

Animal features:

- multicellular; heterotrophic; aerobic; ingest food - phago- or pino-cytosis
- anisogamous gametes
- diploid zygote usually -> blastula
- highly-differentiated tissues
- diverse organ systems [skin, blood, nerves, gut, muscle etc]

Animal features:

- enormous size range:
- ~0.1mm to ~30m 5 powers of 10
- metabolism -> not restricted to well-lit environments
- active motility & behaviour; unique nervous system; brains
- invaded virtually all habitats, incl. air
- enormous diversity of form

Animal features:

most phyla are shallow aquatic; >50% restricted to oceans

most species are terrestrial (insects)

true land-dwellers only in 4 groups: Chelicerata, Insecta, Myriapoda, Chordata

CONTRASTS WITH PLANTS

virtually all plants are sessile, in light only

animals are sessile, planktonic, can crawl, walk, run, swim, burrow, sail, glide and fly on land, sea or air

most are *actively mobile*, *anywhere*

this associated with: • bilateral symmetry • distinct head and leading end • concentration of sensory/feeding apparatus

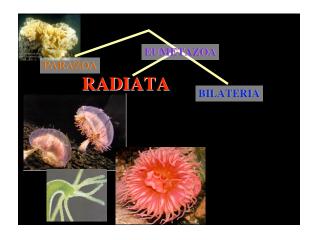
ANIMAL DIVERSITY

animals are the most morphologically varied kingdom <u>highly diverse body plans</u> traditionally the classification of animals is based in body-plans & embryology recently revolutionized by DNA two main branches remain as before: Parazoa & Eumetazoa

Parazoa

Sponges - no distinct tissues or symmetry

Eumetazoa


Radiata - 2 cell-layers, radial symmetry sea anemones, jellyfish, comb jellies

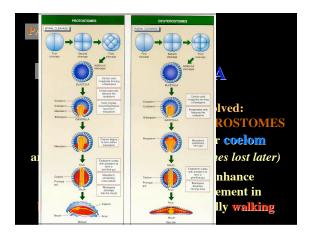
Bilateria - 3 cell layers, bilateral symmetry basically worm-like, at least as larvae

09:10

Eumetazoa : *Radiata* single body cavity & opening radial symmetry, no head simple muscles and nerve net limited active movement *nematocysts*

comb jellies

corals, jellyfish, sea-anemones

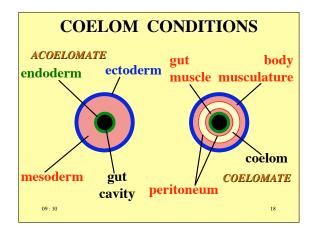

Sponges & Radiata are +/- wholly marine largely unchanged from first appearance both feed on items which *come to them* <u>no active pursuit</u> <u>need no major body axis</u> ∴ asymmetry or radial symmetry make adaptive sense - no head or

advanced sense organs required

all others, the 3-layer *Bilateria*, show left-right symmetry, mostly with distinct head *encephalization*

directed movement to find and catch food; sensory apparatus & mouth at front selection for greater efficiency -> straight through gut - mouth + anus better muscles & control -> better movement get resources -> burrowing into deposits

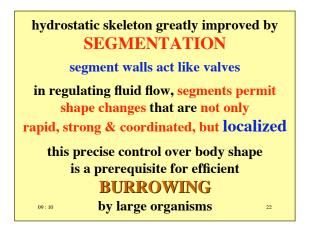
free swimming - transport & escape

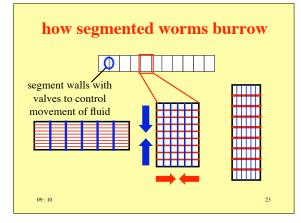


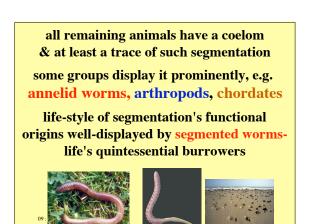
what is a coelom?

