Announcements

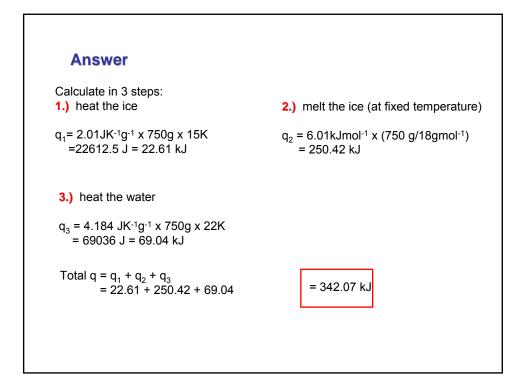
More on the X-mas exam date December 17^{th} 9 am – 12:00 pm. Rooms:

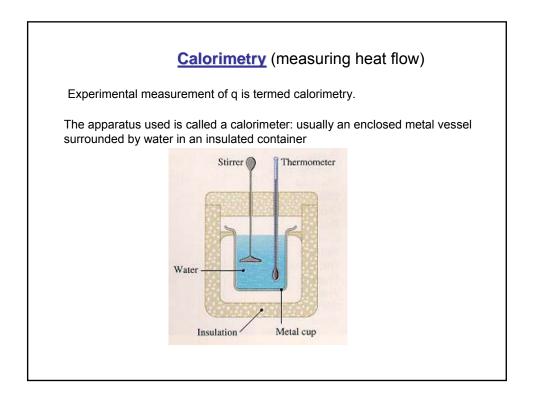
Section 003:

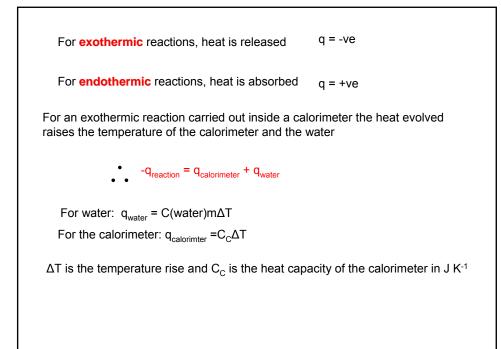
Room	Student Number
HSB 240	60073 - 99554
AH 15	04620 - 45989

Energy is required for a phase change to occur

1 g ice at 0° C (melting point) \rightarrow 1 g liquid water at 0° C Latent heat of fusion (melting) q = +333 Jg⁻¹


1 g liquid water at 100° C (boiling point) \rightarrow 1 g steam at 100° C Latent heat of vaporization (evaporation) $\,q$ = +2260 Jg-1 $\,$


Example:


Suppose 750 g block of ice at -15°C is allowed to melt, and the resulting water warms up to 22°C. How much heat is absorbed in this process?

Useful data:

Specific heat of ice: 2.01 J $K^{-1} g^{-1}$ Heat of fusion of ice: 6.01 kJ mol⁻¹ Specific heat of water: 4.184 J $K^{-1} g^{-1}$

Example: 1.148 g of benzoic acid $(C_7H_6O_2)$ is burned in a calorimeter immersed in 1215 g H_2O . The water temperature increases from 25.12 to 30.26° C. What is the q evolved by the combustion reaction in kJ mol⁻¹ for benzoic acid? Useful data: $C_c = 817 \text{ JK}^{-1}$; $C(H_2O) = 4.184 \text{ J g}^{-1} \text{ K}^{-1}$ Since $-q = C_c\Delta T + C(H_2O)m\Delta T$ $\Rightarrow -q = (817 \text{ JK}^{-1})(5.14 \text{ K}) + (4.184 \text{ Jg}^{-1}\text{K}^{-1})(1215 \text{ g})(5.14 \text{ K})$ = 30330 J = 30.33 kJ per 1.148 g benzoic acidMolar mass $C_7H_6O_2 = 122.0 \text{ gmol}^{-1}$ \therefore Molar -q = 30.33 kJ/(1.148 g/122.0 g mol^{-1}) = 3223 \text{ kJ mol}^{-1}

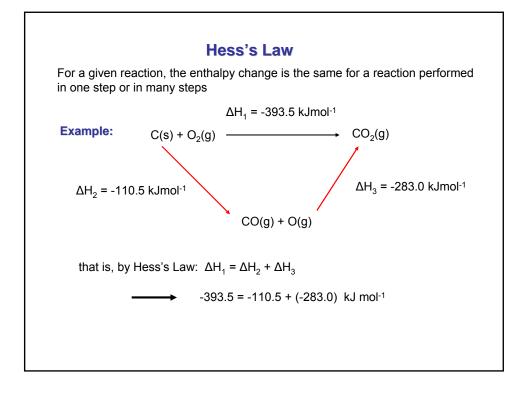
Enthalpy

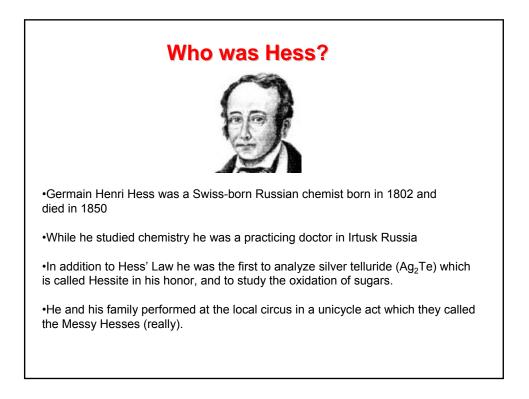
If heat is added to a system, for example, a gas, the heat absorbed (q) must equal the increase in energy of the system, ΔE , plus the work done by the system (w)

... q= ∆E + w

or

 $\Delta E = q - w$


This is the <u>first law of thermodynamics</u> says energy is conserved in all reactions


When chemical reactions are carried out at constant pressure (for example, at 1 atmosphere = 1 bar = 100 kPa), the heat term is called the enthalpy (q_p) and has the symbol ΔH .

For most chemical reactions $\Delta H \sim \Delta E$

 Δ H, the enthalpy of a reaction is a measure of the energy difference between reagents and products, for reactions carried out at constant pressure

For exothermic reactions, heat is released $\Delta H = -ve$ For endothermic reactions, heat is absorbed $\Delta H = +ve$ ΔH values are customarily measured at 25°C (298K) and P = 1 bar. They are labelled ΔH^{0} , the standard enthalpy of reaction **Example:** For the combustion of heptane, $C_{7}H_{16}$ $C_{7}H_{16}(\ell) + 11O_{2}(g) \rightarrow 7CO_{2}(g) + 8H_{2}O(\ell) \qquad \Delta H^{0} = -4818 \text{ kJ}$ This exothermic reaction releases $4.818 \times 10^{6} \text{ J}$ energy / mole $C_{7}H_{16}$.

