Weak Acids and Bases

A. Introduction

- Recall strong acids and bases. These are compounds that ionize completely when dissolved in water.
 - HCl will ionize completely to H\(^+\) and Cl\(^-\)
 - NaOH will ionize completely to Na\(^+\) and OH\(^-\)
- Previously, we have defined acids and bases using the Arrhenius definition: in water, acids produce H\(^+\) and bases produce OH\(^-\)
- However, the Bronsted-Lowry definition is better
 - An acid is an H\(^+\) donor
 - A base is an H\(^+\) acceptor
- Thus, in any acid-base reaction, the proton is transferred from the acid to the base.
 \[

 \begin{align*}
 \text{HB (aq)} + \text{A}^- (aq) & \rightleftharpoons \text{B}^- (aq) + \text{HA (aq)} \\
 \text{acid} & \text{base} & \text{conj. base}
 \end{align*}
 \]
- When a proton is removed from an acid, the species formed is its conjugate base. Similarly, when a base gains a proton, the species formed is its conjugate acid. Examples:
 - Acid: CH\(_3\)COOH Conjugate Base: CH\(_3\)COO\(^-\)
 - Base: NH\(_3\) Conjugate Acid: NH\(_4^+\)
Some species, such as water, can either accept or donate a proton. These are referred to as amphiprotic (amphoteric).

\[
\begin{align*}
\text{OH}^- & \quad - \quad \text{H}^+ \\
\text{H}_2\text{O} & \quad + \quad \text{H}^+ \\
\text{base} & \quad \Rightarrow \quad \text{acid}
\end{align*}
\]

B. Weak Acids

What is the difference between a strong acid and a weak acid? Weak ones are those that do NOT ionize completely in water. They are only partially ionized.

Thus, we have an equilibrium described, by the acid dissociation constant K_a. Usually, less than about 1% of the acid is ionized.

\[
\text{HA} + \text{H}_2\text{O} \rightleftharpoons \text{A}^- + \text{H}_3\text{O}^+
\]

Note that because the concentration of water is approximately constant, it is left out of the expression.

We can also define pK_a in a manner analogous to pH

\[
pK_a = -\log K_a
\]

Stronger acids are those that are more ionized. So, the stronger the acid, the HIGHER the K_a and the LOWER the pK_a values.
There are two common forms of weak acids

- Molecules that contain an ionizable hydrogen atom

 \[
 \text{CH}_3\text{COOH} + \text{H}_2\text{O} \rightleftharpoons \text{CH}_3\text{COO}^- + \text{H}_3\text{O}^+
 \]

- Cations (positively charged species)

 \[
 \text{NH}_4^+ + \text{H}_2\text{O} \rightleftharpoons \text{NH}_3 + \text{H}_3\text{O}^+
 \]

 \[
 \text{Al(H}_2\text{O})_6^{3+} + \text{H}_2\text{O} \rightleftharpoons \text{Al(H}_2\text{O})_5(OH)^{2+} + \text{H}_3\text{O}^+
 \]

1. Weak acid calculations: monoprotic acids

- Suppose we dissolved 0.10 mol acetic acid \((K_a = 1.8 \times 10^{-5})\) in enough water to make a 1.0 L solution. Calculate the pH and the determine the percent dissociation of acetic acid.

- To be able to calculate the pH, we need to know the concentration of \(H^+\) (same thing as \(H_3O^+\)) at equilibrium.

 \[
 \text{CH}_3\text{COOH} + \text{H}_2\text{O} \rightleftharpoons \text{CH}_3\text{COO}^- + \text{H}_3\text{O}^+
 \]

 same as

 \[
 \text{CH}_3\text{COOH} \rightleftharpoons \text{CH}_3\text{COO}^- + H^+
 \]
When the 0.10 M of acetic acid is mixed with water, some of it dissociates. Thus, the INITIAL concentration (conc\textsubscript{ini}) of acetic acid is 0.10 M, and the conc AT EQUILIBRIUM will be lower by some unknown value x. The value of x is [H+].

\[
\text{CH}_3\text{COOH} \rightleftharpoons \text{CH}_3\text{COO}^- + \text{H}^+ \\
\begin{array}{cccc}
\text{initial} & 0.1 \text{ m} & 0 & 0 \\
\text{final (at eqn)} & 0.1-x & x & x \\
\end{array}
\]

The \(K_a \) equation above is a quadratic equation that can be rearranged to the following

\[
x^2 + (K_a)(x) - 0.1(K_a) = 0 \quad \text{where} \quad x = [\text{H}^+] \]

