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ABSTRACT

Therecent impressiveprogressin researchongibberellin (GA) biosynthesishas
resulted primarily from cloning of genesencoding biosynthetic enzymes and
studies with GA-deficient andGA-insensitive mutants. Highlights include the
cloningof ent-copalyl diphosphatesynthaseandent-kaurenesynthase(formally
ent-kaurenesynthasesA andB) andthedemonstrationthat theformer is targeted
to theplastid; thefindingthattheDwarf-3 geneof maizeencodesacytochrome
P450, althoughof unknown function; andthe cloning of GA 20-oxidaseand
3β-hydroxylase genes. Theavailability of cDNA and genomicclones for these
enzymesis enabling themechanismsby which GA concentrationsareregulated
by environmental andendogenousfactors to bestudied at the molecular level.
For example, it has been shown that transcript levels for GA 20-oxidaseand
3β-hydroxylasearesubject to feedback regulationby GA action and, in thecase
of the GA 20-oxidase, are regulated by light. Also discussed is other new
information, particularly from mutants, that has addedto our understanding of
thebiosynthetic pathway, theenzymes,andtheir regulationand tissuelocaliza-
tion.
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INTRODUCTION

The gibberellin(GA) hormonesact throughoutthe life cycle of plants,influ-
encingseedgermination, stemelongation,flower induction,antherdevelop-
ment,andseedandpericarpgrowth.Furthermore,they mediateenvironmental
stimuli, which modify theflux throughtheGA-biosynthetic pathway.Regula-
tion of GA biosynthesis istherefore of fundamentalimportanceto plantdevel-
opmentand itsadaptationto theenvironment.

The last review of GA biosynthesis in this series,by Graebe(38), was
followed by severalreviewscoveringthis topic (68,75,121).Graebe’s article
focusedon GA-biosynthetic pathwaysin cell-freesystems,characteristicsof
biosynthetic enzymes,andfactorsaffectingGA production.He predictedac-
curately that the main topic of the next review in this serieswould be the
cloning andcharacterizationof genesfor theGA-biosynthetic enzymes.Sev-
eralof the enzymes havenow beencloned, and theavailability of theircDNAs
is providing new and often unexpectedinformation on the natureof these
proteins.For example,someof the enzymescatalyzemultiple stepsin the
pathway.It is alsonow possible to investigatethemechanismsby which GA
biosynthesis is regulatedin responseto environmentaland endogenoussig-
nals.

In light of theseexciting advances,a new review on GA biosynthesis is
appropriate.As is usualpractice,we discussthebiosyntheticpathway,shown
in Figures1 and2, in threesectionsaccordingto the natureof the enzymes:
terpenecyclasesinvolved in ent-kaurenesynthesis, monooxygenases,anddi-
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oxygenases.We alsoincludediscussionson regulationandsitesof synthesis.
Werestrictourselvesto higherplants,becauseGA biosynthesis in otherorgan-
isms,principally fungi andferns,is not aswell understood.However,future
phylogeneticcomparisonsbetweenGA biosynthesisgenesin all organisms
shouldbe instructivein determining the origin of GAs. Much of the current
progresson GA biosynthesishascomefrom work with mutants, which has
beencoveredcomprehensivelyin severalreviews (98, 99,101,105) andis not
dealt with specifically here.Someof the better characterizedGA-deficient
mutants,with the position of lesions,are given in Table 1, which also lists
cDNA clones for biosyntheticenzymes.

ent-KAURENE SYNTHESIS

ent-Kaurene is synthesizedby the two-step cyclization of geranylgeranyl
diphosphate(GGDP) via the intermediate, ent-copalyl diphosphate(CDP).
The enzymesthat catalyzethesereactionsare referred to as the A and B
activities, respectively,of ent-kaurenesynthase(formerly ent-kaurenesyn-
thetase).However, we adopt the more logical nomenclature proposedby
MacMillan (75). Thus, the conversionof  GGDP  toCDP  is catalyzedby
ent-copalyl diphosphate synthase(CPS)and of CDP to ent-kaureneby ent-
kaurenesynthase(KS). The biosynthesis of GGDP from mevalonicacid is
commonto manyterpenoidpathwaysandis coveredin thereviewby Chappell

Figure 1 Early GA-biosynthetic pathwayto GA12-aldehyde.GGDPis producedin plastidsby the
isoprenoidpathway, originating frommevalonic acidor,possibly, pyruvate/glyceraldehyde3-phos-
phate.
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(13). Recently,a nonmevalonate pathwayto isoprenoids,involving pyruvate
and glyceraldehyde-3-phosphate, has been proposedin green  algae(112).
Suchapathway may operatein plastidsof higherplants, giventhedifficulty in
demonstrating theincorporationof mevalonateinto isoprenoids in theseorgan-
elles.

Figure 2 Gibberellin-biosynthetic pathwayfrom GA12-aldehyde.
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CPSand KS were first separatedby anion-exchangechromatographyon
extractsof Marah macrocarpusendosperm(23). Therewerealsoindications
for the involvementof two enzymesfrom studieson GA-deficientmutants;
work with cell-freeextractsof young fruits suggestedthat the dwarf tomato
mutants,gib-1andgib-3,havelesions atCPSandKS, respectively(10).Using
anent-kaureneoxidaseinhibitor to estimate ratesof ent-kaurenebiosynthesis,
a methodfirst usedwith germinatingbarley grain (40), Zeevaart& Talon
(150) demonstratedthat the nonallelic ga1 and ga2 mutantsof Arabidopsis

Table 1 MutantsandcDNA clonesfor GA-biosynthetic enzymes

Enzyme Plant Mutant References cDNA
cloning

Database

CPS Arabidopsisthaliana
Zeamays
Pisum sativum
Lycopersiconesculentum

ga1
An1
ls-1
gib-1

63
53
128
10

124
9
2
—

U11034
L37750
U63652

KS Cucurbita maxima
A. thaliana
Z. mays
L. esculentum

—
ga2
d5
gib-3

—
150
48
10

147
—
—
—

U43904

ent-Kaurene
oxidase

P. sativum
A. thaliana
Oryza sativa

lhi

ga3
dx

127
150
89

—
—
—

Monoxy-
genase

Z. mays
P. sativum

d3
na

28
49

144
—

U32579

GA 20-
oxidase

C. maxima
A. thaliana

A. thaliana

P. sativum

P. sativum
Phaseolusvulgaris

O. sativa
Spinaciaoleracea

—
ga5

—

—

—
—

—
—

—
129

—

—

—
—

—
—

71
146

92

77
31
73
31

137
145

X73314
U20872
U20873
U20901
X83379
X83380
X83381
X91658
U70471
U58830
U70530
U70531
U70532
U50333
U33330

GA 3β-hy-
droxylase

A. thaliana
Z. mays
O. sativa
P. sativum
Lathyrusodoratus

ga4
dl
dy
le
l

129
28
59
50
106

14
—
—
—
—

L37126

GA 2-oxidases P. sativum sln 108 —
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were both defective  inent-kaurene  production,whereasga4 and ga5 are
blockedlater inthe pathway(129).

