2.Ionization Energies

Ionization energy, IE, is the energy required to remove one electron from an atom or ion;

an endothermic process

that is, $A \rightarrow A^+ + 1 e^- \Delta H = +ve$

The energy, in kJ mol⁻¹, required to remove 1 electron from the neutral atom (1st ionization limit) depends on the orbital in which the electron resides

Two general trends:

1.) IEs decrease down a group

(an electron removed from an orbital more distant from the nucleus is less tightly bound)

2.) IEs increase from left to right across a period

(electrons being removed from orbitals of equal n are subject to increasing nuclear attraction)

Properties

There are some exceptions to generality 2).

They occur whenever the removal of 1e⁻ leads to a filled or half-filled orbital.

The extra stability of filled or half-filled orbitals leads to a lower IE for those elements which are one electron away from such a state

Example: IE of B < Be B \equiv 1s²2s²2p¹ Be \equiv 1s²2s² 2p¹ electron more easily lost than 1 electron from the filled 2s orbital

Example: IE O < N O \equiv 1s²2s²2p⁴ N \equiv 1s²2s²2p³

By losing 1e⁻ O attains half-filled 2p-orbitals

Electron Affinities

Electron affinity, EA, is the energy change that results from the **capture of an electron** by a neutral atom

that is, $A + e^- \rightarrow A^- = EA$ (= ΔH which can +ve or -ve)

Again there are two general trends:

1.) EAs decrease down a group (because e-s are being captured in orbitals more distant from the nucleus)

2.) EAs increase across a period (because e-s are being captured in orbitals exposed to a greater nuclear charge)

Electron Affinity Increases With Arrows

EAs are especially large (large and –ve) when capture of an e⁻ leads to filled or half-filled orbitals.

Example: C + e⁻ \rightarrow C⁻ C = 1s²2s²2p² C⁻ = 1s²2s²2p³

> Electronic Structure and Periodic Properties

EAs tend to be important for non-metallic elements where their anions play an important role in their chemistry"

These elements include H and those of groups 16 and 17, where their valence shells are nearly full, and adding one or two electrons will make them "rare gas"-like; that is, a filled octet.

<u>H</u>	F	CI	Br		
-73	-328	-349	-329	-295	kJmol ⁻¹

Electronegativity

Electronegativity is the tendency of an atom in a covalently bonded molecule to attract the bonding electron pair to itself

It follows the same trend as electron affinity;

that is, it increases going up a group and across a period.

Values are relative and not absolute

The greatest electronegativity values are found with small non-metals.

F is the most electronegative element.

Electronegativity is important in bonding because a bond between two atoms of different electronegativity is polarized, with the e⁻ pair closer to the more electronegative atom

For example:

We write: $H^{\delta+}$ - $Cl^{\delta-}$ to denote that CI is more electronegative than hydrogen.

Because electronegativity is a relative concept, there have been many attempts to place each element on a scale using different criteria.

The most common scale is due to Linus Pauling which is based on the balance between IPs and EAs.

The electronegativities of some important non-metallic elements are (and these need not be memorized):

$$F > O > CI > N \approx Br > I > S > Se > C > H \approx P$$

Note: C and H are not that electronegative so CH compounds are relatively non polar.

Who was Pauling?

- Linus Pauling was an American chemist.
- He was born in 1901and died 1994
- Won the Nobel Prize in Chemistry in 1954 for his work on the theory of the chemical bond, and the Nobel Peace Prize in 1962 for his campaign against above-ground nuclear testing
- Best known in his last years as a strong advocate for the consumption of massive amounts of Vitamin C for health

Note: electronegativity of H and C are similar. This is why organic hydrocarbon tend not to dissolve in water. They are non polar.

	\frown		Most electronegative element															
	Гн											1000		jaar			· •	He
	2.1													\frown			\sum	
		Be											в	С	N	0	F	Ne
	1.0	1.5											2.0	2.5	3.0	3.5	4.0	
	Na	Mg											AI	Si	Р	S	er	Ar
	0.9	1.2											1.5	1.8	2.1	2.5	3.0	
	K	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8	3.0
	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5	2.6
	Cs	Ва	La	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
	0.7	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	2.4
	Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									
	0.7	0.7	1.1															
/																		
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu				
	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2				
	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr				
	1.3	1.5	1.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3					
L	.east	elec	trone	egativ	ve ele	emen	t											