Using dice to demonstrate how selection makes the impossible inevitable M.A. Lachance

- Try this yourself with real dice.
- Chance does not lead to the accumulation of favourable elements of a complex outcome.
- Selection is a property of imperfectly self-replicating entities (e.g., life) that allows favourable elements of a complex outcome to accumulate gradually.
- Note that there are large numbers of complex outcomes. Once a complex outcome has occurred, its probability is 1 (it is no longer unlikely). In other words, life as we know it was not the only possible outcome.

Selection makes the improbable inevitable

How many throws of 6 dice are needed, on average, to obtain 6 ones?

36?

46,656

$$46,656 = 6 \times 6 \times 6 \times 6 \times 6 \times 6 = 6^6$$

At one throw per second, it would take on average 13 hours, nonstop, with no guarantee that 6 ones would appear!

Number of dice (n)	Expected number (<i>E</i>) of throws to obtain all ones
2	36
4	1,296
6	46,656
8	1,679,616
10	60,466,176
50	8.1×10^{38}
100	6.5×10^{77}
200	4.3×10^{155}
300	2.8×10^{233}
n	n ⁿ

Number of dice (<i>n</i>)	Expected number (<i>E</i>) of throws to obtain all ones	
2	36	
4	1,296	
6		
	All humans, 1 throw per second, a trillion times the age of the universe	
10	morr arrivered	
50	8.1×10^{38}	
100	6.5×10^{77}	
200	Greater than the number of	
300	atoms in the universe	
n	n ⁿ	

Number of dice (n)	Expected number (<i>E</i>) of throws to obtain all ones
2	36
4	1,296
6	46,656

In other words, impossible!

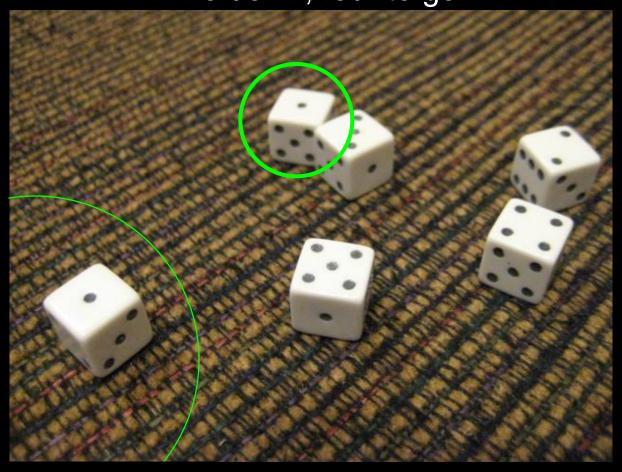
300	2.8×10^{233}
n	n ⁿ

Selection makes the *impossible* inevitable

How many throws of 6 dice are needed, on average, to obtain all ones,

gradually, with selection?

Throw 1 \spadesuit $E(\text{at least 1 one in 6}) = 1.50 <math>\spadesuit$ no luck


Throw 2 \spadesuit *E*(at least 1 one in 6) = 1.50 \spadesuit success

One down, five to go

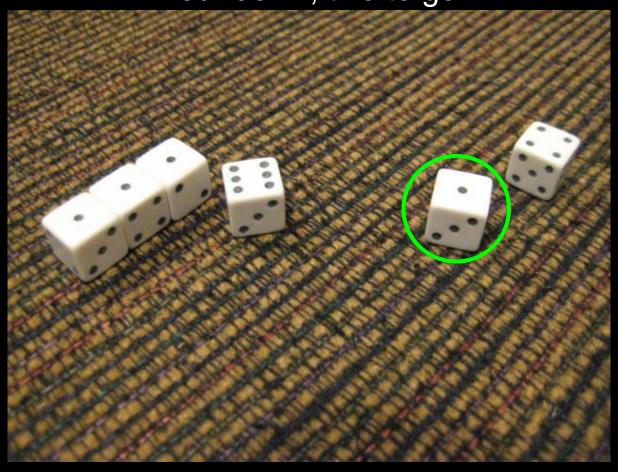


Throw 3 \spadesuit *E*(at least 1 one in 5) = 1.67 \spadesuit success

Two down, four to go

Throw $4 \spadesuit E(\text{at least 1 one in 4}) = 1.93 \spadesuit \text{success}$ Three down, three to go

Throw 5 \spadesuit *E*(at least 1 one in 3) = 2.37 \spadesuit no luck Still three to go


