Shapes of Molecules and Hybridization

A. Molecular Geometry

- Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the 3-D structure of the molecule.

CH_{4} as drawn conveys no 3-D information (bonds appear like they are 90° apart)
- The Valence Shell Electron Pair Repulsion Theory (VSEPR), developed in part by Ron Gillespie at McMaster in 1957, allows us to predict 3-D shape. This important Canadian innovation is found worldwide in any intro chem course.
- VSEPR theory has four assumptions

1. Electrons, in pairs, are placed in the valence shell of the central atom
2. Both bonding and non-bonding (NB) pairs are included
3. Electron pairs repel each other \rightarrow maximum separation.
4. NB pairs repel more strongly than bonding pairs, because the NB pairs are attracted to only one nucleus

- To be able to use VSEPR theory to predict shapes, the molecule first needs to be drawn in its Lewis structure.
- VSEPR theory uses the AXE notation (m and n are integers), where $\mathrm{m}+\mathrm{n}=$ number of regions of electron density (sometimes also called number of charge clouds).

1. Molecules with no NB pairs and only single bonds

- We will first consider molecules that do not have multiple bonds nor NB pairs around the central atom ($\mathrm{n}=0$).
- Example: BeCl_{2}
o Molecule is linear $\left(180^{\circ}\right)$
- Example: BF_{3}
- Example: CH_{4}
o Molecule is tetrahedral (109.5°)
- Example: PF_{5}
o Molecule is trigonal bipyramidal (90° and 120°). There are three X atoms in a planar triangle and two axial atoms, one above and one below the central atom.
- Example: SF_{6}

2. Molecules with ≥ 1 NB pairs and only single bonds

- The geometry of the regions of electron density is roughly the same as what we see when no NB pairs are involved.
- However, the shape of the molecule is determined by looking at only the bonding pairs, NOT the non-bonding pairs.
- Example: NH_{3}
o There are four regions of electron density ($m+n=4$), and the electronic arrangement is still tetrahedral.
o Yet, the shape of the molecule (look at bonding pairs only) is trigonal pyramidal. Angles < 109.5° (why?)
- Example: $\mathrm{H}_{2} \mathrm{O}$
o Electronic arrangement is tetrahedral. Shape of molecule = bent
- Example: NF
o Electronic arrangement is trigonal planar. Shape of molecule = linear
- Example: SF_{4}
o Electronic arrangement is trigonal bipyramidal. Shape of molecule = see saw
- Example: $\mathrm{XeF}_{3}{ }^{+}$
o Electronic arrangement is trigonal bipyramidal. Shape of molecule $=$ T-shaped
- Example: $\mathrm{XeF}_{5}{ }^{+}$

o Electronic arrangement is octahedral. Shape of molecule = Square pyramidal

- Example: $\mathrm{ICl}_{4}{ }^{-}$
o Electronic arrangement is octahedral. Shape of molecule = Square planar
- Example: the amino acid alanine
o There can be more than one "central atom"

3. Molecules with double or triple bonds

- These are quite simple: treat them as single bonds, and the AXE system still works. i.e. a multiple bond is still considered to be one region of electron density.
- Examples: predict the shapes of $\mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, and $\mathrm{NO}_{2}{ }^{-}$

B. Molecular Polarity

- Recall that electronegativity is a relative measurement of an atom's ability to attract a bonding electron pair to itself.

- Differences in electronegativity between two covalently bonded atoms result in a polar covalent bond, and atoms have a partial negative or partial positive charge.
- These bonds are said to have dipole moments, which can be experimentally quantified. If placed in an electric field, the molecule will rotate and line up to the field.
- The greater the bond polarity, the greater the dipole moment. However, can we say that a molecule with a polar bond must also be a polar molecule? Not necessarily!
- Note: The overall polarity of a molecule depends on its geometry and the presence of polar bonds.
o The presence of polar bonds does not necessarily imply that the molecule is polar. This is because the bond dipole moments can cancel out (no net dipole moment).
o Think of the bond dipoles as vectors, and if the sum of all of the vectors is zero, the molecule is not polar.
- Examples:
CO_{2}
$\mathrm{H}_{2} \mathrm{O}$
BF_{3}
NH_{3}
- Notice that non-polar molecules are highly symmetrical, allowing the bond dipole moments to cancel out.
- In a set of resonance structures, the overall polarity is averaged out over the resonance structures. For example, $\mathrm{CO}_{3}{ }^{2-}$ and $\mathrm{SO}_{4}{ }^{2-}$ are non-polar (no net dipole moment).

