

ENERGY	
When molecules react, there are energy changes, and energy can be released or consumed	
Energy can appear and be measured as either: Work : the ability to move a mass through a distance or Heat : increased molecular velocities, usually measured as temperature	
The SI unit of energy is the joule, J	
Note: 4.184 J = 1 calorie Not to be confused with 1 <u>C</u> alorie = 1000 calories	
Specific Heat defined as the amount of heat required "to raise 1 gram of a substance 1 degree K; units: Jg ⁻¹ K ⁻¹	
Examples	
WaterSpecific Heat = $4.184 \text{ Jg}^{-1}\text{K}^{-1}$ FeSpecific Heat = $0.451 \text{ Jg}^{-1}\text{K}^{-1}$ GlassSpecific Heat = $0.84 \text{ Jg}^{-1}\text{K}^{-1}$	
 By knowing the specific heat of a substance one can calculate the amount of heat required to raise a substance from one temperature to a higher one Thermochemistry 2 	

Example: 1.48 g of benzoic acid ($C_rH_6O_2$) is burned in a calorimeter immersed in 1215 g $I_{2,0}$. The water temperature increases from 25.12 to 30.26° C. What is the q evolved by the combustion reaction in kJ mol⁻¹ for benzoic acid? Useful data: $C_c = 817 \text{ JK}^{-1}$; $(H_2O) = 4.184 \text{ Jg}^{-1} \text{ K}^{-1}$. $fince -q = C_c \Delta T + C(H_2O)m\Delta T$ $\Rightarrow -q = (817 \text{ JK}^{-1})(5.14 \text{ K}) + (4.184 \text{ Jg}^{-1} \text{ K}^{-1})(1215 \text{ g})(5.14 \text{ K})$ = 30330 J = 30.33 kJ per 1.148 g benzoic acidMolar mass $C_rH_6O_2 = 122.0 \text{ gmol}^{-1}$ $q = -3323 \text{ kJ}/(1.148 \text{ g}/122.0 \text{ g mol}^{-1}) = 3223 \text{ kJ mol}^{-1}$.

Enthalpy

If heat is added to a system, for example, a gas, the heat absorbed (q) must equal the increase in energy of the system, ΔE , plus the work done by the system (w)

... q= ∆E + w

or

 $\Delta E = q - w$

This is the **first law of thermodynamics** says energy is conserved in all reactions

When chemical reactions are carried out at constant pressure (for example, at 1 atmosphere = 1 bar = 100 kPa), the heat term is called the enthalpy (q_p) and has the symbol ΔH .

For most chemical reactions $\Delta H \sim \Delta E$

 $\Delta H,$ the enthalpy of a reaction is a measure of the energy difference between reagents and products, for reactions carried out at constant pressure

Thermochemistry

9

<text><text><text><text><text><equation-block><text><text>

Hess's La	aw applies to all reactions , and has two important consequen	ces
	i) ΔH for $A \rightarrow B$; = - ΔH for $B \rightarrow A$	
	ii) n(ΔH for A \rightarrow B) = ΔH for nA \rightarrow nB	
Example:	Calculate ΔH^0 for $C(gr) + 2S(s) \rightarrow CS_2(\ell)$	
	Given that: i) $C(gr) + O_2(g) \rightarrow CO_2(g) \Delta H_1^0 = -394 \text{ kJ mol}^{-1}$ ii) $S(s) + O_2(g) \rightarrow SO_2(g) \Delta H_2^0 = -297 \text{ kJ mol}^{-1}$ iii) $CS_2(\ell) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g) \Delta H_3^0 = -1077 \text{ kJ mol}^{-1}$	-1
To obtain the	LHS of the desired reaction, we add i) + 2x ii) together.	
iv) C(gr = C(gr	$\begin{array}{l} r) + O_2(g) + 2S(s) + 2O_2(g) \rightarrow CO_2(g) + 2SO_2(g) \\ r) + 2S(s) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g) \end{array}$	
	$\Delta H_4^0 = -394 + 2x(-297) = -988 \text{ kJ mol}^{-1}$	
	Thermochemistry	12

<text><text><text><text><equation-block><text><equation-block><equation-block><text>

Bond Enthalpy	M&H Chpt. 8.6 p. 210
The bond enthalpy of a bond A-B can be measured required to break "one mole of gaseous AB(g) to it	d by determining the enthalpy s two gaseous atoms"
$\implies AB(g) \rightarrow A(at,g) + B(at,g) \qquad \Delta H$	is +ve
This is always an endothermic reaction with a +ve	ΔΗ
The measured value is termed the bond dissociation or bond energy (enthalpy)	on (enthalpy) energy
Symbol = D; unit = kJ mol ⁻¹	
If you calculate the D for all the C-H bonds in a num you can obtain an average bond enthalpy for C-H. T	ber of molecules, his can be done for any bond.
Thermochemistry	20

Examples:	Bond	ΔH kJ mol ⁻¹	
	C-H	414	
	C-C	347	
	C=C	612	
	C≡C	820	
		020	
Note that ave (multiple bon In addition, b stronger bon	erage bond enthalpies co ds are stronger than sin ond enthalpies correlate ds have shorter bond lea	orrelate with the bond ord gle bonds). e with bond lengths: ngths	ler

	onigi	<u>- DOIN</u>		<u>yies (</u>		<u>, jat</u>	20.0			
	н	С	N	0	S	F	CI	Br	1	
н	436	414	389	464	339	565	431	368	297	
С		347	293	351	259	485	331	276	238	
Ν			159	222		272	201	243		
0				138		184	205	201	201	
S					226	285	255	213		
F						153	255	255		
CI							243	218	209	
Br								193	180	
1									151	