ent-CopalylDiphosphateSynthase

Koornneefet al (63) constructeda fine structuregeneticmapof theArabidop-
sisGA1locususingnineindependentga1alleles,threeof whichweremadeby
fastneutronbombardmentandtherestby treatmentwith ethylmethanesulfon-
ate(EMS).Amongthefast-neutron-generatedmutants,ga1-3containsa large
deletion(5 kb) and failed to recombinewith the EMS-treatedmutants(63).
Sun et al (123) usedga1-3 to clone the GA1 locus by genomicsubtraction.
Cosmid clonescontainingwild-type DNA insertsspanningthe deletion in
ga1-3 complemented the dwarf phenotype when integratedinto the ga1-3
genomeby T-DNA transformation. GA1 cDNA containsa 2.4-kbopenread-
ing frame, which was shown by functional analysisto encodeCPS (124).
Escherichiacoli co-transformedwith a bacterialGGDP synthasegene(12),
and the GA1 cDNA producedCDP, from which copalol was identified by
combined gas chromatography–massspectrometry (GC-MS) afteralkaline hy-
drolysis. Although ga1-3 contains  alarge deletion  andgenomic  Southern
analysisindicatedthat GA1 is a single-copygene,the mutantproduceslow
amountsof GAs (150), suggesting that thereareGA1 homologues in Arabi-
dopsisor thereis an alternativepathwayfor ent-kaurenesynthesis. A similar
situationexistsin maize,from which theAn1(Antherear-1) locuswascloned
by transposontagging(9). The predictedaminoacid sequenceof An1 cDNA
shareshigh sequenceidentity (51%, without transit peptidesequence)with
thatof theGA1 protein.A homozygousdeletionmutantof An1,an1-bz2-6923,
accumulatedent-kaureneto 20%of thewild-type content,indicating thepres-
enceof isoenzymes.Furthermore,a putative homologouscDNA, An2, was
clonedby RT-PCR (8). At least two different GA1 homologueshavebeen
obtainedfrom tomato seedlingsby RT-PCR using oligonucleotideprimers
basedon ArabidopsisandmaizeCPSsequences(R Imai, personalcommuni-
cation). It appears,therefore,that leakinessof the ga1-3 and an1 deletion
mutantsis due tothepresenceof other CPSs.

TheLs locusof peawasshownto encodeCPS.The ls-1 dwarf mutanthad
reducedCPSactivity in a cell-freesystemfrom immatureseeds(127).Confir-
mation was obtainedafter cloning a CPSfrom peaby RT-PCR,its identity
beingconfirmedby expressionin E. coli of a glutathioneS-transferasefusion
proteinwith CPSactivity (2). The ls-1 mutation, producedby EMS treatment,
is dueto a G-to-A substitution at an intron-exonborderthat causesimpaired
splicinganda frameshiftin thetranscript(2).
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ent-KaureneSynthase

ent-Kaurenesynthase(KS) waspurified from endospermof pumpkin (Cucur-
bita maxima) (110),which is a rich sourceof GA-biosynthetic enzymes(38).
The enzyme,which hada predictedMr of 81,000,requireddivalentcations,
suchasMg2+, Mn2+, andCo2+, for activity andhadan optimal pH rangeof
6.8–7.5(110).TheKm for CDPwas0.35µM. Purificationof KS wasquickly
followed by its molecularcloning (147). PCRwasusedwith degenerateoli-
gonucleotides,designedfrom aminoacidsequencesof thepurified protein,to
producea cDNA fragment for library screening.The isolated full-length
cDNA was expressedin E. coli as a fusion protein, with maltose-binding
protein,which converted[3H]CDP to ent-[3H]kaurene.The KS transcriptis
abundantin growingtissues,suchasapicesanddevelopingcotyledons,andis
presentin everyorganin pumpkin seedlings.Although it is difficult to com-
pare mRNAabundance across species,it appears thatKS is expressed atmuch
higherlevelsthanis CPS.WhereasCPStranscriptsareundetectablein leaves
of Arabidopsis(124) andpea(2) by northernblot analysis,requiringRNase
protectionassays(A Silverstone& TP Sun,personalcommunication)or RT-
PCR,respectively,KS mRNA, thoughof low abundance,canbe assayedin
pumpkinleavesby northernhybridization(147).This is consistentwith strict
regulationof thefirst stepof ent-kaurenesynthesis fromthe abundantGGDP.

Thededucedaminoacidsequenceof KS sharessignificanthomology with
other terpenecyclases(Figure3A), with highesthomology (51% aminoacid
similarity) with CPSfrom Arabidopsisand maize.It containsthe DDXXD
motif, which is conservedin casbenesynthase(81), 5-epi-aristolochenesyn-
thase(24),andlimonenesynthase(17),andwhich is proposedto functionas a
binding site for the divalentmetal ion-diphosphatecomplex(13). CPSlacks
the DDXXD motif, consistentwith its catalytic activitynot involvingcleavage
of the diphosphate group.

SubcellularLocalizationof ent-KaureneSynthesis

Althoughtherehasbeenevidencefor ent-kaurenesynthesisin plastidsfor over
20 years(reviewedin 38),unequivocalconfirmationof this hasbeenprovided
only recently.By preciseuseof markerenzymesto assessplastidpurity and
GC-MSto identify enzymeproducts,Aachet al (1) clearlydemonstratedthat
CPS/KSactivity (GGDP to ent-kaurene)is localized in developingchloro-
plasts from wheatseedlingsandleucoplasts from pumpkin endosperm. Mature
chloroplastscontainedlitt le activity. Theseresults were supportedby the
recentcDNA cloning of CPS(124) and KS (147). The first 50 N-terminal
amino acids of the GA1 protein (ArabidopsisCPS) are rich in serineand
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Figure 3 Phylogenetic trees,producedusing the PHYLIP package(J Felsenstein, University of
Washington, Seattle), for (A) terpenecyclases,including ent-copalyl diphosphatesynthase(CPS)
andent-kaurenesynthase(KS), and(B) GA 20-oxidases.Referencenumbers areshown in paren-
theses.(Sources:aR Croteauetal, unpublished data; bNEJ Appleford, JR Lenton, AL Phill ips & P
Hedden,unpublisheddata; cDA Ward, J MacMillan,AL Phill ips & PHedden,unpublisheddata.)
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threoninewith an estimatedpI of 10.2 (124). Suchpropertiesare common
featuresof precursorsof manychloroplast-localizedproteins,suchasthesmall
subunitof Rubisco(54). Thetransitpeptideis cleaved on entryinto the plastid
to producea functionalmatureprotein.Incubationof a 35S-labeledArabidop-
sispre-CPSof 86 kDa with isolatedpeachloroplastsresultedin transportinto
thechloroplastsandprocessingto a 76-kDaprotein(124). Thededuced amino
acid sequenceof KS alsocontainsa putativetransitpeptide,althoughimport
into chloroplastscould notbe demonstrated (147).

