WEAK ACIDS AND BASES

[MH5; Chapter 13]

 Recall that a strong acid or base is one which completely ionizes in water.

$$HCl \rightarrow H^+ + Cl^-$$

 $NaOH \rightarrow Na^+ + OH^-$

- The above equations fit the Arrhenius definition of acids and bases; in water, acids produce H⁺ and bases produce OH⁻.
- The Brønstead-Lowry definition of acids and bases is better:
 - * An acid is a proton (H⁺) donor.
 - * A base is a proton (H⁺) acceptor.
- This means that in any acid-base reaction, a proton is transferred from the acid to the base.
- Consider the weak acid, HA: $HA + H_2O = H_3O^+ + A^-$
- The acid has transferred a proton to the water (which in this case is acting as a base).
- The H_3O^+ is what makes the solution acidic.
- The other species formed in this process is A^- ; we call this the conjugate base of the weak acid, HA.
- Now look at a weak base, B: B + $H_2O \Rightarrow BH^+ + OH^-$
- The base has taken a proton from the water (which in this case is behaving like an acid).
- The OH is what makes the solution basic.
- The other species formed in this process is BH⁺; this is the conjugate acid of the weak base B.

- Notice that water appears in both of these equations; it can either accept or donate a proton.
- Species such as this are termed amphiprotic or amphoteric.

$$-H^{\dagger} + H^{\dagger}$$

$$OH^{-} \leftarrow H_{2}O \longrightarrow H_{3}O^{\dagger}$$

- So, what is the difference between a strong acid (or base) and a weak acid (or base)?
- Strong acids and bases completely ionize in solution, whereas weak acids and bases do not.
- Because the ionization of a weak acid or base in water is incomplete, an equilibrium is established.
- It is, therefore, controlled by an equilibrium constant; K_a for acids and K_b for bases.
- For the weak acid, HA:

• For the weak base, B:

Notice that....

- $[H_2O]$ (constant at \approx 55.6 M) does not appear in K_a or K_b .
- The larger the K_a the stronger the acid; the larger the K_b the stronger the base.

EXAMPLE:

CCl₃COOH;
$$K_a = 2.0 \times 10^{-1}$$
 is a stronger acid than...

$$CH_3COOH;$$
 $K_a = 1.8 \times 10^{-5}$

$$CH_3NH_2$$
; $K_b = 6.4 \times 10^{-4}$ is a stronger base than...

NH₃;
$$K_b = 1.8 \times 10^{-5}$$

- Hydrogen atoms on Carbon are not (generally) acidic in water....
 for example, CH₃COOH is monoprotic (gives up one H⁺)
- We may define pK_a analogous to pH and pK_w:

$$pK_a = - log K_a$$
 $pK_b = - log K_b$

EXAMPLES:

$$pK_a$$
 for $CC\ell_3COOH = 0.70$ [- log (2.0×10^{-1})] pK_a for $CH_3COOH = 4.74$ [- log (1.8×10^{-5})]

$$pK_b$$
 for $CH_3NH_2 = 3.19$ [- log (6.4×10^{-4})] pK_b for $NH_3 = 4.74$ [- log (1.8×10^{-5})]

• Because of the minus sign, the smaller the value of K_a or K_b the larger the value of pK_a , or pK_b

OR

• The weaker the acid or base, the larger the pK_a or pK_b

Calculations Involving Weak Acids

• Suppose that we have a solution of acetic acid, CH_3COOH (K_a = 1.8 \times 10 $^{-5}$); let its initial concentration be represented by "c" molL $^{-1}$.

At equilibrium, "x" mol L^{-1} have dissociated........

$$CH_3COOH \Rightarrow H^+ + CH_3COO^-$$

- This is a quadratic equation in "x".
- The quadratic equation may be simplified by assuming that "x" is negligible compared to "c".
- CH₃COOH is a weak acid; so we may assume that the small amount dissociation makes little difference to the amount of undissociated acid left.
- Now let "c" = 0.10 molL^{-1}

• If x is negligible compared to 0.10 molL⁻¹:

So...

- In this case, x is about 1.3% of 0.10, a negligible error within the accuracy of the original data we were given.
- If we were to solve the equation exactly, $x = 1.333 \times 10^{-3}$ M, so the approximate answer 1.342×10^{-3} M only differs from the exact answer by 0.009×10^{-3} , an "error" of less than 1%.