How do we solve this? Remember the quadratic formula? The quadratic \((ax^2 + bx + c) \) has two roots:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Thus, x can be a positive or a negative value. Have you heard of a negative concentration??? No! So, only the positive value of x is correct.

\[
x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}
\]
Substituting the appropriate parameters, where \(a = 1 \), \(b = K_a \), and \(c \) is a negative number \((-0.1K_a)\), we get

\[
x = \frac{-K_a + \sqrt{(K_a)^2 + 4(0.1)(1.8 \times 10^{-5})}}{2}
\]

Solving \(x \) using the \(K_a \) of acetic acid and \(\text{conc}_{\text{ini}} = 0.1 \text{ M} \)

\[
x = \frac{-(1.8 \times 10^{-5}) + \sqrt{(1.8 \times 10^{-5})^2 + 4(0.1)(1.8 \times 10^{-5})}}{2}
\]

Corresponds to pH value

With this value of \(x \), we can also determine the percentage of 0.1 M acetic acid that is dissociated.

\[
\% \text{ dissociated} = \frac{\text{amount dissociated}}{\text{total amount}} \times 100\% = \frac{[x]}{[\text{conc}_{\text{ini}}]} \times 100\%
\]

\[
\% \text{ dissociated} = 1.3 \%
\]

So, only about 1% of acetic acid ionizes when in water.

This has some important consequences:

- \([\text{conc}_{\text{ini}}]\) is very close to \([\text{conc}_{\text{ini}}-x]\), and the difference between these two concentrations is “negligible”

- We can only say that they are negligible if the amount of dissociation is less than 5%. This is generally the case if the original concentration is greater than \(100\).
• And why this important? With this assumption, we do NOT need to solve the quadratic formula!

• Going back to our example of 0.1 M acetic acid

\[
\text{CH}_3\text{COOH} \rightleftharpoons \text{CH}_3\text{COO}^- + \text{H}^+ \\
K_a = \frac{[\text{H}_3\text{O}^+][\text{CH}_3\text{COO}^-]}{[\text{HA}]} = \frac{[x][x]}{[\text{concin}]} \\
1.8 \times 10^{-5} = \frac{[x]^2}{0.1} \\
x = 1.34 \times 10^{-3} \text{M}
\]

• Compare this value to the one obtained with the quadratic, and you'll notice that they're very close to each other.

• Remember, you can only assume \([\text{concin} - x] = [\text{concin}]\) when concini is at least 100-fold greater than \(K_a\). Always check that this is true before making the assumption.

• Also note that for any given weak acid, the percentage of dissociation increases as the solution is diluted, even though \([\text{H}^+]\) decreases.
 e.g. for acetic acid

 o 1.00 M dissociation = 0.42% pH 2.37
 o 0.01 M dissociation = 4.2% pH 3.37

 • This is why the approximation only works when concini is at least 100 times greater than \(K_a\).

\[
\text{HA} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{A}^-
\]
Example: Nitrous acid has a K_a of 6.0×10^{-4}. Calculate the concentration of the acid if the pH is 3.65.

- Realize the concentration refers to both the dissociated and the undissociated forms. i.e. calculate conc_{ini}.

\[
\begin{align*}
\text{HN0}_2 & \rightleftharpoons \text{H}^+ + \text{NO}_2^- \\
\text{ini} & \quad \text{conc}_{\text{ini}} \quad 0 \quad 0 \\
\Delta & \quad -x \quad tx \quad tx \\
\text{fin} & \quad \text{conc}_{\text{ini}} - x \quad x \quad x
\end{align*}
\]

\[
K_a = \frac{x^2}{\text{conc}_{\text{ini}} - x}
\]

\[
6.0 \times 10^{-4} = \frac{(2.238 \times 10^{-4})^2}{\text{conc}_{\text{ini}} - (2.238 \times 10^{-4})}
\]

\[
\text{conc}_{\text{ini}} = 3.0 \times 10^{-4} \text{ M}
\]

$\text{pH} = 3.65$

$(\text{H}^+) = 10^{-3.65}$

$(\text{H}^+) = 2.238 \times 10^{-4}$
2. Weak acid calculations:

- Polyprotic acids are those that contain more than one ionizable atom.