Plastidsarethemajorsiteof productionof GGDP,andmostof theGGDP
synthases cloned inplantshavetransitpeptides forplastid transport(6). Local-
izationof GGDPsynthasefrom Capsicumannumin plastids hasbeendemon-
stratedimmunocytochemically (64). GGDPis a commonprecursorfor many
plastid-localizedterpenoids,including carotenoidsandthephytolside-chainof
chlorophyll. Overexpressionof phytoenesynthase,which convertsGGDPto
phytoene,in transgenictomato resultedin a lower chlorophyllcontentthanin
wild-typeplantsandadwarfphenotypethatwaspartiallyreversedby applying
GA3 (27). The endogenousGA concentrationsin apicalshootsof the trans-
genic plants were reducedto about 3% of that in wild-type shoots.If, as
suggested(27), overproductionof phytoenehasdepletedGGDPcontent,re-
sulting in reducedsynthesisof GA andchlorophyll, the threepathwaysmust
share the samepoolof GGDP and thusbe interdependent.

MONOOXYGENASES

The highly hydrophobic ent-kaurene is oxidized by membrane-bound
monooxygenasesto GA12. TheenzymesrequireNADPH andoxygenand,on
the basisof the early demonstrationthat ent-kaureneandent-kaurenaloxida-
tion are inhibited by carbonmonoxidewith reversibility by light at 450 nm
(86), areall assumedto involve cytochromeP450.The involvementof cyto-
chromeP450in ent-kaurenoicacid 7β-hydroxylasein the fungusGibberella
fujikuroi hasnowalsobeenshown(51).At leastoneof theenzymes(GA12-al-
dehyde synthase)is associatedwith the endoplasmic reticulumin peaembryos
andpumpkin endosperm(37), requiringtransportof ent-kaurene,or perhapsa
later intermediate, from theplastid.

SeveralGA-deficient dwarf mutantsare defectivein ent-kaureneoxidase
activity. In pea,the lhi (lh-2) mutation affectsstemelongationandseeddevel-
opment(125–127).Cell-freeextractsfrom immaturelh-2 seedsweredeficient
in ent-kaureneoxidase activityrelative towild-typeseeds; thethree steps from
ent-kaureneto ent-kaurenoicacid wereaffected,suggesting that a singleen-
zymemight catalyzethesereactions(127).However,unequivocalverification
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of this mustawait theavailability of pureenzymebecausea regulatoryfunc-
tion for Lh cannotbeexcluded.TheTan-ginbozumutantof rice (dx) is prob-
ably also deficient in ent-kaureneoxidaseactivity (89). Application of uni-
conazole,anent-kaureneoxidaseinhibitor, mimics thephenotypeof Tan-gin-
bozu and producesendogenousGA concentrationssimilar to those in the
mutant(89).Becauseof growthresponsesto appliedent-kaurene,Tan-ginbozu
(85) and also lh (49) were thought previously to have lesionsbefore ent-
kaurenesynthesis. Therecentfindings(89,127) indicatethatsuchapplication
experimentsmaygive misleading results.

Although lessprogresshasbeenmadewith themonooxygenasesthanwith
theother enzymes, the recentcloning oftheDwarf-3 (D3) geneof maize (144)
shouldenablerapidprogressin characterizingthis groupof enzymes.TheD3
gene,obtainedby transposontagging,wasfound,on the basisof its deduced
aminoacidsequence,to encodea memberof a newclassof cytochromeP450
monooxygenases with closest homology to sterol hydroxylases. Unfortu-
nately, there is uncertaintyabout the stepcatalyzedby the D3 protein (BO
Phinney,personalcommunication),althoughthis shouldnow be revealedby
functionalexpressionof thecDNA in a suitable heterologoussystem.

DIOXYGENASES

The enzymesinvolved in the third stageof the pathwayaresolubleoxidases
thatuse2-oxoglutarateasa co-substrate.These2-oxoglutarate–dependentdi-
oxygenasesbelongto a family of nonhemeFe-containingenzymesthat have
beenthe subjectof severalrecentreviews(20, 94, 95). The enzymesshow
considerablediversity of function,but they areclearly relatedon thebasisof
conserved aminoacidsequences.

The reactionsknown to be catalyzedby 2-oxoglutarate–dependentdioxy-
genasesareshownasa networkof pathwaysin Figure2. Although theywere
originally delineatedin developingseeds(38),  both  13-hydroxylation  and
non-13-hydroxylation pathwayshave now beendemonstrated in vegetative
tissues(41, 60). The individual stepsbetweenGA12-aldehydeand GA3 and
GA8 weredemonstratedin intact maizeshootsby applyingeachisotopically
labeledintermediateandidentifying its immediatemetabolite by GC-MS(30,
60).Both pathwayswere observedin a cell-freesystemfrom embryos/scutella
of two-day-oldgerminatingbarleygrain (41), although GA4 wasnot identi-
fied. The dioxygenasesin GA biosynthesiswill now be discussedin detail,
with particularemphasison neweraspectsnot coveredin thereviewby Lange
& Graebe (68).
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7-Oxidase

Oxidationat C-7 from an aldehydeto a carboxylicacid may be catalyzedby
either dioxygenasesor monooxygenases.Pumpkinendospermcontainsboth
7-oxidaseactivities (46), as doesbarley embryos/scutella(41). The dioxy-
genaseactivity from pumpkin hasbeenpartially purified andshownto havea
very low pH optimum (72),whereasthemonooxygenaseis mostactiveabove
pH 7 (46). Thetwo typesof activity alsodiffer in their substratespecificities;
themonooxygenaseis specificfor GA12-aldehyde,whereasthesolubleactiv-
ity oxidizesseveralhydroxylatedGA12-aldehydederivatives(46). The pres-
enceof both types  ofenzymein a single tissue may indicate subcellular
compartmentation of GA-biosynthetic pathways.

13- and12α-Hydroxylases

As for GA 7-oxidase,both dioxygenaseandmonooxygenaseforms of these
hydroxylaseshavebeendescribed.Thesoluble,2-oxoglutarate–dependent13-
hydroxylasedetectedin cell-freeextractsfrom spinachleaves(36) is still the
only exampleof adioxygenasewith thisactivity. 13-Hydroxylasesin pumpkin
endosperm(46, 69), developing pea embryos (52), and barley embryos/
scutella(41) areof the monooxygenasetype. The preferredsubstratefor the
13-hydroxylasesis probablyGA12, althoughother GAs are hydroxylatedto
someextent.GA12-aldehydeis 13-hydroxylatedin embryocell-freesystems
from Phaseoluscoccineus(140)andP. vulgaris (128a),indicatingthatGA53-
aldehydeis an intermediatein the13-hydroxylationpathwayin thesetissues.
In thebarleyembryos/scutella system,GA15 andGA24 were13-hydroxylated
at very low ratescomparedwith GA12, while GA9 wasnot metabolized(41).
This resultis similar to thatfoundpreviouslywith microsomes from immature
peaembryos(52), but in this caseGA15 and GA9 were hydroxylatedonly
whentheir lactoneswereopenedby hydrolysis.Although“late” 13-hydroxyla-
tion (on GA9 or GA4) canoften be demonstrated,it may be relatively ineffi-
cient and accompaniedby hydroxylation at other positions on the C and D
rings (56). However, in somespecies,such as Picea abies (84), it would
appear to be themajorpathway.