General Guideline:

- This assumption; a 'negligible' amount of the acid being ionized is valid if $x \le 5\%$ of the initial concentration of acid.....
- This will generally be the case if the concentration of the acid, c, divided by the K_a value is > 100.

EXAMPLE:
$$[CH_3COOH] = 0.10 \text{ M}; K_a = 1.8 \times 10^{-5}$$

Test the assumption that $c - x \approx c$:

• The quantity $[x/c] \times 100$ is called the degree of dissociation, expressed on a % basis; may also be called **percent dissociation** or **ionization**.

Percent =
$$\frac{Amount \ dissociated}{Original \ amount} \times 100\%$$

=

• We can also use x to calculate pH; because in a weak acid equilibrium; $x = [H^{\dagger}]$

$$[H^{+}] = 1.34 \times 10^{-3} \text{ M}$$
, therefore pH = 2.87

 The degree of dissociation increases as the solution is diluted, although [H⁺] decreases.

EXAMPLE: For solutions of HF in water:

$$K_a$$
 for HF = 6.7 x 10⁻⁴

Initial [HF]	Equil. [H ⁺]	<u>% Dissoc</u> .	pН
1.0	2.6×10^{-2}	2.6	1.59
0.1	7.9×10^{-3}	7.9	2.10
0.01	2.3×10^{-3}	22	2.64
	decreasing	increasing	increasing

- What if we need to do the exact calculation?
- We have to solve the quadratic:

$$x^2 + K_a x - K_a C = 0$$

(from expansion of $K_a = x^2/(C - x)$

- What else can we calculate using K_a ??
- The K_a expression says:

Strategy

- Always write the reaction for the weak acid given in the question.
- Write the equilibrium constant expression for the reaction.
- Identify what you know and what you are asked to find.
- Usually, it's a fairly straightforward matter of substituting for the appropriate variables in the Equilibrium Constant Expression.
- Sometimes there are a few intermediate calculations to perform....

EXAMPLE: Nitrous acid, HNO $_2$ has a K $_a$ value of 6.0 \times 10 $^{-4}$. a) Calculate the initial concentration of HNO $_2$ if a solution of this acid has a pH of 3.65.

b) Calculate the % ionization of HNO $_2$ in this solution.

Calculations Involving Weak Bases

- The most commonly used weak bases are Ammonia (NH₃) and its derivatives.
- In these compounds one (or more) N atom has a non bonding pair of electrons.

EXAMPLES:

$$:NH_3 + H_2O \Rightarrow NH_4^+ + OH^ CH_3NH_2 + H_2O \Rightarrow CH_3NH_3^+ + OH^-$$

• We may write K_b expressions for both of these.....

• Problems using $K_{\scriptscriptstyle b}$ are treated in the same manner as problems using $K_{\scriptscriptstyle a}$ (weak acid).

EXAMPLE 1:

What is the % ionization and pH of a solution of a 0.0850 M solution of NH3 ? [K_b = 1.8 x 10 $^{-5}$]

EXAMPLE 2:

Calculate the $K_{\scriptscriptstyle b}$ for the weak base B, if a 0.00365 M solution of that base is 8.50 % ionized.

Conjugate Species

- Recall that a weak acid (HA), will produce its **conjugate base** (A^{-}) when it ionizes in water.
- The conjugate base of any acid is the species that is obtained from the acid by removal of one H⁺ (or proton).
- A weak base (B), will produce its conjugate acid (BH*) when it ionizes in water.
- Similarly, the **conjugate acid** of any base is the species that is obtained from the base by addition of a proton (or H⁺).
- It is essential to realize that in any conjugate acid/base pair, the acid always has one more H than the base.
- You must be able to recognize conjugate bases and acids, based on the identity of the original weak acid or base!

EXAMPLES:

- Consider the weak acid HNO_2 ; its conjugate base is NO_2^- .
- Now look at the weak base NH₃; its conjugate acid is NH₄⁺.
- HNO_2 / NO_2^- and NH_3 / NH_4^+ are conjugate acid-conjugate base pairs (the species in each pair differ by one H^+)

Reactions of Conjugate Species

- · How do conjugate species behave when they are put in water?
- Consider the generic weak acid, HA; its conjugate base is A^- .
- This species will act as a base in what is often called hydrolysis.

• What is K_b for A^- , and how is it related to K_a for HA?

