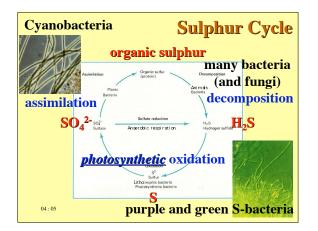
one way of dealing w/free radicals involves luciferin; light emitted with reaction this is **bioluminescence** most biotic light production involves symbiosis with bioluminescent bacteria

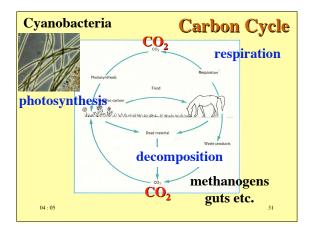
Bacterial Metabolic Diversity huge diversity, even within "species" can switch according to conditions found *in addition to* eukaryote processes: aerobic respiration and O₂ photosynthesis and ethanol & lactate fermentation (organoheterotrophy & photoautotrophy) chem. energy org. carbon light energy inorg. carbon (CO₂) non-O₂ photoautotrophy - H₂S, H₂ lithoautotrophy - methanogenesis, N₂-fixation lithoheterotrophy - metal oxidizers

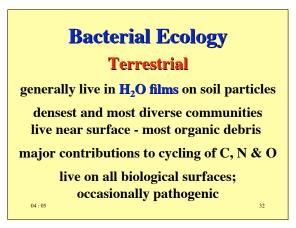

thus bacteria perform a bewildering diverse array of metabolic activities

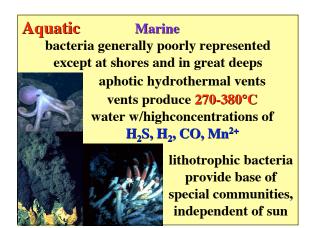

most are different from those of eukaryotes

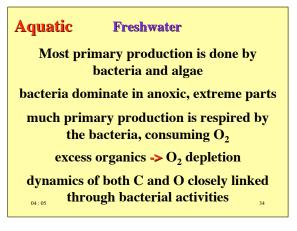
for most bacterial metabolic by-products, there are other bacteria who can use them as substrates for their own activities

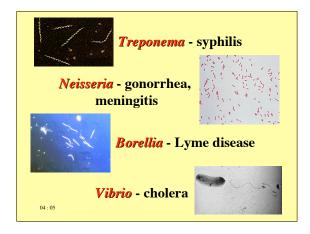

entirely self-contained bacterial communities

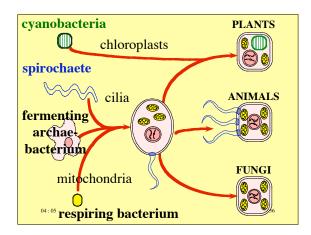

can be independent of eukaryotes











This SET view now broadly accepted

but long-resisted; symbiosis now recognised as being very common in life

Other symbioses

lichens corals vent-worm bacteria root nodules mycorrhizae

NEXT CLASS:

The Protoctista - the simplest Eukaryote organisms

38

04:05

37

39

thanks to the authors of the following sites http://www.bact.wisc.edu/bact303/bact303mainpage http://www.bact.wisc.edu/bact303/MajorGroupsOfProkaryotes http://lifesci.ucsb.edu/~biolum/organism/photo.html

04:05

04:05