Throw 6 \blacklozenge $E(\text{at least 1 one in 3}) = 2.37 <math>\blacklozenge$ no luck Still three to go

Throw 7 \blacklozenge $E(\text{at least 1 one in 3}) = 2.37 <math>\blacklozenge$ no luck Still three to go

Throw 8 \blacklozenge $E(\text{at least 1 one in 3}) = 2.37 <math>\blacklozenge$ success Four down, two to go

Throw 9 \spadesuit *E*(at least 1 one in 2) = 3.27 \spadesuit no luck Still two to go


Throw 10 \spadesuit $E(\text{at least 1 one in 2}) = 3.27 <math>\spadesuit$ no luck Still two to go

Throw 11 \spadesuit $E(\text{at least 1 one in 2}) = 3.27 <math>\spadesuit$ success Five down, one to go

Throw 12 \spadesuit $E(one) = 6 \spadesuit no luck$ Still one to go

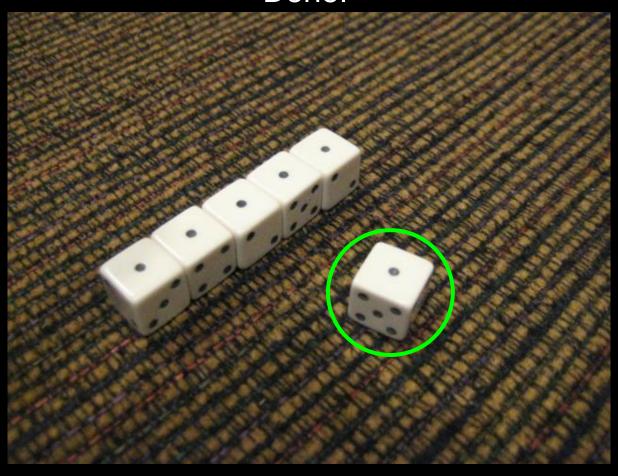
Throw 13 \spadesuit $E(one) = 6 \spadesuit no luck$ Still one to go

Throw 14 \spadesuit $E(one) = 6 \spadesuit no luck$ Still one to go

Throw 15 \spadesuit $E(one) = 6 \spadesuit no luck$ Still one to go

Throw 16 \bigstar $E(one) = 6 \bigstar$ no luck Still one to go

Throw 17 \spadesuit $E(one) = 6 \spadesuit no luck$ Still one to go


Throw 18 \bigstar $E(one) = 6 \bigstar$ no luck Still one to go

Throw 19 \spadesuit $E(one) = 6 \spadesuit no luck$ Still one to go

Throw 20 \spadesuit $E(one) = 6 \spadesuit$ success Done!

Selection did in 20 throws what chance might have done in 46,656 throws

Selection builds on past successes, step by step

 $E(\text{all ones without selection}) = 6^n$

$$P = \frac{1}{E}$$
; $P(\text{all ones}) = \left(\frac{1}{6}\right)^n$

$$P(\text{none one}) = \left(\frac{5}{6}\right)^n$$
; $P(\text{at least one}) = 1 - \left(\frac{5}{6}\right)^n$

$$E(\text{at least one}) = \frac{1}{1 - \left(\frac{5}{6}\right)^n}$$

 $E(\text{all ones with selection}) \leq \sum_{i=1}^{n} E_i(\text{at least one})$

Dice	E(all ones, chance)	E(all ones, selection)
2	36	9
4	1,296	14
6	46,656	17
8	1,679,616	19
10	60,466,176	22
50	8.1×10^{38}	63
100	6.5×10^{77}	113
200	4.3×10^{155}	213
300	2.8×10^{233}	313

Dice	E(all ones, chance)	E(all ones, selection)
2	36	9
4	1,296	14
6	46,656	17
8	1,679,616	19
10	60,466,176	22
50	8.1×10^{38}	63
100	6.5×10^{77}	113
200	4.3×10^{155}	213
300	2.8×10^{233}	313

Dice	E(all ones, chance)	E(all ones, selection)
2	3 <mark>6</mark>	9
4	1,2 <mark>9</mark> 6	14
6	46,6 <mark>5</mark> 6	17
8	1,679, <mark>6</mark> 16	19
10	60,466,476	22
50	Impocciblo	Inevitable
100	Impossible	
200	4.3×10^{155}	213
300	2.8×10^{233}	313