 Or...to get the same result, we could add the equations, and then (as we have seen earlier in these notes; p. 135) their K's are multiplied:

- The relationship $K_a \times K_b = K_w$ is always true for a conjugate acid-base pair.
- The weaker the acid, the more basic is its conjugate base.

We can also use the log scale:

$$pK_a + pK_b = pK_w = 14.0$$

EXAMPLE 1:

HF, a weak acid: $K_a = 7.24 \times 10^{-4}$; $pK_a = 3.14$ F $^-$, (conjugate base of HF) $pK_b =$

 $K_b =$

EXAMPLE 2:

HCN, a very weak acid: K_a = 4.00 \times 10 $^{-10}$; p K_a = 9.40 CN $^-$, (conjugate base of HCN) p K_b =

 $K_b =$

- Now look at the generic weak base B, whose conjugate acid is BH⁺.
- BH will act like an acid; we call this one hydrolysis as well.
- We can determine K_a for this conjugate acid in the same manner as we determined K_b for a conjugate base, resulting in:

$$K_a = \underline{K}_w$$
 or $K_b \times K_a = K_w$

 As was the case with the weak acids, the weaker the base, the more acidic is its conjugate acid.

EXAMPLE 1:

NH₃ is a weak base; $K_b = 1.8 \times 10^{-5}$; pK_b = 4.74 NH₄⁺ (conjugate acid of NH₃); pK_a = $K_a (NH_4^+) =$

EXAMPLE 2:

Aniline, $C_6H_5NH_2$, is a very weak base; $K_b = 4.0 \times 10^{-10}$; $pK_b = 9.40$ $C_6H_5NH_3^+$ (conjugate acid of $C_6H_5NH_2$); $pK_a = K_a = K_a = K_a = 0$

Salts

- You may have noticed that the conjugate base of a weak acid, or the conjugate acid of a weak base is always an ion.
- So where does this ion come from?
- It is always produced when the "parent" weak acid or base ionizes, but these conjugate species can be also be found in ionic compounds.
- And ions are formed when an ionic solid is dissolved in water......
- Remember those solubility rules ????
- This is where they come in handy; so you will know whether or not a solid will dissolve in water to produce ions!!
- First we consider salts that yield the conjugate base of a weak acid.
- Recall that the conjugate base will always behave like a base when in aqueous solution:

$$B + H_2O \Rightarrow BH^+ + OH^-$$

EXAMPLE 1:

Consider the salt CH_3COONa . In water:

$$CH_3COONa \rightarrow CH_3COO^- + Na^+$$

The CH₃COO - will now undergoes hydrolysis with water:

- The ion that is the conjugate species of a weak acid or base is the species that will undergo the hydrolysis with water.
- Remember that a conjugate species differs from its "parent" species by only one H⁺!!

EXAMPLE 2:

Calculate the pH of a 0.100 M solution of KF. $[K_a \text{ for HF} = 7.24 \times 10^{-4}]$

EXAMPLE 2:

A 0.0285M solution of the sodium salt, NaA of the weak monoprotic acid, HA, has a pH of 9.65. Calculate K_{α} for the acid, HA.

• Salts that produce the conjugate acids of weak bases will exhibit acidic behaviour in solution:

$$HA + H_2O \Rightarrow H_3O^+ + A^-$$

EXAMPLE 1: What happens when NH_4Cl is placed in water?

$$NH_4C\ell \rightarrow NH_4^+ + C\ell^-$$

The NH_4^+ is the conjugate acid of NH_3 , so in water, hydrolysis occurs.

EXAMPLE 2: Calculate the pH of a solution of 0.175 M NH₄NO₃.

In water:

Then:

Equivalence Point of a Titration

- This is the point where the stoichiometric quantities of acid and base, defined by the equation, have been mixed together.
- It is **really** important to note that the solution is **NOT always** neutral (i.e. pH = 7) at the equivalence point!!
- This is why, earlier, we used the term equivalence point rather than neutralization point.
- The pH at the equivalence point is only truly neutral (pH = 7) for a titration of a strong acid with a strong base.

$$HC\ell$$
 + NaOH \rightarrow NaC ℓ + H_2O strong neutral

- So why is the solution of NaCl neutral?
- Because neither Na⁺(aq) nor $C\ell^-$ is the conjugate of a weak species.
- If both ions which form the salt (NaCl in this case) originally came from strong species, they may termed **spectator ions** and the solution will be neutral.

