

Again, the cell potential does not tell you the rate of the chemical reaction. Battery makers for automobiles aim for the largest number of Cold Cranking Amps, a measure of how many Coulombs per second can be produced >To recharge the battery, the products of the discharge needs to be converted back to starting materials (electrolytic cell) Cathode E^{o}_{red} = -0.36 V PbSO₄(s) + 2e⁻ \rightarrow Pb(s) + SO₄²⁻ Anode E^o_{ox} = -1.69 V $PbSO_4(s) + 2H_2O \rightarrow PbO_2(s) + 4H^+ 2e^- + SO_4^{2-}$ Cell notation: PbSO₄ | PbO₂ || PbSO₄ | Pb >Note that in recharge mode (electrolytic cell) the anode and cathode have switched places! Nonetheless, the anode is always the electrode where oxidation occurs >E°_{cell} -2V, which indicates the reaction is not spontaneous (expected). Therefore to recharge we must apply an external voltage of at least 2 V to force this undesirable reaction to occur. When a redox reaction is driven by electricity, it is called electrolysis >Recharging batteries is just one example of electrolysis but the principle is the same Electrochemistry 2

4. Quantitative Analysis

In redox reactions, electrons are formed or consumed in stoichiometric ratios. The amount of electrons can be measured by moles or by charge (Coulombs)

1 mole e⁻ = 96480 Coulombs (= Faraday's constant)

However, physicists, electricians, and engineers usually measure electric current instead of electrons

1 ampere (A) = 1 Coulomb per second

Thus, it is possible to express A in terms of electrons:

1 mole e- = 96480 V

```
1.036 x 10<sup>-5</sup> mol e<sup>-</sup> = 1 C
```

 $6.240 \ x \ 10^{18} \ e^{-}$ = 1 C (using Avogadro number) that is; 1 A = $6.240 \ x \ 10^{18} \ e^{-}$ per second

Electrochemistry

7

Cathode: $A^{13^{+}} + 3e^{-} \rightarrow A(\ell)$ Anode: $C(s) + 2O^{2^{-}} \rightarrow CO_2(g) + 4e^{-}$ The production of 1 mole AI requires 3 mole e⁻, so it is possible to calculate the Coulombs needed and CO_2 emissions (knowing the voltage): Current: $1 A = 1 C s^{-1}$ Voltage: $1 V = 1 J C^{-1}$ Power: $1 W (Watt) = 1 J s^{-1}$ Energy: 1 J = power x time = $V \times C$ Process is energy intensive and environmentally unfriendly.

Example based on #20 of the November 2006 exam. In the silver button cell which generates 1.50 V, the overall cell reaction is $Zn(s) + Ag_2O(s) + H_2O(\ell) \rightarrow Zn(OH)_2(s) + 2Ag(s)$ Suppose that a small cell of this type contains 0.200 g Ag₂O which is the (expensive) limiting reagent. Assuming the cell provides a current of 1.00 x 10⁻⁶ A, how many hours could the cell operate? The number of moles of $Ag_2O = 0.2/MM = 231.8 \text{ gmol}^{-1}$ =0.00086 mol. Balanced reduction half reaction: $Ag_2O + 2H^+ + 2e^- \rightarrow 2Ag + H_2O$ reducing one Ag₂O requires 2 e⁻s, the reaction requires 2 x 0.00086 mol =0.00172 mol e The number moles of electrons consumed = 0.00172 mol x 96490 C mol⁻¹ = 165.96 C $t = 165.96C/10^{-6} A = 1.66 \times 10^8 s = 4.61 \times 10^4 hr = answer E.$ Electrochemistry 10

ENERGY		
When molecules react, there are energy changes, and energy can be released or consumed		
Energy can appear and be measured as either: Work : the ability to move a mass through a distance or Heat : increased molecular velocities, usually measured as temperature		
The SI unit of energy is the joule, J		
Note: 4.184 J = 1 calorie Not to be confused with 1 <u>C</u> alorie = 1000 calories		
Specific Heat defined as the amount of heat required "to raise 1 gram of a substance 1 degree K; units: Jg ⁻¹ K ⁻¹		
Examples		
Water Fe Glass	Specific Heat = 4.184 Jg ⁻¹ K ⁻¹ Specific Heat = 0.451 Jg ⁻¹ K ⁻¹ Specific Heat = 0.84 Jg ⁻¹ K ⁻¹	
By knowing the specific heat of a substance one can calculate the amount of heat required to raise a substance from one temperature to a higher one Electrochemistry 12		