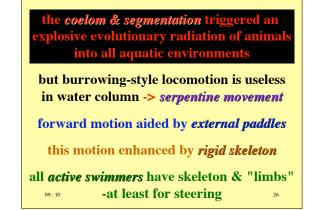
a fluid-filled body cavity between gut and body wall fluid is incompressible, so transmits forces instantaneously

hydrostatic skeleton

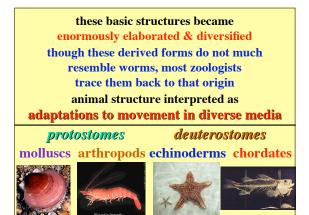

also can carry dissolved gases around - used in respiration - CO₂ & O₂ transport coelom evolved several times - convergent ^{09:10}

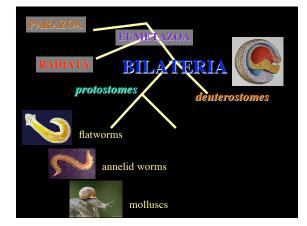




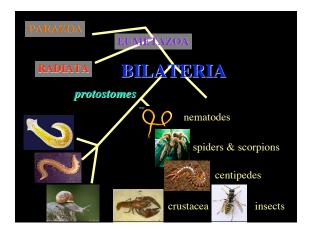


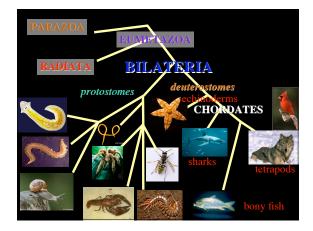
steering paddles may be used as levers against solid substrate as against water



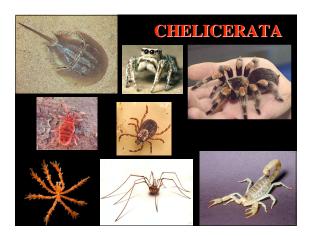

swimming -> crawling, scrambling

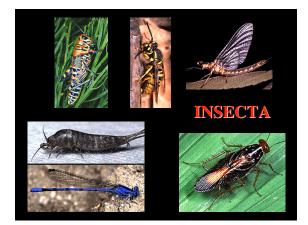
all the basic features of "higher animals" coelom, segments, skeleton, limbs, respiratory system evolved very early in marine habitats


driven by movement to get food resources &

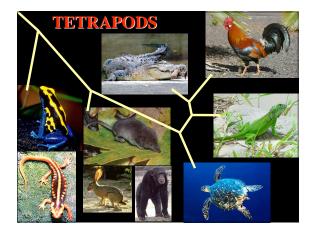

safe refuges, in sediments or water column







though nearly all basic animal body plans were developed by 500 m.y.a. in ocean, greatest proliferation of species followed **colonization of land** ~3-400 m.y.a. there animals faced same challenges as plants - air is non-supporting, dry, open to U.V. strengthen skeleton impervious skin -> internal lungs high activity -> active ventilation ^{09:10} water-independent reproduction 35</sup>


all fully-terrestrial animals are internally-fertilizing fully terrestrial *vertebrates* evolved the **amniotic egg** amnion encloses embryo in +/- sea-water; yolk-sac, gas-exchange membranes most lay eggs, but some retain them inside and nourish them there - viviparity even greater activity & independence by homeothermy in birds & mammals

vertebrates are found in nearly all habitats

however terrestrial habitats are dominated by the **insects**

~one million spp. named probably 10x or 100x more

at any moment, $\sim 10^{18}$ insects alive = $\sim 10^{12}$ kg. living matter - more than us

NEXT CLASS

Diversity Inventory: how many of what sort are there?

09:10

many thanks to The Tree of Life site @ http://phylogeny.arizona.edu/tree/life.html and The Smithsonian Institute @ http://www.nmnh.si.edu/paleo/shale/index.html

09 : 10

41

42