Both forms of  the 12α-hydroxylases  arepresent  in  pumpkinseed,  the
monooxygenasehydroxylating GA12-aldehyde(GA12 is not a substrate)(46),
whereasthe dioxygenaseusesa variety of GA tricarboxylic acid substrates
(69, 70). The monooxygenasehasa low pH optimum andmay thuscatalyze
part of the same pathway as the soluble 7-oxidase, for which 12α-hy-
droxyGA12-aldehydeis a substrate.Thesoluble12α-hydroxylaseis sensitive
to the presenceof phosphate(69) andwas,therefore,undetectedin previous
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studiesin which phosphate,ratherthan Tris, buffer was usedto extract the
enzymes(45). BecausephosphateremovesFe by precipitation, it would ap-
pear that the12α-hydroxylasehas an unusually highrequirementfor Fe2+.

20-Oxidases

Formationof theC19-GA skeletonrequiressuccessiveoxidationof C-20from
a methylgroup,asin GA12 or GA53, throughthealcoholandaldehyde,from
which this C atom is lost as CO2 (Figure 2). As discussedbelow, a single
enzyme(GA 20-oxidase)can catalyzethis reactionsequence,althoughthe
numberof enzymesthatareactuallyinvolvedin vivo is unknown.A 2-oxoglu-
tarate-dependentdioxygenasethat convertedGA53 to GA44 and GA19 was
partially purified from 20-day-olddevelopingembryosof P. sativum (67).
Although the proportionof the two productsremainedconstantthroughout
purification, it was uncertainwhethera single enzymecatalyzedboth steps.
Clear evidencethat GA 20-oxidasesare multifunctional was obtainedafter
purification of the enzymeto homogeneity from pumpkin endosperm(66).
The enzymeconvertedGA12 to GA15, GA24 andGA25, andGA53 to GA44,
GA19 and GA17, with a small amountof putative GA20 producedat high
proteinconcentrations.GA12 wasconvertedmoreefficiently thanwasGA53.
Theproductionof thetricarboxylicacids,GA25 andGA17, is characteristicof
thepumpkin endospermcell-freesystem (69)andindicatesthatthe20-oxidase
in this tissueis functionallydifferent from that encounteredin othersystems,
which producepredominantly C19-GAs (52, 128a).

Thepurificationof theGA 20-oxidasefrom pumpkinwas quickly followed
by the cloning of a cDNA that encodedthis enzyme(71). The cDNA was
selectedfrom an expressionlibrary, derivedfrom developingembryos,using
antiserumagainsta peptidesequencefrom the purified protein. As well as
binding the antibodies,the expressedfusion protein was functionally active
andcatalyzedthesamereactionsasthenativeenzyme.Thealdehydeinterme-
diate,GA24, was convertedto both GA25 and GA9, althoughthe latter was
obtainedin lessthan1% yield. The presenceof hydroxyl groupsreducedthe
efficiencyof conversion,by about50%in thecaseof GA19 (13-hydroxylated)
and 95% for GA23 (3β, 13-dihydroxylated),althoughsmall amounts of the
C19-GA productweredetectedin eachcase.Thederivedaminoacidsequence
correspondsto a proteinof 43.3kDa, which is closeto that estimatedfor the
native enzymefrom gel filtration(44kDa),andcontains theconservedregions
found inotherplantdioxygenases.

Thecloningof theGA 20-oxidasecDNA from pumpkin seedsenabledthe
isolationof homologousclonesfrom otherspecies.The first examples,from
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Arabidopsis,wereobtainedindependently in two laboratories(92, 146).Two
GA 20-oxidase cDNAs werecloned from thega1-3mutantutilizingPCR with
degenerate primersdesignedfrom the conservedaminoacidsequences; athird
cDNA clonewasfoundafterscrutinyof theDataBaseof ExpressedSequence
Tags(92). Confirmation that all threecDNAs encodedGA 20-oxidaseswas
obtainedby demonstratingthat the productsof heterologousexpressionin E.
coli convertedGA12 to GA9 and GA53 to GA20, with GA12 the preferred
substrate.Small amountsof the tricarboxylic acids,GA25 andGA17, respec-
tively, wereformed but, in contrast tothepumpkin enzyme,theC19-GAs were
the major products.Thus,theseenzymesappearedto be involved in the bio-
synthesisof activeGAs. It wasconfirmedthatat leastoneof the isozymesis
activein vivo whena genomic cloneencodingoneof theGA 20-oxidaseswas
isolatedfrom Arabidopsisby probing a genomiclibrary with the pumpkin
20-oxidasecDNA (146).The clonemappedtightly to theGA5 locus,mutation
of which resultsin semidwarfism(62) anda reductionin theconcentrationsof
C19-GAs (129).Expressionof theGA 20-oxidasegenesis tissue-specific,with
transcriptsdetected,respectively,in stems/floral apices,floral apices/siliques,
and siliques (92). The silique-specific20-oxidasetranscript is much more
abundantthan the others.The stem-specificgenecorrespondsto the GA5
locus,mutationof which,in ga5,is dueto aG to A substitution thatintroduces
a prematurestopcodon(146). Although the mutantproteinwould be highly
truncatedandunlikely to becatalytically active,thega5plant is semidwarfed
andcontainslow amountsof C19-GAs (129). It mustbe assumed,therefore,
that other GA 20-oxidases,suchas that expressedin the floral apex,supply
GAs tothe stem.

Gibberellin 20-oxidasecDNAs havebeenclonedfrom at leastsevenspe-
cies,with multiple genesfound in severalof them.Their encodedaminoacid
sequencessharea relatively low degreeof sequenceconservation,with amino
acid identitiesrangingfrom 50–75%.Therelationshipbetweenthesequences
is shownin Figure3B. With theexceptionof theenzymefrom pumpkinseed,
the proteinshave very similar functions, converting20-methyl GAs to the
correspondingC19 lactones. Itis notablethattheenzymeclonedfrom develop-
ing cotyledonsof Marah macrocarpus(J MacMillan & DA Ward, unpub-
lished information) produces C19-GAs despiteits being mostclosely related to
the pumpkin enzymeon the basisof sequence(Figure 3B). The structural
differencesthat determinewhetherthe 20-oxo intermediatesare oxidized to
C19-GAs orto tricarboxylic acids arelikely to besubtle. The20-oxidases from
pumpkin, Marah, and Arabidopsisprefer nonhydroxylated substratesto the
13-hydroxylatedanalogues.This is consistentwith thetypesof GAs found in
the tissues in which theseenzymesarepresent.For example,GA4, which is
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not13-hydroxylated,is the majorGA in Arabidopsisshoots(129). In contrast,
a GA 20-oxidaseclonedfrom shootsof rice, in which 13-hydroxyC20-GAs
are the predominantforms (61), oxidizesGA53 moreefficiently than it does
GA12 (137).

