Chemical Kinetics: Rates and Rate Laws

A. Rates

Chemical kinetics is the study of how quickly chemical reactions proceed and the factors that affect the rate:

o Nature and concentration of the reactants

o Temperature

o Presence of a catalyst

- Rates of chemical reactions are usually defined by comparing the change in reactant or product concentration over time.
- Consider the reaction N_2 + 3 H₂ \rightarrow 2 NH₃
- We could measure the rate at which N_2 and H_2 are consumed and the rate at which $NH₃$ is produced.
- Due to the stoichiometry of the reaction, the rate of N_2 use will be 1/3 the rate of H₂ use, and $\frac{1}{2}$ the rate of NH₃ production.
- Thus, the rate can be defined as

$$
\text{Rate} = -\left(\frac{\Delta[\text{N}_2]}{\Delta t}\right) = -\frac{1}{3}\left(\frac{\Delta[\text{H}_2]}{\Delta t}\right) = +\frac{1}{2}\left(\frac{\Delta[\text{NH}_3]}{\Delta t}\right)
$$

B. Concentration Effects: Rate Laws

- The effect of concentration is described using rate laws, which are mathematical expressions that link the rate of a reaction with reactant concentration.
- Consider the reaction

 $A + B + C \rightarrow$ products

The rate of the reaction is given by the equation below, where

$$
Rate = k [A\overline{P}B\overline{P}C\overline{P}
$$

- o concentrations are in molarity
- o *k* is the *rate constant* for the reaction *at a given temp*
- o and the exponents can only be found *experimentally*
- The exponential values determine the *order* of the reaction. They are usually whole numbers (but not always).
	- $O₂$ = Second order
	- \circ 1 = First order
	- \circ 0 = Zero order (rate of the reaction is independent of the concentration of that reagent)
- Remember, the exponents are experimentally measured and DO NOT correlate to the coefficients in the reaction equation.
- How do we experimentally determine the exponents? We usually use an experimental method that allows us to monitor the changes in a reactant or product. $A \rightarrow \rho$ roducts
- Suppose we have a reaction where a gas is evolved. We can measure the volume of gas produced as a function of time. The initial rate of gas evolution will be the slope at time zero.

 Usually, when we measure rates, we measure *initial rates*, which are the rates observed immediately after the reactants are mixed. As time passes, the reactants run out and the reaction ceases.

• Suppose we have the following reaction

2 H₂ + 2 NO
$$
\rightarrow
$$
 2 H₂O + N₂
Rate = k [H₂]^x [NO]^y

- The strategy is to:
	- 1. vary one concentration at a time and monitor the rate
	- 2. evaluate the exponents separately
	- 3. combine the exponents into a rate law
	- 4. substitute one data set to find *k*
- Collecting experimental data, we have initial rates

- The exponents can be evaluated by logically thinking about the data (the preferred way), or by doing some math.
	- \circ Comparing i and ii, doubling H₂ while keeping NO the same doubles the rate, so $x = 1$

Rate:
$$
=\frac{10}{5} = \frac{k [0.2]^x [0.2]^1}{k [0.1]^x [0.2]^1}
$$

 $2 = \frac{(.2)^x}{(.1)^x} = (\frac{.2}{.1})^x$

 \circ Comparing i and iii, doubling NO while keeping H₂ the same quadruples the rate, so $y = 2$

Raten, $1 = 3$

- Our rate law is therefore Rate = $k[H_2]$ $[NO]^2$
- Substitute one set of values to calculate the rate constant

Rate = $k[A]^x$

Example: For the reaction $A \rightarrow$ products the data below was collected. Calculate the reaction and the rate constant *k*. (This one is harder to determine without doing some math)

• Example: The reaction below is second-order for NO and first-order for $Cl₂$. Which one of the following changes would cause the largest increase in the rate of reaction?

 $2 \text{ NO}(q) + \text{Cl}_2(q) \rightarrow 2 \text{ NOCl}(q)$

o Making $[Cl_2]$ three times higher $3x$ o waxing [U₂] three times higher $5x$ $\frac{1}{2}$

o Making [NO] three times higher while halving [Cl₂] = 4.5x \triangleright Doubling both [NO] and [Cl₂] $8 \times$ o Doubling $[Cl_2]$ $2 \times$ o Doubling [NO] 4人

Rate = le [no] 2 [Cl]

• It is also possible to determine the order of a reaction by doing only one single experiment. This involves monitoring the amount reactant or product at time intervals. The type of plot that gives a straight line tells us the reaction order.

1. First-order reactions

- Suppose the process $A \rightarrow$ products is first-order. $Rate = -\left(\frac{\Delta[A]}{A}\right) = k[A]$ *t* • As the reaction proceeds, [A] decreases. Thus, we can integrate this with respect to time to obtain the integrated first-order rate law. $\ln\left(\frac{[A]_t}{[A]_t}\right] = -kt$ OR $\left[\left(A\right]_t = [A]_0 e^{-kt}\right]$ $\left| \frac{t}{t} \right| = -kt$ $[A]_0$ o [A]*t* = concentration of A after time *t* has elapsed \circ At *t* = 0 (start of the reaction), $[A]_t = [A]_0$ $\frac{1}{2}$ mx-• This can be rearranged into an equation for a straight line. $\ln[A]_t - \ln[A]_0 = -kt$ \rightarrow $\ln[A]_t - kt$ $\ln[A]_0$
- Thus, if a reaction is first-order, a plot of $In[A]_t$ as a function of time should yield a straight line. This is useful to "test" if a reaction is indeed first-order or not.

