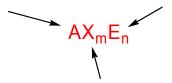
Shapes of Molecules


A. Molecular Geometry

 Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the 3-D structure of the molecule.

- The Valence Shell Electron Pair Repulsion Theory (VSEPR), developed in part by Ron Gillespie at McMaster in 1957, allows us to predict 3-D shape. This important Canadian innovation is found worldwide in any intro chem course.
- VSEPR theory has four assumptions
 - 1. Electrons, in pairs, are placed in the valence shell of the central atom
 - 2. Both bonding and non-bonding (NB) pairs are included
 - 3. Electron pairs repel each other \rightarrow maximum separation.
 - 4. NB pairs repel more strongly than bonding pairs, because the NB pairs are attracted to only one nucleus
- To be able to use VSEPR theory to predict shapes, the molecule first needs to be drawn in its Lewis structure.

 VSEPR theory uses the AXE notation (m and n are integers), where m + n = number of regions of electron density (sometimes also called number of charge clouds).

- 1. Molecules with no NB pairs and only single bonds
- We will first consider molecules that do not have multiple bonds nor NB pairs around the central atom (n = 0).
- Example: BeCl₂

1

- o Molecule is linear (180°)
- Example: BF₃

o Molecule is trigonal (or triangular) planar (120°)

• Example: CH₄

Molecule is tetrahedral (109.5°)

• Example: PF₅

- Molecule is trigonal bipyramidal (90° and 120°). There are three X atoms in a planar triangle and two axial atoms, one above and one below the central atom.
- Example: SF₆

o Molecule is octahedral (all 90°)

2. Molecules with ≥ 1 NB pairs and only single bonds

- The geometry of the *regions of electron density* is roughly the same as what we see when no NB pairs are involved.
- However, the shape of the molecule is determined by looking at only the bonding pairs, NOT the non-bonding pairs.
- Example: NH₃

- \circ There are four regions of electron density (m + n = 4), and the electronic arrangement is still tetrahedral.
- Yet, the shape of the molecule (look at bonding pairs only) is trigonal pyramidal. Angles < 109.5° (why?)
- Example: H₂O

Electronic arrangement is tetrahedral.
 Shape of molecule = bent

• Example: XeF₂ (or I₃-)

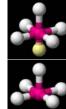
Electronic arrangement is trigonal bipyramid.
 Shape of molecule = linear

• Example: SF₄

Electronic arrangement is trigonal bipyramidal.
 Shape of molecule = see saw

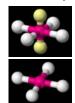
Why is this better than triganol pyramid?

Example: XeF₃⁺



Electronic arrangement is trigonal bipyramidal.
 Shape of molecule = **T-shaped**

Why is this better than triganol planar?



• Example: XeF₅⁺

Electronic arrangement is octahedral.
 Shape of molecule = Square pyramidal

• Example: ICl₄

Electronic arrangement is octahedral.
 Shape of molecule = Square planar

Why is this better than?

- Example: the amino acid alanine
 - o There can be more than one "central atom"

3. Molecules with double or triple bonds

- These are quite simple: treat multiple bonds as single bonds, and the AXE system still works. *i.e.* a multiple bond is still considered to be **one region** of electron density.
- Examples: predict the shapes of CO₂, C₂H₄, and NO₂⁻

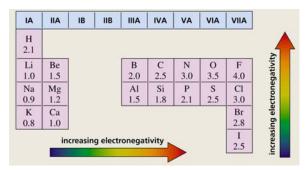
Summary

Species type	Orientation of electron pairs	Predicted bond angles	Example	Ball and stick model
AX ₂	Linear	180°	BeF ₂	180°
AX_3	Triangular planar	120°	BF ₃	120°
AX ₄	Tetrahedron	109.5°	CH ₄	109.5°
AX_{S}	Triangular bipyramid	90° 120° 180°	PF ₅	120°
AX	Octahedron	90°	SF ₆	909

^{© 2006} Thomson Higher Education

5 ELECTRON PAIRS

Species type	Structure	Description	Example	Bond angles
AX ₅	*	Triangular bipyramidal	PF ₅	90°, 120°, 180°
AX ₄ E	·}•	See-saw	SF ₄	90°, 120°, 180
AX ₃ E ₂	÷	T-shaped	CIF ₃	90°, 180°
AX_2E_3	ું	Linear	XeF_2	180°


6 ELECTRON PAIRS

AX_6	8	Octahedral	SF_{f_0}	90°, 180°
AX ₅ E	8-8	Square pyramidal	CIF ₅	90°, 180°
AX_4E_2	**	Square planar	XeF ₄	90°, 180°

© 2006 Thomson Higher Education

B. Molecular Polarity

• Recall that electronegativity is a relative measurement of an atom's ability to attract a bonding electron pair to itself.

- Differences in electronegativity between two covalently bonded atoms result in a polar covalent bond, and atoms have a partial negative or partial positive charge.
- These bonds are said to have dipole moments, which can be experimentally quantified. If placed in an electric field, the molecule will rotate and line up to the field.
- The greater the bond polarity, the greater the dipole moment. However, can we say that a molecule with a polar bond must also be a polar molecule? Not necessarily!