Thereis evidencefor thepresencein shoottissuesof GA 20-oxidaseswith
propertiesdifferent from thosethat havebeenclonedso far. GA44 oxidase
activity from spinachleaveswas separatedby anion-exchangechromatogra-
phy from GA53 oxidaseand GA19 oxidaseactivities, which co-eluted(35).
Theselasttwo activitiesareinducedby transferof plantsto longdays,whereas
GA44 oxidaseactivity is not photoperiod-sensitive (36). The spinachGA44
oxidaseconvertsthelactoneform of thisGA (36),asdocell-freesystemsfrom
peashoots(38) and germinatingbarley embryos(41), whereasGA 20-oxi-
dasesfrom immatureseedsrequirea free alcohol at C-20 for oxidation to
occur(45, 52, 128a).Detailedstudieswith recombinantGA 20-oxidase,pro-
ducedby expressionof oneof theArabidopsiscDNAs in E. coli, revealed that
this enzymealso requireda free alcohol function and that oxidation of the
alcoholwasmuchslowerthanthatof themethylandaldehydesubstrates(47).
It seemslikely, therefore,thata separateenzyme(s)with a highaffinity for the
20-alcohols,perhapsasthe lactones,existsin shoottissues.An enzymewith
similar propertiesto the ArabidopsisGA 20-oxidasehasbeencloned from
spinachleaves(145).Onthebasisof theactivity of theproteinafterexpression
in E. coli andits higherexpressionin long daysthanin shortdays,it would
appearto correspondto theGA53 andGA19 oxidases that wereobserved inthe
leaf homogenates.

An unexpecteddifferencebetweenthe spinachGA44 oxidaseand the re-
combinantArabidopsisGA 20-oxidaseis in the stereospecificremovalof a
hydrogenatom during oxidation of the C-20 alcohol intermediates.It was
shown,using GA15 or GA44 labeled stereospecificallywith deuterium, thatthe
Arabidopsisenzymeremovesthe pro-R H atom on conversionof the free
alcohol to the aldehyde(142). In contrast,GA44, as the lactone,is oxidized
with lossof thepro-SH, by cell-freeextractsof spinachleaves.This observa-
tion providesfurther evidencefor the existenceof a distinct lactoneoxidase;
the different stereochemistry of the reactionsis presumablydue to the fixed
orientationof C-20 in the lactoneasopposedto it assumingan energetically
more favored conformationas the free alcohol.

3β-Hydroxylases and Related Enzymes

3β-Hydroxylationresultsin theconversionof theC19-GAs GA20 andGA9 to
GA1 andGA4, respectively,in the final stepin the formationof physiologi-
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cally activeGAs. Thereis now increasingevidencethat,in commonwith GA
20-oxidases,certainGA 3β-hydroxylasesmaybemultifunctional.An enzyme
purified from developingembryosof P. vulgaris catalyzed2,3-desaturation
and 2β-hydroxylation reactions,in addition to 3β-hydroxylation(115, 116).
GA20 andGA9 wereaboutequally reactiveassubstrates.A 3β-hydroxylase
from thesamesourcealsoepoxidizedGA5 to GA6 (65).Theenzymecoulduse
non-2β-hydroxylatedC19 (γ-lactone)GAs or 19–20 δ- lactoneC20-GAs as
substrates(65), the latter presumablyacting as structuralanaloguesof the
former, which are the natural substrates.An enzymethat 3β-hydroxylated
GA15 to give GA37 waspartially purified from pumpkin endosperm(72). It
did not possessdesaturase,althoughit was nottestedwith C19-GAs.

ThepumpkinGA 3β-hydroxylasehasthetypical propertiesof a 2-oxoglu-
tarate-dependentdioxygenase(72). In particular, it was possible to demon-
stratea1:1stoichiometrybetweentheformationof hydroxyGA andsuccinate,
onceuncoupledoxidation of 2-oxoglutaratewas subtracted.In contrast,al-
thoughtheP. vulgarisenzymerequires2-oxoglutaratefor activity, Smithet al
(116) could find no evidencethat this compoundfunctionedas a substrate.
They suggestedthat ascorbatemay serveasthe cosubstrate,asit doesin the
relatedenzyme,1-aminocyclopropane-1-carboxylicacid (ACC) oxidase(22).
However,2-oxoglutarateis essentialfor full 3β-hydroxylaseactivity, whereas
it servesno function for ACC oxidaseactivity. The natureof the P. vulgaris
3β-hydroxylaseis unresolved.

The desaturaseactivity of 3β-hydroxylasesprovidesthe first step in the
productionof GA3. After applying[3H]GA5 to immatureseedsof apricot,de
Bottini et al (19) obtainedchromatographicevidencefor thepresenceof GA1,
GA3, andGA6 in theproducts.Unequivocalevidencefor conversionof GA20
to GA3 via GA5 wasobtainedin shootsof Zeamays(30), thusestablishing a
new biosynthetic pathway.There was no indicationthat GA5 was convertedto
GA1, a reductionthat is without precedentin GA biosynthesis.Theequivalent
pathwayfor non-13-hydroxylatedGAs wasdemonstratedin cell-freesystems
from immatureseedsof Marah andapple(3). Enzymeactivity presentin both
endospermand developingembryosof Marah results in the conversionof
GA9 to GA4 and2,3-dehydroGA9, which is furtheroxidizedto GA7 (75a).The
Marah andapplesystems havea markedpreferencefor non-13-hydroxylated
substrates;althoughbothsystemsconvertedGA5 to GA3, GA20 wasmetabo-
lized to GA1 (3β-hydroxylation),GA29 (2β-hydroxylation),andGA60 (1β-hy-
droxylation),but not to GA5, by theMarah systemandwasunmetabolizedby
theapplepreparation.The branchpathwayfrom GA20 to GA3 occursalsoin
barleyembryos(41) andmaybecommon,althoughnot ubiquitous,in higher
plants.The conversionof GA5 to GA3 has also beendemonstratedin pea
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shoots(93) andin a cell-freesystemfrom rice anthers(58), althoughbecause
GA5 is not formed in thesesystems(50, 57), the function of this activity is
unclear.

The conversionsof GA5 to GA3, and of 2,3-didehydroGA9 to GA7, are
unusualreactionsthatareinitiatedby lossof the1β-H (3). Hydrogenabstrac-
tion  is  accompanied  by  rearrangement  ofthe  2,3  double  bondto  the 1,2
position andhydroxylation onC-3β. Thisenzymatic activitymayalsoresult in
the 1β-hydroxylation of GA20 and GA5, also observedin Marah (3). The
enzymethatconvertsGA5 to GA3 requires2-oxoglutarate,butnotaddedFe2+,
for activity and, in contrastwith most other relateddioxygenases,it is not
inhibitedby iron chelators(116).Its activity, however,is reducedby Mn2+ and
other metal ions, the inhibition by Mn2+ being reversedby Fe2+. It would
appear that Fe isboundvery tightly at theactive site.

GA3 andGA1 formation in maizeis apparentlycatalyzedby oneenzyme
(122).  As well as affecting the conversionof GA20 to GA1, the dwarf-1
mutation reducesformation of GA5 and the conversionof GA5 to GA3. If
Dwarf-1 is a structuralgene, a single enzyme mustcatalyzeall three reactions.
In contrast,the le (3β-hydroxylation)mutationof peawas purportednot to
affecttheconversion of GA5 to GA3 (93). Thisconclusionwas based onequal
growth responsesof Le and le plantsto appliedGA5, which wasassumedto
haveno intrinsic biological activity. However,GA5 is asactiveasGA1 and
GA3 ondwarf-1maizeshoots,despite no metabolism toGA3 by thisgenotype
(122).