- These acids dissociate in steps, with each successive step being less likely (lower K_a) than the one before. This is because it is much harder to move a proton from an ion that is already negatively charged. *e.g.* carbonic acid

\[
\begin{align*}
\text{H}_2\text{CO}_3 & \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \\
\text{HCO}_3^- & \rightleftharpoons \text{H}^+ + \text{CO}_3^{2-}
\end{align*}
\]

\[
\begin{align*}
K_{a1} &= 4.4 \times 10^{-7} \\
K_{a2} &= 4.7 \times 10^{-11}
\end{align*}
\]

- The K_a of each successive ionization is typically at least 100-fold smaller than the previous.

- Calculations are therefore easy, because virtually all of the H^+ in solution comes from the first ionization. So, we only need to consider the first K_a value! $K_a = 4.4 \times 10^{-7}$

- What is the pH of a 0.0010 M solution of carbonic acid?

\[
\begin{align*}
\text{H}_2\text{CO}_3 & \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \\
\text{final} & \quad 0.001 - x \\
4.4 \times 10^{-7} &= \frac{x^2}{0.001} \\
x &= (\text{H}^+) = (\text{HCO}_3^-) = 2.10 \times 10^{-5} \\
\text{pH} &= 4.66
\end{align*}
\]
• Interestingly, what is \([\text{CO}_3^{2-}]\) in the 0.0010 M solution?

\[
\text{HCO}_3^- \rightleftharpoons \text{CO}_3^{2-} + \text{H}^+
\]

\[
\begin{array}{c|c|c|c|c}
\text{HCO}_3^- & \text{CO}_3^{2-} & \text{H}^+ \\
2.1 \times 10^{-5} & 0 & 2.1 \times 10^{-5} \\
\end{array}
\]

\[\Delta = 2.1 \times 10^{-5} - y \]

\[f = 2.1 \times 10^{-5} + y\]

\[K_{a2} = 4.7 \times 10^{-11} = \frac{(y)(2.1 \times 10^{-5})}{(2.1 \times 10^{-5} - y)} \]

• So, for any weak diprotic acid \(\text{H}_2\text{A}\)

 o \([\text{H}^+]\) is calculated from \(K_{a1}\) only

 o The conc of \(\text{A}^{2-}\) = \(K_{a2}\)

• For practice, do Dec 2004 #39 at home.
C. Weak Bases

- Like weak acids, weak bases are those that do not ionize completely. We can write K_b (base dissociation constant) for weak bases, and we say that the base hydrolyzes water.

$$B + H_2O \rightleftharpoons BH^+ + OH^-$$

- We also define $pK_b = \log K_b$.

- A stronger base has a larger K_b and a smaller pK_b.

- There are two common forms of weak bases:
 - Ammonia and related compounds
 $$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$$
 - Anions
 $$F^- + H_2O \rightleftharpoons HF + OH^-$$

 This reaction resembles the reverse of the dissociation of the acid HF, and it is because the fluoride ion is the conjugate base of the weak acid HF. (In this reaction, fluoride is the base and HF is the conjugate acid).

- Consequently, there is a relationship between K_a and K_b for a given conjugate acid-base pair.
• Consider
 \[
 \begin{align*}
 \text{HB} & \rightleftharpoons H^+ + B^- \\
 B^- + H_2O & \rightleftharpoons BH + OH^-
 \end{align*}
 \]

 \[K_a = \frac{[H^+][B^-]}{[HB]} \quad \text{and} \quad K_b = \frac{[BH][OH^-]}{[B^-]}\]

• If we add these together, we get the K_W we’ve seen before!
 \[
 \text{H}_2\text{O} \rightleftharpoons H^+ + OH^- \\
 K_W = \frac{[H^+][OH^-]}{[H_2O]}
 \]

• When we add equations, we multiple K values. \textit{i.e.}
 \[
 (K_a \text{ of } HB) \times (K_b \text{ of } B^-) = K_W = 10^{-14}
 \]

 or
 \[
 pK_a + pK_b = 14
 \]

• This relationship also suggests that
 - Strong acids have weak conjugate bases
 - HCl is a very strong acid, so Cl$^-$ is a very weak base.
 - Cl$^-$ will NOT react with water to form HCl and OH$^-$
 - Weak acids have strong conjugate bases
 - CH$_3$CH$_2$OH (ethanol) is a very weak acid
 - CH$_3$CH$_2$O$^-$ (ethoxide) is a very strong base and will react with water to form ethanol and OH$^-$