In contrast; look at the reaction of a weak acid with a strong base:

$$CH_3COOH + NaOH \rightarrow CH_3COO^-Na^+ + H_2O$$

weak strong basic solution

- The salt formed in the reaction is $CH_3COO^-Na^+$.
- The CH_3COO^- is a base; the conjugate base of the weak acid CH_3COOH .
- That means that this solution will be basic.

Or, the reaction of a weak base with a strong acid:

$$HC\ell$$
 + NH_3 \rightarrow $NH_4^+C\ell^-$ + H_2O strong weak acidic solution

- The salt formed in this reaction is $NH_4^+C\ell^-$.
- The NH_4^+ is an acid; the conjugate acid of the weak base NH_3 .
- So this solution will be acidic.
- There is one other possible combination; that of a weak acid plus a
 weak base: this will be acidic or basic at equivalence depending upon
 the relative strengths of the acid and base involved...... Ignore!
- What is really happening at the equivalence point in titrations of a weak species with a strong species?
 - 1) $CH_3COOH + NaOH \rightarrow CH_3COO^-Na^+ + H_2O$
 - 2) $HC\ell + NH_3 \rightarrow NH_4^+C\ell^- + H_2O$
- Because one of the species involved in the titration CH_3COOH in (1) and NH_3 in (2) is a **weak** species, the reactions are not quite complete (because the weak species never completely ionize.)
- They are, however, close enough to complete that we can assume that the salt is by far the major species at equilibrium.
- So... as a first approximation, we start our calculation by assuming complete reaction to the salt. [As shown by equations 1) & 2).]
- To correct this not-quite-true first approximation, we correct it by allowing a back reaction; this is hydrolysis of water by the salt.
 - 3) $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$
 - 4) $NH_4^+ + H_2O \Rightarrow NH_3 + H_3O^+$
- These hydrolysis reactions are actually the ionic equations corresponding to the reverse of (1) and (2)!!

- How do we put all this information together to solve an equivalence point problem?
- The steps are:
 - 1) Write an equation for the acid base reaction. (Similar to equations 1) or 2) on the previous page.)
 - 2) Determine the number of moles of the acid and base.....recall that at the equivalence point, these will be equal.
 - 3) Determine the number of moles of salt formed (equal to the number of moles of acid or base).
 - 4) Determine the total volume of the solution, and the Molarity of the salt solution.
 - 5) Now write an equation for the hydrolysis reaction by the salt. (Similar to equations 3) and 4) on the previous page.)
 - **6)** Using K_w , calculate K_a or K_b for the salt.
 - 7) Now calculate the concentration of either the H_3O^+ or the OH^- formed as a result of hydrolysis.
 - 8) Finally, calculate the pH.

EXAMPLE 1:

Calculate the pH at the equivalence point of the titration of 25.00 mL of 0.165 M benzoic acid, C_6H_5COOH , with 0.185 M KOH. [K_a for $C_6H_5COOH = 6.6 \times 10^{-5}$]

EXAMPLE 2:

Calculate the pH at the equivalence point of the titration of 0.175 M methylamine, CH_3NH_2 , with 0.250 M HNO₃. [K_b for CH_3NH_2 = 6.4 x 10^{-4}]

Acid Base Indicators [MH5; 14.2]

- Indicators are used to detect the equivalence point of a titration.
- An indicator is a weak organic acid that has the particular property
 of being a noticeably different colour from its conjugate base.
- The indicator used must change colour at a pH that closely matches the pH expected at the equivalence point of the titration
- Over the small pH range where the acid changes over to the conjugate base, we see a change of colour......

$$HIn \Rightarrow H^{+} + In^{-}$$

- At the end-point, the indicator is changing colour; this is when
 [In-] = [Hin]
- At this point, K_a (aka K_{HIn}) = $[H^{\dagger}]$ and pK_a (aka pK_{HIn}) = pH
- Note: This is the pK_a value of the **indicator**, not that of the acid being titrated!
- At 1 pH unit below this pK_a value (acidic) the indicator is 90% in the HIn form.
- At 1 pH unit above this pK_a value (basic) the indicator is 90% in the In^- form.
- The approximate range for colour change: 2 pH units.