Thega4 mutation of Arabidopsisresultsin low amountsof GA1 andGA4
andanaccumulation ofGA20 andGA9 in flowering shoots, indicating reduced
3β-hydroxylaseactivity  (129). This conclusionwas supportedby an 85%
reductionin theamountof GA1 producedfrom labeledGA20 in ga4seedlings
compared withthoseof Landsbergerectaor thega5(20-oxidase) mutant(55).
TheGA4 locushasbeenclonedby T-DNA insertion(14).Thegeneencodesa
dioxygenasethathasrelatively low aminoacidsequenceidentity with theGA
20-oxidases;it has30% identity (50% similarity) with the Arabidopsisstem-
specific20-oxidase(GA5). Expressionof the ga4 cDNA in E. coli hascon-
firmed thatit encodesa 3β-hydroxylase(J Williams,AL Phillips& P Hedden,
unpublished information).The preferredsubstrate for therecombinantenzyme
is GA9, for which theKm is tenfold lowerthanthatfor GA20. Thus, as with the
ArabidopsisGA 20-oxidases,the presenceof a 13-hydroxyl group reduces
substrateaffinity for theenzyme.Theenzymealsoepoxidizesthe2,3-double
bondin GA5 and 2,3-didehydroGA9, andhydroxylatescertainC20-GAs,albeit
with low efficiency. This activity could accountfor the presenceof 3β-hy-
droxy C20-GAs in Arabidopsis(129). However,thereareundoubtedlyother
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GA 3β-hydroxylasesactivein this species.The original EMS-inducedmuta-
tion (ga4-1) resultsin semidwarfism(62),anda reductionto about30%of the
normalcontentof 3β-hydroxy GAs (129).The mutantenzymehasan amino
acid substitution, cysteineto tyrosine (14), that might allow a low level of
activity. The mutantwith the T-DNA insertion(ga4-2) is also a semidwarf,
phenotypically similar to ga4-1,with very littl e likelihood of themutantgene
encodingan active 3β-hydroxylase.  Residual  growthin this  mutant  must,
therefore, resultfrom theaction ofother enzymes.

2β-Hydroxylases and Related Enzymes

Hydroxylation on C-2β resultsin the formation of inactiveproductsand is,
therefore,importantfor turnoverof thephysiologically activeGAs. Thenatu-
ral substratesfor theseenzymesarenormallyC19-GAs, although 2β-hydroxy
C20-GAs arealsofound in plant tissues,particularlywherethe concentration
of C20-GAs is high (76). 2β-Hydroxylaseshavebeenpartially purified from
cotyledonsof P. sativum(118) and Phaseolusvulgaris (39, 117). There is
evidencethat, for both sources,at leasttwo enzymeswith different substrate
specificities arepresent.Two activitiesfrom cotyledonsof imbibedP. vulgaris
seedswere separableby cation-exchangechromatographyand gel-filtration
(39). The majoractivity, correspondingto an enzyme ofMr 26,000by size-ex-
clusionHPLC, hydroxylatedGA1 andGA4 in preferenceto GA9 andGA20,
while GA9 was the preferred substratefor the secondenzyme (Mr 42,000).

Formationof 2-keto derivatives(GA catabolites) by further oxidation of
2β-hydroxy GAs (Figure 2) occursin severalspecies,but it is particularly
prevalentin developing seeds(119)androots(108)of pea.Theconversionof
GA29 to GA29-catabolitein peaseedswasinhibitedby prohexadione-calcium,
aninhibitor of 2-oxoglutarate–dependentdioxygenase(87), indicatingthatthe
reactionis catalyzedby an enzymeof this type (108). Although the slender
(sln) mutation of peablocksboththeconversionof GA20 to GA29 andof GA29
to GA29-catabolitein seeds,the inability of unlabeledGA20 to inhibit oxida-
tion of radiolabeledGA29, andviceversa,indicatedthatthestepsarecatalyzed
by separate enzymes(108). Furthermore, in shoot tissues,the slendermutation
inhibits 2β-hydroxylation of GA20, but not the formationof GA29-catabolite.
It was,therefore, proposedthatSlnencodes a regulatoryprotein(108). Forma-
tion of theGA catabolitescouldbeinitiatedby oxidation eitheratC-1or C-2α.
Althoughthereactionsequenceis unknown,it is of interestthat,afterapplica-
tion of labeledGA20 to leavesof pea, labeledGA81 (2α-hydroxy GA20)
accumulates in theroots,together with thecatabolitesof GA8 andGA29 (108).

GIBBERELLIN BIOSYNTHESIS 447



GA81 is not formedfrom GA29 andmust, therefore,be formeddirectly asa
resultof 2α-hydroxylaseactivity.

REGULATION OF GABIOSYNTHESIS

The role of GAs as mediatorsof environmental stimuli is well established.
Factors,suchasphotoperiodandtemperature,canmodify GA metabolism by
changingtheflux throughspecificstepsin thepathway.More recentwork has
shownthatGA biosynthesis is modifiedby theactionof GA itself in a typeof
feedbackregulation.The mechanismsunderlyingtheseregulatoryprocesses
cannow be investigated asa resultof the currentadvancesin the molecular
biologyof GA biosynthesis.

FeedbackRegulation

Thepresenceof abnormallyhigh concentrationsof C19-GAs incertain GA-in-
sensitivedwarf mutants, suchasRht3wheat(5), Dwarf-8 maize(29), andgai
Arabidopsis(130), indicate a link betweenGA action and biosynthesis. In
maize,thereis agene-dosageeffect,with a60-fold increasein theGA1 content
of homozygous Dwarf-8 shoots,comparedwith wild-type and a 33-fold in-
creasein the heterozygote.It was suggestedthat GA action results in the
productionof a transcriptional repressorthat limits theexpressionof GA-bio-
syntheticenzymes(111). Mutantswith impaired responseto GA would lack
this repressorandhaveelevatedratesof GA production.Suchplantsnormally
containsemidominantmutations,which mayresultin a gainof function(91).
It has beenproposedthat GA 20-oxidaseis a primary target for feedback
regulation(5, 18, 44). In additionto an elevatedC19-GA content,theGA-in-
sensitivedwarfs often contain lower amountsof C20-GAs than their corre-
sponding wild-types, suggesting increasedGA 20-oxidaseactivity. Con-
versely,overgrowthmutants, suchasslender(sln) barleyandla crys pea,that
grow asif saturatedwith GA, evenin its absence,containreducedamountsof
C19-GAs and elevatedcontentof C20-GA GAs (18, 77). It appearsthat the
slendermutation activatesthe GA signal transduction pathway,evenin the
absenceof GA, and may therebycauseconstitutive downregulation of GA
20-oxidaseactivity.

Further support for feedbackregulationof GA 20-oxidaseactivity was
providedby work with GA-biosynthesismutants. Reducedconcentrationsof
C20-GAs, as well as a highly elevatedGA20 content,are characteristicsof
most3β-hydroxylase-deficientmutants, including dwarf-1 maize(28), le pea
(96), and l sweetpea(109).Treatmentof the maize(44) or pea(77) mutants
with 2,2-dimethylGA4, a syntheticand highly bio-active GA, restoredthe
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concentrationsof GA20 andGA19 to thoseof wild types.Although thechange
in GA contentsin the foregoingexamplesis associatedwith alteredgrowth
rates,the effectof GA actionon GA metabolism is not a consequenceof the
changein growthrate.For example,therearenumerousGA-insensitive dwarf
mutantswith normalGA contents,in which themutation, normally recessive,
is likely to affect processesthat arenot part of the primary responseto GAs
(99, 105).