<table>
<thead>
<tr>
<th>Acid</th>
<th>Acid Strength</th>
<th>pK_a</th>
<th>Conj Base</th>
<th>Base Strength</th>
<th>pK_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>stronger</td>
<td>3.14</td>
<td>F$^-$</td>
<td>weaker</td>
<td>10.86</td>
</tr>
<tr>
<td>CH$_3$COOH</td>
<td>↓</td>
<td>4.74</td>
<td>CH$_3$COO$^-$</td>
<td>↓</td>
<td>9.26</td>
</tr>
<tr>
<td>HCN</td>
<td>weaker</td>
<td>9.40</td>
<td>CN$^-$</td>
<td>stronger</td>
<td>4.60</td>
</tr>
</tbody>
</table>
1. Weak base calculations: monobasic compounds

- Monobasic compounds are those that accept a single H. Their calculations are no different than those of monoprotic weak acids, except we are now working with hydroxide.

- Example: Dec 2004 #33. What is the pH of a 0.0185 M solution of potassium benzoate, C$_6$H$_5$COOK? The K_a for benzoic acid, C$_6$H$_5$COOH, is 6.3 \times 10$^{-5}$.

\[
K_b = \frac{K_w}{K_a} = \frac{1 \times 10^{-14}}{6.3 \times 10^{-5}} = 1.59 \times 10^{-10}
\]

\[
C_6H_5COO^- + H_2O \rightleftharpoons C_6H_5COOH + OH^-
\]

\[
1.59 \times 10^{-10} = \frac{(x)(x)}{0.0185}
\]

\[
x = [OH^-] = 1.71 \times 10^{-6}
\]

\[
\text{pOH} = 5.77
\]

\[
14 - \text{pOH} = 8.23 = \text{pH}
\]
2. Weak base calculations: polybasic compounds

- Treat compounds that can accept more than one proton just like polyprotic acids. Only the first ionization is significant!

- Example: calculate the pH of a 0.150 M solution of Na$_2$CO$_3$

 \[
 K_b \text{ of CO}_3^{2-} = 2.08 \times 10^{-4} \quad \text{CO}_3^{2-} + H_2O \rightleftharpoons HCO_3^- + OH^- \\
 K_b \text{ of HCO}_3^- = 2.38 \times 10^{-8} \quad \text{HCO}_3^- + H_2O \rightleftharpoons \text{H}_2\text{CO}_3 + OH^- \\
 K_B = \frac{(OH^-)(HCO_3^-)}{(CO_3^{2-})} = 2.08 \times 10^{-4} \cdot 0.150 \\
 X = (OH^-) = (HCO_3^-) = 5.59 \times 10^{-3} \\
 pOH = 2.25 \\
 pH = 11.74
 \]
D. Hydrolysis of Salts of Weak Acids and Bases

- Salts of weak acids and bases would respectively contain the corresponding conjugate bases and conjugate acids. As we saw earlier, these can potentially act as bases or acids. Thus, a salt may change the pH of water when they are dissolved.

- However, many salts do not change the pH of water, e.g. NaCl. This is because both the cation and the anion act as spectator ions, so they will not affect the pH.

 - Some spectator anions are Cl\(^-\), Br\(^-\), I\(^-\), NO\(_3\)\(^-\), SO\(_4\)\(^{2-}\), etc. These are all conjugate bases of strong acids!!! On the contrary, conjugate bases of weak acids (e.g. F\(^-\), CO\(_3\)\(^{2-}\), CH\(_3\)COO\(^-\)) will act as bases and raise the pH.

 - Some spectator cations are Li\(^+\), Na\(^+\), Ca\(^{2+}\), etc. Likewise, conjugate acids of weak bases (e.g. NH\(_4\)\(^+\)) will act as acids and lower the pH.

- Determine if the water solutions of following salts are acidic, basic, or neutral.

 - NH\(_4\)I

 - KClO\(_4\)

 - CH\(_3\)COONa
Example: Calculate the pH and % hydrolysis for 0.10 M solutions of (a) KF and (b) KCN

\[
K_b \text{ F}^- = 1.38 \times 10^{-11} \quad K_b \text{ CN}^- = 2.51 \times 10^{-5}
\]

a) \(F^- + H_2O \rightleftharpoons HF + OH^- \)

\[
1.38 \times 10^{-11} = (OH^-)(HF)
\]

\[
x = 1.17 \times 10^{-6}
\]

\[
\text{pOH} = 5.93
\]

\[
\text{pH} = 8.07
\]

\[
\% \text{ hydrolysis} = \frac{1.17 \times 10^{-6}}{0.10} \times 100\%
\]

\[
= 0.0012\%
\]

b) \(\text{pH} = 11.2 \)

\[
\% \text{ hydrolysis} = 1.58\%
\]
Example: Calculate the pH and % hydrolysis for 0.10 M NH₄Cl. (Kᵦ of NH₃ = 1.8 × 10⁻⁵)

