Books at Amazon.com on Nanotechnology

http://www.amazon.com/s/103-9040246-0256655?ie=UTF8&keywords=NANOTECHNOLOGY%20&tag =thenanotecinscie&index=books&Search=Search&link%5Fcode=gs

lons

lons are charged species. This is due to a gain or loss of electrons (almost never protons!) Gain of electrons → negatively charged ion ≡ anion Loss of electrons → positively charged ion ≡ cation

There are two types of ions: simple and complex

Simple ions

Simple ions (monoatomic ions) are species with one nucleus that has gained or lost electrons F^- (anion) = ${}^9F^{9+}$ + 10 e⁻

Complex ions

Complex ions are molecules, where the atoms are connected by covalent bonds, that have lost or gained electrons. Those are also called polyatomic ions

Examples: NH_4^+ ammonium ion or H_3O^+ hydronium ion

Note that polyatomic ions themselves do not break apart

More examples can be found in Table 2.2 of M & H p. 41

Compounds can also be formed the interaction of anions and cations (species of opposite charge)

These are called ionic compounds even though they are electrically neutral (# of positive charges = # negative charges)

Such compounds are held together by an electrostatic attraction known as an ionic bond

Crystalline table salt (NaCl) is Na $^+$ and Cl $^-$ bonded together. When dissolved, NaCl dissociates to form a solution of Na $^+$ and Cl $^-$

3. Binary Molecular Compounds					
The combination of two non-metals usually forms a binary compound. They usually contain two-worded names					
	The first word corresponds to the first element in the formula, with a Greek prefix to show the number of atoms of that element				
	2 = di 3 = tri 7 = hepta	4 = tetra 8 = octa	5= penta 9 = nona	6 = hexa 10 = deca	
	The second word uses the stem name of the element, the Greek prefix, and the suffix ide Examples: N_2O_5 = dinitrogen pentaoxide NO_2 = nitrogen dioxide N_2O = dinitrogen oxide				
Many binary compounds have accepted common names:					
	H ₂ O = H ₂ O ₂ :	water NH ₃ = a = hydrogen peroxid	ammonia e C ₂ H ₂	= acetylene	

4. <u>Acids</u>

Some binary compounds ionize in water to form H⁺ ions, and are called **acids**. For example, when hydrogen chloride is dissolved in water it forms H⁺ and Cl⁻ ions.

 $HCl(g) \xrightarrow{H_2O} H^+(aq) + Cl^-(aq)$

The water solution of HCI is called hydrochloric acid

Acids that also contain oxygen are oxoacids. Two common ones are nitric acid (HNO_3) and sulfuric acid (H_2SO_4)

The names of oxoacids originate from the names of the corresponding oxoanions. The suffix **ate** is replaced with **ic**, and **ite** is replaced with **ous**

Examples:	
CIO_4^- = perchlorate ion	$HClO_4$ = perchloric acid
$CIO_{3^{-}}$ = chlorate ion	$HCIO_3$ = chloric acid
CIO_2^- = chlorite ion	$HCIO_2$ = chlorous acid
CIO ⁻ = hypochlorite	HCIO = hypochlorous acid

Note: polyanions do not "break apart". In the example below, sulfate stays as sulfate

$$H_2SO_4 \xrightarrow{H_2O} 2H^+(aq) + SO_4^{2-}(aq)$$

The mole (M&H Ch. 3) (relevant problems found in tutorial manual section Stoichiometry Part 1, p. 17...) The unit for chemical mass is the mole = "the mass (in g) of an element or compound equal to its average atomic mass (in amu)" usually denoted by symbol "n" For example 1 atom of C weighs 12.01 amu while 1 mole of C weighs 12.01 g That methane, CH₄: one molecule weighs [12.01 + 4(1.01)] = 16.05 amu while one mole weighs 16.05 g One mole of a substance always contains the same number of particles = 6.022 x 10²³ ≡ Avogadro's number, N_{AV} Compare 1 dozen = 12 units; 1 mole = 6.022 x 10²³ units For example: 1 mole of $O_2 = 6.022 \times 10^{23} O_2$ molecules = 32.0 g 1 mole CH₃CH₂OH contains 6.022 x 10²³ ethanol molecules = 46.0 g and contains $9xN_{AV} = 5.42 \times 10^{24}$ atoms total of which $6 \ge N_{AV} = 3.61 \ge 10^{24}$ are hydrogen atoms, $2 \ge N_{AV} = 1.20 \ge 10^{24}$ are C atoms, 6.022 x 10²³ are O atoms

Molecular Formulas				
Given a molecular formula, one can calculate the % composition of the elements present:				
Worked Example: for ethanol, $CH_3CH_2OH = C_2H_6O$ the molar mass = 46 g mol ⁻¹				
Mass of C in compound =12 x 2 =24				
••• %C = (24.0/46.0) x 100% = 52.2%				
Similarly, %H = ([6x 1.01]/46.0) x 100% = 13.2%				
and %O = (16.0/46.0) x 100% = 34.8%				