With theavailability of GA 20-oxidasecDNA clones,it hasbeenpossible
to begina molecularanalysisof thefeedbackmechanism. Transcript levels for
eachof the threeArabidopsisGA 20-oxidasegenesare much higher in the
ga1-3(CPS-deficient)mutantthanin Landsbergerectaandarevery substan-
tially reducedby treating the mutantwith GA3 (92). The reductionoccurs
within 1–3 h, long beforea growth responseis discernible(AL Phillips, D
Valero& P Hedden, unpublishedinformation),confirming that itis not related
to growth-rateand indicating thatthemessageis turnedoverrapidly. Thelevel
of mRNA  for the stem-specificGA 20-oxidaseis  also higher in the ga5
(GA-deficient)andgai (GA-insensitive) mutantsthanin the wild type (146).
Treatmentof ga5and,to a lesserextent,wild-type with GA4, causeda reduc-
tion in GA 20-oxidasetranscriptlevels,whereastreatmentof gai resultedin a
slight increasein 20-oxidasemRNA. Strongdownregulationof GA 20-oxi-
dase transcriptlevelsby GA hasalso beenobserved inpea (77)and rice(137).
Low endogenousGA concentration,as in mutantsor after treatmentwith a
biosynthesis inhibitor, consistentlyresultedin increasedmRNA levels.Con-
versely,theselevelsweresubstantially reduced by application of GA. Further-
more,leavesof theslender(la crys) peamutantcontainedonly smallamounts
of 20-oxidasetranscript,consistent with strongdownregulationof geneex-
pression(77).

Other enzymesin the pathway,particularly the GA 3β-hydroxylase,may
alsobesubjectto feedbackregulation.Treatmentof seedlingsof theGA-defi-
cientna mutantof peawith 2,2-dimethylGA4 causeda slight reductionin the
conversionof GA19 to GA20, but a muchgreaterreductionin GA20 metabo-
lism (77).Furthermore, Chianget al(14) found much moreGA4(3β-hydroxy-
lase)transcriptin rosetteleavesof ga4mutants thanin Landsbergerecta,and
that treatmentwith GA3 reducedthe amountof transcriptwithin 8 h. It is
possiblethatseveral enzymesare subjectto regulationby GA; the identities of
others mayemerge whenmore enzymesof the pathwayhave been cloned.

RegulationbyLight

The involvementof GAs in the photoperiod-inducedbolting of long-dayro-
setteplantsis well documented(38). Transferof Silenearmeria plantsfrom
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shortdays(SD) to long days(LD) causestheGA1 contentto increaseseveral-
fold, particularly in the subapicalregion, with a decreasein GA53 content
consistentwith increasedGA53 metabolism (131,133,134). In spinach(Spi-
nacia oleracea), changesin GA concentrations(135) andenzymeactivity in
cell-freesystems(36) on transferfrom SD to LD areconsistentwith enhanced
oxidationof GA53 andGA19 in LD. Theactivitiesof GA53 andGA19 20-oxi-
dases,now known to be the sameenzyme(145), increasein the light and
decreasein the dark (36). Furthermore,therearehigheramountsof GA 20-
oxidasemRNA in plantsgrown in LD thanthosein SD or in total darkness
(145). It hasbeensuggestedthat, in LD, there is sufficient GA 20-oxidase
activity to raisethe GA1 concentrationabovethe thresholdrequiredfor stem
extension(135). In fact, light appearsto increasethe total flux throughthe
pathway,becauseent-kaurene synthesis is alsoenhancedin LD in spinachand
in Agrostemmagithago (149).Although GA53 20-oxidaseactivity is regulated
by light, oxidation of GA44, in the lactoneform, remainsat high, constant
levels irrespectiveof light or dark treatment(36). As discussedearlier, this
latteractivity is probablybecauseof anotherenzyme,which is not underlight
regulation.

Despitemanyattempts to implicateGA metabolismin phytochrome-medi-
atedchangesin growth rate,supportingevidenceis sparse.Enhancementof
GA20 3β-hydroxylation by far-red light has beenobservedin lettuce (138,
139) and cowpeaepicotyls (25, 31, 78, 79). In the latter case,higher GA1
concentrations in plants grown in far-redlight wereduealsoto reduced2β-hy-
droxylationandwereaccompaniedby heightenedtissueresponsivenessto GA
(78, 80). However, in  peas,enhancedshoot elongationby treatmentwith
far-red-richlight wasnot associatedwith increasedGA1 content(100).There
is alsono evidenceto suggestthat dark-grownpeas(34, 120, 143) or sweet
peas(109) contain more GA1 than light-grown plants. In fact, work with
phytochrome-andGA-deficientmutantsof peaindicatesthat growth inhibi-
tion by red light, which is mediatedby phytochrome B, is due to altered
responsivenessto GA, rather than to changesin the concentrationof GA1
(143).Severalphytochrome-deficientmutants,suchastheeinmutantof Bras-
sicarapa (21) andthema3

R mutantof Sorghum(15,16), haveanovergrowth
phenotypeandwereoriginally thoughtto containabnormallyhigh GA levels.
Although the GA1 contentof theseplantsmay be elevated(7, 104), this is
apparentlynot the causeof their alteredphenotype. PhytochromeB-deficient
mutantsof cucumber(74)andpea(143)containcomparableamountsof active
GAs to the wild types,but showan enhancedresponseto GAs. In Sorghum,
alteredGA contentis dueto a shift in thephaseof a diurnal fluctuationin GA
concentrations(26). It was proposedthat phytochromedeficiencydisrupted
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diurnalregulationof theconversionof GA19 to GA20, resultingin a 12-hshift
in thepeaksof GA20 andGA1 concentrations,whereasthepatternof fluctua-
tion in the levelsof GA12 andGA53 was unaffected.

Gibberellin metabolism is sensitive to light quantity. Whenpeaseedlings
were grown in low irradiance(40 µmol • m−2 • s−1), GA20 concentration
increasedsevenfoldcomparedwith plantsgrownin high irradiance(386µmol
• m−2 • s−1) (34), whereasin plantsgrown in thedark, theGA20 contentwas
reducedto 25% of that in high irradiance.Moreover, the responseof the
seedlingto exogenousGA1 washeightenedin thedark.Theseresultsindicate
that therateof GA 20-oxidation is sensitive to light fluence;with thecloning
of GA 20-oxidasesnowreportedfor manyspecies,themechanismsunderlying
this processas well as the diurnal fluctuation in GA biosynthesiscan be
probed.