<table>
<thead>
<tr>
<th>Type of Salt</th>
<th>Examples</th>
<th>Ions That React with Water</th>
<th>pH of Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cation from strong base; anion from strong acid</td>
<td>NaCl, KNO₃, BaI₂</td>
<td>None</td>
<td>~ 7</td>
</tr>
<tr>
<td>Cation from weak base; anion from strong acid</td>
<td>NH₄Cl, NH₄NO₃, [(CH₃)₃NH]Cl</td>
<td>Cation</td>
<td>< 7</td>
</tr>
<tr>
<td>Small, highly charged cation; anion from strong acid</td>
<td>AlCl₃, Cr(NO₃)₃, Fe(ClO₄)₃</td>
<td>Hydrated cation</td>
<td>< 7</td>
</tr>
<tr>
<td>Cation from strong base; anion from weak acid</td>
<td>NaCN, KF, Na₂CO₃</td>
<td>Anion</td>
<td>> 7</td>
</tr>
</tbody>
</table>
E. Equivalence Point of a Titration

- This is the point where the stoichiometric quantities of acid and base, as determined by the equation, have been mixed. *i.e.* all the acid and base have neutralized.

- **NOTE**: the pH of the solution at the equivalence point is NOT always neutral!!!!

- In a strong acid + strong base titration, such as HCl and NaOH, the pH at the EP is indeed neutral. This is because neither Na⁺ nor Cl⁻ is the conjugate of a weak species, so they are just spectator ions.

\[
\text{HCl} + \text{NaOH} \rightarrow \text{H}_2\text{O} + \text{NaCl}
\]

1. **Strong base + weak acid titration**

- Suppose we titrate CH₃COOH (weak acid) and NaOH (strong base). At EP, we’ll have sodium acetate (salt of weak acid).

\[
\text{CH}_3\text{COOH} + \text{NaOH} \rightarrow \text{H}_2\text{O} + \text{CH}_3\text{COONa}
\]

- However, as discussed earlier, acetate hydrolyzes.

\[
\text{CH}_3\text{COO}^- + \text{H}_2\text{O} \rightleftharpoons \text{CH}_3\text{COOH} + \text{OH}^-
\]

- So, even at equivalence point, the pH of the solution will be basic and thus greater than 7. If we wish to know the exact pH at EP, we need to determine the concentration.
Example: Calculate the pH of a solution formed by the reaction of 100 mL of 1.0 M NaOH with 100 mL of 1.0 M CH₃COOH (K_a = 1.8 \times 10^{-5}).

\[
\begin{array}{c}
0.1 \text{ mol} \text{ CH}_3\text{COOH} \\
\text{0.5 m} \\
\end{array}
\]

\[
\frac{0.1 \text{ mol}}{0.200 \text{ L}}
\]

\[
\text{pH} = 8.72
\]
2. **Strong acid + weak base titration**

- Suppose we titrate NH₃ (weak base) and HCl (strong acid). At EP, we’ll have ammonium chloride (salt of weak base).

 \[
 \text{NH}_3 + \text{HCl} \rightleftharpoons \text{NH}_4\text{Cl}
 \]

- NH₄Cl ionizes to NH₄⁺ and Cl⁻, and the former is acidic.

 \[
 \text{NH}_4^+ + \text{H}_2\text{O} \rightleftharpoons \text{NH}_3 + \text{H}_3\text{O}^+ \quad \text{Ka}
 \]

- Therefore, at the equivalence point, the solution will be acidic and the pH will be less than 7.

- Example: Calculate pH at the EP of the titration of 0.175 M CH₃NH₂ and 0.250 M HNO₃ (Kₐ for CH₃NH₂ = 6.4 × 10⁻⁴)

 \[
 \frac{\text{K}_w}{\text{K}_b} = \frac{\text{K}_a}{(0.175)} = \frac{(X)(X)}{(0.175)}
 \]

 \[
 x = [\text{H}^+] = [\text{CH}_3\text{NH}_2] = 1.27 \times 10^{-6}
 \]

 \[
 \text{pH} = 5.89
 \]