Selection of Indicator

- The indicator must change colour near the equivalence point.
- For a strong acid/strong base titration: the pK_a of the indicator should be 5 -9, although in practice the pH changes so rapidly at the end-point that **any** indicator is suitable.
- For a weak acid/strong base titration: the pK of the indicator must be in the basic region, for example: phenolphthalein, pK \approx 9
- For a strong acid/weak base titration: the pK_a of the indicator must be in the acidic region, for example: methyl orange, pK_a \approx 3.4

The Common Ion Effect

- Recall that the common ion effect refers to a system at equilibrium which has present an ion that is present as a result of that equilibrium, but is also present from some other source.
- Consider a solution of Acetic Acid, CH_3COOH ($K_a = 1.8 \times 10^{-5}$)

- When we place the acid in water, equilibrium is established very rapidly ($\approx 10^{-(8-\tau o-10)}$ seconds).....
- What happens (non-quantitatively) to the percent dissociation of the acetic acid (CH₃COOH) if......
- A strong acid is added to the same solution (so H [†] is the added "common ion")?
- Or, equivalently, the CH_3COOH ionizes into a solution of a strong acid, instead of into water? (For acid-base reactions in water, the order of addition is unimportant.)

$$CH_3COOH \Rightarrow H^+ + CH_3COO^-$$

How do we treat such problems quantitatively?

EXAMPLE 1:

A solution is 0.20 M in CH_3COOH ($K_a = 1.8 \times 10^{-5}$) and 0.050 M in HCl. What the % ionization of the CH_3COOH ? What is the pH of this solution?

A similar situation arises if a weak base dissociates into a solution
of a strong base (or, equivalently, a strong base is added to a
solution of a weak base).

Polyprotic Acids [MH5;13.4, page 364]

- Polyprotic acids are those which have more than one "acidic" hydrogen.
- This means that they dissociate (or ionize) in stages, with K_{α} values for each step.

EXAMPLE: Carbonic acid is H₂CO₃

Step 1:
$$H_2CO_3 \Rightarrow H^+ + HCO_3^ K_1 = 4.2 \times 10^{-7}$$

Step 2:
$$HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$$
 $K_2 = 4.8 \times 10^{-11}$

Overall:
$$H_2CO_3 \Rightarrow 2 H^+ + CO_3^{2-}$$
 $K_{overall} = K_1 \times K_2$

- These equilibria are typical of polyprotic acids; $K_1 \gg K_2$.
- As a result: \approx all the [H †] is due to the first acid ionization.....
- These dissociations also illustrate simultaneous equilibria in the acid dissociation of a polyprotic acid; both are happening at the same time.
- So both bicarbonate anion, HCO_3^- , and carbonate anion, CO_3^{2-} , are present in the equilibrium mixture in solution.

EXAMPLE:

Consider the acid dissociation of 0.25 M H_2CO_3 . What are the concentrations of all species in the equilibrium mixture, the % dissociation in each stage, and the pH? [$K_1 = 4.2 \times 10^{-7}$, $K_2 = 4.8 \times 10^{-11}$]

First acid dissociation:

Second acid dissociation:

Because $K_2 \ll K_1$, the second acid dissociation does not affect either $[H^+]$ or $[HCO_3^-]$:

General Result: for a diprotic acid H_2A in water; $[A^{2-}] = K_2$

- Since K_2 is very small (4.8 x 10^{-11}), CO_3^{2-} is quite a strong base
- $K_b = 2.08 \times 10^{-4}$ (from $K_a \times K_b = K_w$).

EXAMPLE: What is the pH of 0.150 M Na₂CO₃ solution?

In water:

Then the hydrolysis:

• Further reaction of HCO_3^- with H_2O is negligible; $K_b(HCO_3^-) = 2.38 \times 10^{-8} \ll K_b(CO_3^{2-}) = 2.08 \times 10^{-4}$

Note that HCO_3^- may act as either an acid or a base:

In water:
$$HCO_3^- + H_2O \Rightarrow H_3O^+ + CO_3^{2-}$$
 (acid) $HCO_3^- + H_2O \Rightarrow H_2CO_3 + OH^-$ (base)

OR: If acid or base is added to HCO_3^-

$$HCO_{3}^{-} + H^{+} \rightarrow H_{2}CO_{3}$$
 $HCO_{3}^{-} + OH^{-} \rightarrow H_{2}O + CO_{3}^{2-}$