C. Hybridization (Compounds with Single Bonds)

- How does molecular shape relate to the orbitals in the valence shell?
- Consider methane, CH_{4}, which uses the valence electrons in the $2 \mathrm{~s}, 2 p_{\mathrm{x}}, 2 p_{\mathrm{y}}$, and $2 p_{\mathrm{z}}$ orbitals. These electrons must become unpaired prior to making bonds with H .
- Recall the shapes of the s and p orbitals.
- If we used these orbitals to bond with the H atoms, we would get this structure. Yet, we know that the proper structure from VSEPR theory is tetrahedral. This structure shown is clearly incorrect!
- How do we explain this?
- Before bonding to H atoms, the one $2 s$ and three $2 p$ atomic orbitals are mixed and rearranged to give a new set of four equivalent (same energy) "hybrid" atomic orbitals $\left(s p^{3}\right)$ arranged at tetrahedral angles of 109.5°.

- Each new hybrid orbital around the C contains one electron.
- After each pairs up with one electron from H , the orbitals contain an electron pair.

- The single bond formed by the direct, head-on overlap of orbitals is a sigma bond (σ).
- Note: hybrid orbitals can also contain NB pairs, for example, in ammonia and water. These also have tetrahedral electronic arrangements and are $s p^{3}$.
- NH_{3}, which has a tetrahedral electronic arrangement, contains three σ bonds. Its shape is trigonal pyramidal.

- $s p^{3}$ hybridization is just one possibility. Five major hybridization types form the VSEPR structures, and these types are summarized in this table (details follow).

Regions of e^{-}density	Atomic orbitals	Hybrid orbitals	Electronic arrangement
2	one s, one p	two $s p$	linear
3	one s, two p	three $s p^{2}$	trigonal planar
4	one s, three p	four $s p^{3}$	tetrahedral
5	one s, three p, one d	five $s p^{3} d$	trigonal bipyramidal
6	one s, three p, one d	six $s p^{3} d^{2}$	octahedral

o Regions of electron density: an NB pair, a single bond, or a multiple bond each constitute one region.
o Electronic arrangement may not equate to molecular shape if there is at least an NB pair present.

1. $s p$ hybridization

- The combination of one s and one p results in the formation of two $s p$ orbitals. These two hybrid orbitals are 180° apart.

- Where we have used only one of the p orbitals, there must be two p orbitals remaining. (Recall there are three p orbitals). We'll see later on that these leftover orbitals are used when there is multiple bonding.
- The two leftover p are 90° to each other and the $s p$ hybrids.

2. $\boldsymbol{s} \boldsymbol{p}^{2}$ hybridization

- One $s+$ two $p=$ three $s p^{2}$ orbitals 120° apart.

- There is one leftover p orbital remaining, since we started with three p orbitals and used two of them for hybridization.

3. $\boldsymbol{s p}^{3}$ hybridization

- One $s+$ three $p=$ four $s p^{3}$ orbitals 109.5° apart.
- There are no leftover p orbitals. Also see diagram on p. 12.

4. Others: $s p^{3} d$ and $s p^{3} d^{2}$ hybridization

- One $s+$ three $p+$ one $d=$ five $s p^{3} d$ orbitals
- One $s+$ three $p+$ two $d=\operatorname{six} s p^{3} d^{2}$ orbitals

IF_{5} (sq. pyramidal)

D. Hybridization (Compounds with Multiple Bonds)

- How do we assign hybridization to compounds containing multiple bonds? The same way! We still examine the number of regions of electron density (table on page 13).
- Consider ethene. Each carbon has an AX_{3} configuration ($s p^{2}$-hybridized). Remember to count double bonds as one region. Each C also
 has a remaining p orbital (see p. 15).
- Recall that σ bonds are formed by the direct overlap of orbitals, which result in single bonds. Where do double bonds come from?
o The first bond in the double bond comes from a regular single bond caused by direct overlap (i.e. a o bond)

o The second bond comes from the sideways overlap of the leftover p orbitals to give a pi (π) bond. This is 90° to the plane defined by the trigonal-planar σ bonds. The π bond is both above and below the plane (2 lobes).

- The structure therefore appears like this... note that π bonds involve a sideways overlap, so bond rotation is not possible.

- How about a triple bond? Example: acetylene $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
o Carbon atoms are sp-hybridized, and each has two remaining p orbitals 90° to each other (see p. 14)
o The first bond in the triple bond originates from the direct overlap of $s p$ orbitals (σ bond)
o Both the second and the third bonds in the triple bond are π bonds originating from the sideways overlap of the remaining p orbitals. These two π bonds are 90° apart.

- Example: assign the hybridizations and the number of π bonds present in the molecule acetone

