| Section 003                                                                             |                                                               |                                             |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|--|
| Student Number                                                                          | Initials                                                      |                                             |  |
| 250377285<br>250417065<br>250419357<br>250418455<br>250184967<br>250382992<br>250382787 | N. G.<br>Z. Mc.<br>Z. Mo.<br>T. N.<br>H. R.<br>M. S.<br>M. T. | Find Jan or Sandy<br>asap in the Chem. labs |  |
| Section 006                                                                             |                                                               |                                             |  |
| Student Number                                                                          | Initials                                                      |                                             |  |
| 250437424<br>250429567<br>250343897                                                     | B. I.<br>R. N.<br>Y. X.                                       |                                             |  |
| C020-Fundamental Concepts                                                               |                                                               | 1                                           |  |

























| 1.) Begin with a balanced equation:                                                                                                                                            |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.) Ideal combining masses: $\begin{array}{ccc} CH_4 & + & 2O_2 & \rightarrow & CO_2 & + & 2H_2O \\ \textbf{16.0} & \textbf{64.0} & \textbf{44.0} & \textbf{36.0} \end{array}$ |    |
| 3.) Determine which reactant is <b>limiting</b>                                                                                                                                |    |
| ideal mass ratio = $\frac{CH_4}{O_2} = \frac{16.0}{64.0} = \frac{1}{4.0}$                                                                                                      |    |
| actual mass ratio = $\frac{CH_4}{O_2} = \frac{34.0}{100.0} = \frac{1}{2.94}$                                                                                                   |    |
| Since 2.94 < 4.00, O <sub>2</sub> is the L.R.                                                                                                                                  |    |
|                                                                                                                                                                                |    |
| C020-Fundamental Concepts                                                                                                                                                      | 14 |











b) acid-base reactions For example:  $Na^+OH^- + H^+CI^- \rightarrow Na^+CI^- + H_2O$ base acid salt water In acid-base reactions, the acid supplies H<sup>+</sup> to a proton acceptor, the base (here OH-); the remaining anion joins with the cation of the base to form a salt Note: There are 6 strong acids (complete dissociation): HCI, HBr, HI, HNO<sub>3</sub>, HCIO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> All others are weak acids (partial dissociation): much more later c) Gas-forming Reactions For example: all metal carbonates Example:  $CaCO_3 \xrightarrow{\Delta} CaO + CO_2(g)$ "quick lime" i) Lose  $CO_2$  on heating (symbol =  $\Delta$ ) C020-Fundamental Concepts 20 ii) React with acids

Example:

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + [H_2CO_3] \rightarrow H_2O + CO_2(g)$$

Gas evolution drives the reactions completely to the right; that is, they are not reversible

C020-Fundamental Concepts

21