• Plot of [A] as a function of time. The reaction slows down as A is consumed (exponential decay). $A \rightarrow \rho \overline{\sim} d$.

• Plot of ln[A] as a function of time

 st -order *Rates and Rate Laws* 9 • Example: For the decomposition $B \rightarrow$ products a plot of ln[B] versus time yielded a straight line with slope -0.35 min⁻¹. \bigcirc o If the starting [B] = 0.160 M, find the [B] after 4 minutes ∞ Find the time required for [B] to drop to 0.100 M o Find the time required for half of B to decompose $[6]_{t} = [8]_{0} e^{-\frac{160}{k(t)}}$ $= 0.039$ m $0 ln [B]_{t} = -kt + ln [B]_{0}$
 $0.10 = (-.35)t) + ln [B]_{0}$ $f_{\text{line}} = 1.34 \text{ min}$ 3 en (0.08) = (-.35) (+) + en (0.16) $t_{ime} = 1.98$ min

- The last calculation illustrates the concept of a half life $(t_{1/2})$, the amount of time to use half of the reactants.
- \bullet $t_{1/2}$ is related to the rate constant *k* as follows

$$
\ln\left(\frac{[A]_t}{[A]_0}\right) = -kt
$$
\n
$$
\ln\left(\frac{50\%}{100\%}\right) = -kt_{1/2}
$$
\n
$$
\ln(0.5) = -kt_{1/2}
$$
\n
$$
-0.693 = -kt_{1/2}
$$
\n
$$
t_{1/2} = \frac{0.693}{k} \quad \text{OR} \quad t_{1/2} = \frac{\ln 2}{k}
$$

• Realize that half-life is NOT dependent on the concentration of starting material. After one half-life, half remains. After two half-lives, a quarter remains. After three, an eighth remains.

Fraction remaining = $(0.5)^{(\text{\# of elapsed half-lives})}$

 Example: a first-order reaction has a half-life of 11 minutes. What fraction of the reactant remains after 60 minutes?

$$
\frac{60}{11} = 5.45 \text{ half-lives}
$$
\n
$$
\text{frac (eff = (.5))^{5.45} = 0.023
$$
\n
$$
(2.3\%)
$$

- Radioactive decay always proceeds according to first-order kinetics, so the rate constant for radioactive decay is often expressed in the form of a half-life.
- Example: Radioactive 218 Ra has a half-life of 0.030 s. What fraction of a sample of ²¹⁸Ra would remain after one second?
	- o When doing such questions, be alert and see if it's asking how much is left or how much has been used

o Either use the fractional approach or calculate *k*.
 \bigcirc frac left = (.5)[#] halflives $=(\sigma_{0}S)^{38.3}$ $= 9.3 \times 10^{-11}$ $t_{1/2} = \frac{\ln 2}{b}$ $k = 23.1 s^{-1}$ lu At = - let + lu Ao = $-(23.1)(1) + ln(1)$ $= -23.1$ $A + 29 \times 10^{-11}$

 $t_{1/2} = 1200$

Rates and Rate Laws 12

 Example: The reaction below has a half-life of 120 seconds. If the initial concentration of N_2O_5 is 0.850 M, calculate the concentration of $NO₂$ after five minutes.

 $N_2O_5(q)$ \rightarrow 2 $NO_2(q)$ + V_2 $O_2(q)$

 $\frac{300s}{1200}$ = 2.5 $\frac{1}{9}$ -lives $frac{1}{\pi}$ left = (.5)^{2.5} = .177 $.177$ x $.850$ m = 0.150 m

 $1.4 m nO₂$

2. Zero-order reactions

• Suppose the process $A \rightarrow$ products is zero-order. That is, the speed of the reaction does not depend on [A], only on *k*.

$$
Rate = -\left(\frac{\Delta[A]}{\Delta t}\right) = k[A]^0 = k
$$

• From this we can obtain the integrated zero-order rate law. (don't worry about how to integrate!)

$$
[A]_t = -kt + [A]_0
$$

or Note that there are no logarithmic functions.

A plot of [A] as a function of time yields a straight line.

3. Second-order reactions

• Suppose the process $A \rightarrow$ products is second-order. The rate depends on *k* and the square of [A]. $\overline{}$

Rate =
$$
-\left(\frac{\Delta[A]}{\Delta t}\right) = k[A]^2
$$
 $\frac{d\Delta}{d\Delta t}$ = $-k d\Delta t$

• From this we can obtain the integrated second-order rate law.

$$
\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}
$$

o Again, no logarithmic functions.

o The slope is positive, not negative.

A plot of $\frac{1}{[A]}$ $\frac{1}{11}$ as a function of time yields a straight line.

• Remember, to determine if a reaction is zero-, first-, or second-order, respectively plot [A], ln[A], and 1/[A] as a function of time and see which one gives a straight line.

 $Rate = k(2)^{1}$

Rates and Rate Laws 15

Example: For reaction $Z \rightarrow$ products, a plot of $ln[Z]$ vs time $(seconds)$ yields a straight line with slope -0.165 . What is the rate of the reaction (mol L^{-1} s⁻¹) when $[Z] = 0.750$ M ?

 $k = -165$ s^{-1} Rate = le [2] = $(65)(.75)$ $= 1.24$