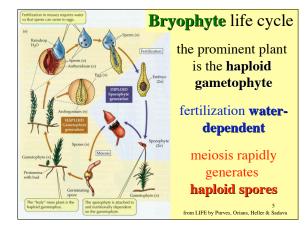
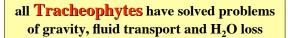


Steps in Evolutionary Development

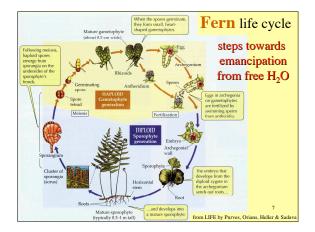

early plants must have been low to ground WHY?


but strong selection favoured taller stature WHY?

taller stature aggravates problems of gravity heating drying

general advantages of water-independence

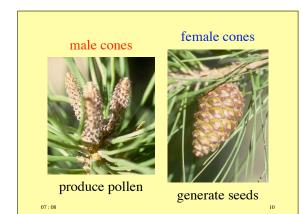
as representatives of early plant grade we may study **Bryophytes** - mosses & allies small, low; no skeleton erect only by cellulose cell-walls & turgor poor fluid transport, no true roots or cuticle; nutrients & H₂O absorbed over whole body needs free H₂O for fertilization; sperm swims but can withstand extended desiccation and temperature extremes [-100° to +100°C]

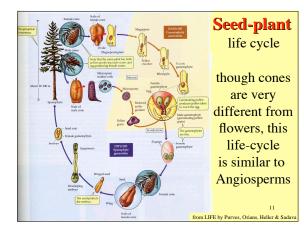


have woody skeleton, xylem and phloem vessels, stomata & cuticle

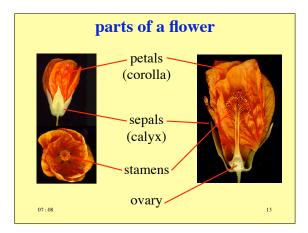
but vary in development of roots and leaves & adaptation of reproductive structures

all show great reduction of haploid gametophyte generation - main "plant" becomes the diploid **SPOROPHYTE**

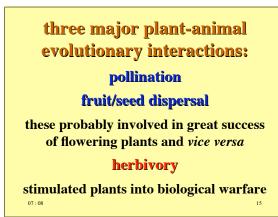

gametes borne on single-sex **cones**

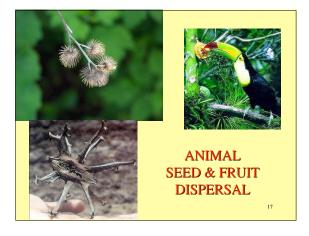

males cones release pollen

female cones have naked ovule - no carpel, style, stigma

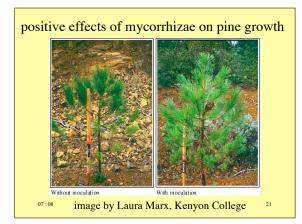

wind pollination only; embryo -> naked, usually winged, seed

07:08




ANGIOSPERMS - flowering plants reproductive organs in flowers; 1 or 2 sexes sepals & petals (modified leaves) -> perianth stamens -> pollen; carpels -> ovules pollination and dispersal of seed/fruit either by wind or animal agency, in main -> highly complex adaptive arrangements food, sex, mechanical devices

plants began ~450m.y.a.; by 350m.y.a. world covered by forests of lycopods and allies [-> coal deposits] Gymnosperms + Ferns dominated the globe in MESOZOIC [dinosaurs] at end-Cretaceous [~65m.y.a.] Angiosperms began rapid rise; now dominate other groups in all but boreal zone begin interactions with rising insects birds and mammals


HERBIVORY

plants produce an enormous and largely unknown array of secondary chemicals to combat herbivores

these chemicals are the basis of a growing pharmaceutical industry

cyanide, caffeine, cocaine, mescaline, curare, nicotine, atropine, strychnine, morphine, quinine, codeine, digitalis, and many, many, more.....

Nitrogen-fixing bacteria

roots secrete organic

energy-source for

bacteria

07:08

NEXT CLASS:

The Animals - life in the fast lane

07:08

the images used in this presentation derive from these two excellent sites:

http://www.science.siu.edu/landplants/

http://www.dipbot.unict.it/sistematica/xIndex.html

23

07:08

4

22