RegulationbyTemperature

Induction of seedgermination(stratification) or of flowering (vernalization)
by exposureto low temperaturesare  processesin  which GAs have  been
implicated.There are, however,few examplesin which GAs have been shown
unequivocally tomediatethetemperaturestimulus.Themostextensively stud-
ied systemis Thlaspi arvense,in which stem extensionand flowering are
induced by exposureto  low temperaturesfollowed by a  returnto higher
temperatures(82). Thesameeffectcanbeobtainedwithout cold inductionby
applicationof GAs, themostactiveof thosetestedbeingGA9 (83). In nonin-
ducedplants,ent-kaurenoicacid accumulatesto high concentrationsin the
shoottip, the site of perceptionof thecold stimulus,whereasaftervernaliza-
tion andreturnto high temperatures,the level of this intermediatefalls within
daysto relativelylow values(43).Metabolismof labeledent-kaurenoicacid to
GA9 could be demonstratedin thermo-inducedshoottips, but not in nonin-
ducedmaterial(42). Furthermore,microsomesfrom inducedshootsmetabo-
lized ent-kaurenoicacid and ent-kaurene,but microsomesfrom noninduced
shootsweremuchlessactivefor both activities(43). Leaves,or microsomes
extractedfrom leaves,from thermo-induced and noninducedplantsmetabo-
lized ent-kaurenoicacid to the sameextent.Theseresultsareconsistentwith
regulationof ent-kaurenoicacid 7β-hydroxylaseand,to a lesserdegree,ent-
kaurene oxidaseby coldtreatmentin shoottips of Thlaspi.

A changein GA contentfollowing vernalizationwasfoundin shoottips of
Brassicanapus,in which GAs, including GA1 andGA3, accumulatedduring
thecoldperiod(148).Thehigherratesof GA productionin vernalized,relative
to nonvernalized,plantsappearedto persistfor 1–2 weeksafter the returnto
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high temperatures.In contrastto thesefindings, there was no evidenceto
suggestthat GAs were the signal for cold-inducedflowering in Raphanus
sativus(88) orTulipagesneriana(97).

Although the mechanismfor thermo-induction of GA biosynthesisis not
yetknown,it hasbeensuggestedthat cold treatment may allow increasedrates
of geneexpression,possibly via demethylation of the promoters (11). Some
circumstantial support forthis theorywasobtainedby reducingDNA methyla-
tion in Thlaspiandlate-floweringecotypesof Arabidopsisby treatmentwith
5-azacytidine.Flowering times in noninduced plants were reducedin both
cases. Confi rmation of this theory must await the isolation and charac-
terizationof the7β-hydroxylasegene.

SITES OF GABIOSYNTHESIS

Developmentalregulation of GA biosynthesis is determinedmainly by
changesin plant ontogenyduring developmentandthe tissuedistribution of
individual enzymesof thepathway.Work with legumesindicatesthatGA-bio-
synthesisoccursmainly in activelygrowingtissues,with leavesandinternodes
importantsites(113, 114). Gibberellin20-oxidasetranscriptlevelsaremuch
higher in pea leavesthan in internodes(32). The same20-oxidasegeneis
expressedin shoots, young seeds,and expandingpods(32), but a different
geneis expressedin developingcotyledons(73). Orthologuesof the peaGA
20-oxidases,with similar patternsof gene expression,were cloned from
Frenchbean(32), anda third gene,which is expressedin developingcotyle-
dons,leaves, androots,was also detectedin this species.

The tissue-specificexpressionof the GA 20-oxidasegenes,alsonotedin
Arabidopsis(92), has not beenfound for CPS (2, 124), KS (147), or GA
3β-hydroxylase(14). Whereasdifferent GA 20-oxidasegenesare expressed
during peaseeddevelopment,the sameCPSgeneis expressedin a biphasic
manner,correspondingwith the two stagesof GA production(2). The first
phase,whichresultsin theproduction ofGA1 andGA3 (33,103),is associated
with seeddevelopment(126–128)andpodgrowth(33,103).Both endosperm
andtestaarepotential sitesof synthesis (103).Thesecondphaseoccursin the
developingembryoand hasno known physiological function. As seedsap-
proachmaturity thereis oftenanincreasein 2-oxidation activitiesin embryos
andtesta(4, 119).Thephysiological significanceof this deactivationmecha-
nism is vividly demonstratedby the slender(sln) mutantof pea,which accu-
mulateshigh concentrationsof GA20 in the matureseeddue to a lack of
2-oxidaseactivities(102,107,108).On germination, theGA20 is 3β-hydroxy-
latedto GA1, resultingin overgrowthof the first 10–12internodes(102).An
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intriguing phenotypewasobtainedby crossingslenderwith na,aGA-deficient
dwarf, blockedat an intermediate stepin the biosynthetic pathway,but not
expressedin the developingseed(49). The doublemutantis phenotypically
slenderto thesix-leafstage,but thereafteris severelydwarfed(108).Crossing
slenderwith le (3β-hydroxylase-deficient) produceda dwarf from emergence,
asdid crossingwith lhi, which blocksat ent-kaureneoxidasein seeds(127)
and preventsthe accumulation of GA20 (108).

Gibberellin productionin the pericarp of developing fruit may be important
for fruit growth, particularly in the absenceof seeds(132). Work with pea
indicatesthatthepresenceof seedsstimulatesGA biosynthesisin thepericarp
(90, 141).Both seedsand4-chloroindole-3-aceticacid,theproposedseed-de-
rived signal,stimulated the conversionof GA19 to GA20 in peapods.How-
ever,the finding thatGA 20-oxidasetranscriptlevelsin pericarpfrom seeded
peafruit aremuchlower thanin seedlessfruit (32) doesnot supporta regula-
tory rolefor GA 20-oxidation in fruit developmentin this species.

CONCLUDING REMARKS

Researchon GA biosynthesis has reachedan exciting stage.cDNA and
genomiccloneshavebeenobtainedfor five typesof enzyme,including mem-
bersof eachof the threeenzymaticclasses:cyclases,monooxygenases,and
dioxygenases.Thecloningof eachenzymein thepathwayshouldbeachieved
within the next three to five years.The availability of clones is enabling
significant advancesin severaldirections.Enzymescanbe preparedby het-
erologousexpressionin sufficientquantitiesfor detailedstudies on theirstruc-
tureand function, andfor theproduction ofantibodies.Promoter-reportergene
fusions,in situ hybridization,and immunolocalizationcan be usedto deter-
mine cellular andsubcellularsitesof synthesis. It is possible to examinethe
regulationof individual enzymesat the transcriptand protein levels. Such
studiesare alreadyyielding important information on the regulationof GA
20-oxidasetranscriptabundanceby GA actionandby light, andon thedevel-
opmentalcontrolof CPS andKS gene expression.

From a practicalstandpoint, it will be possibleto manipulate GA produc-
tion in transgenicplantsby alteringthe expressionof individual genes.This
technologyoffers an alternativeto the useof chemicalgrowth regulatorsfor
the control of plant development. It alsoprovidesa meansto alter the abun-
danceof specificenzymesandtherebydeterminetheircontributionsto theflux
throughthe biosynthetic pathway.For example,overexpressionof GA 20-oxi-
dasecDNAs in Arabidopsisresultsin acceleratedbolting, confirming that the
activity of this enzymeis rate-limiting for this developmentalprocess(53).
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Experimentsof this type may provide new insights into the role of GAs in
plantdevelopment.
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