- Note: The overall polarity of a molecule depends on its geometry and the presence of polar bonds.
 - The presence of polar bonds does not necessarily imply that the molecule is polar. This is because the bond dipole moments can cancel out (no net dipole moment).
 - Think of the bond dipoles as vectors, and if the sum of all of the vectors is zero, the molecule is not polar.

CFCI₃

 Examples. 	•	Examples:
-------------------------------	---	-----------

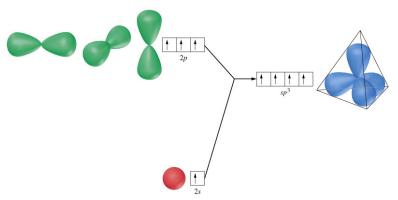
CCI₄

CO₂ H₂O

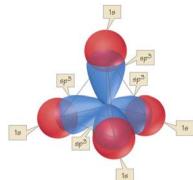
BF₃ NH₃

SF₄ SF₆

- Notice that non-polar molecules are highly symmetrical, allowing the bond dipole moments to cancel out.
- In a set of resonance structures, the overall polarity is averaged out over the resonance structures. For example, CO₃²⁻ and SO₄²⁻ are non-polar (no net dipole moment).

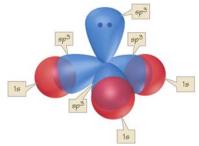

C. Hybridization (Compounds with Single Bonds)

- How does molecular shape relate to the orbitals in the valence shell?
- Consider methane, CH_4 , which uses the valence electrons in the 2s, $2p_x$, $2p_y$, and $2p_z$ orbitals. These electrons must become unpaired prior to making bonds with H.


• Recall the shapes of the s and p orbitals.

- If we used these orbitals to bond with the H atoms, we would get this structure. Yet, we know that the proper structure from VSEPR theory is tetrahedral. This structure shown is clearly incorrect!
- How do we explain this?

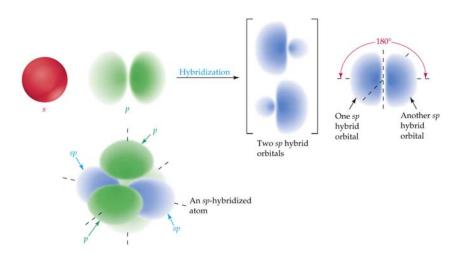
Before bonding to H atoms, the one 2s and three 2p atomic orbitals are mixed and rearranged to give a new set of four equivalent (same energy) "hybrid" atomic orbitals (sp³) arranged at tetrahedral angles of 109.5°.



- Each new hybrid orbital around the C contains one electron.
- After each pairs up with one electron from H, the orbitals contain an electron pair.

The single bond formed by the *direct*, *head-on overlap* of orbitals is a sigma bond (σ).

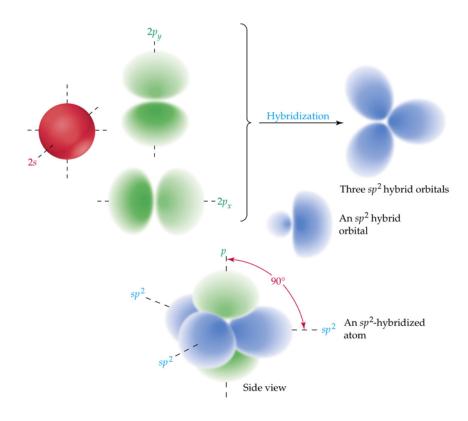
- Note: hybrid orbitals can also contain NB pairs, for example, in ammonia and water. These also have tetrahedral electronic arrangements and are sp³.
- NH₃, which has a tetrahedral electronic arrangement, contains three σ bonds. Its shape is trigonal pyramidal.


• *sp*³ hybridization is just one possibility. Five major hybridization types form the VSEPR structures, and these types are summarized in this table (details follow).

Regions of e ⁻ density	Atomic orbitals	Hybrid orbitals	Electronic arrangement
2	one s, one p	two sp	linear
3	one s, two p	three sp ²	trigonal planar
4	one s , three p	four sp^3	tetrahedral
5	one s, three p, one d	five sp^3d	trigonal bipyramidal
6	one s, three p, one d	$\sin sp^3d^2$	octahedral

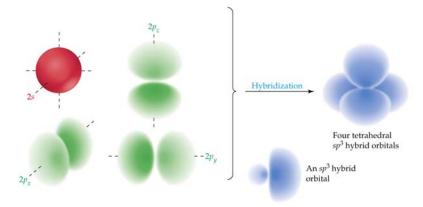
- Regions of electron density: an NB pair, a single bond, or a multiple bond each constitute one region.
- Electronic arrangement may not equate to molecular shape if there is at least an NB pair present.

1. sp hybridization

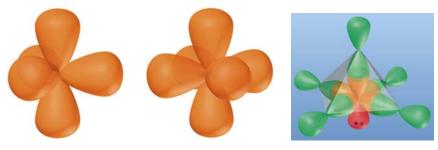

• The combination of one *s* and one *p* results in the formation of two *sp* orbitals. These two hybrid orbitals are 180° apart.

- Where we have used only one of the p orbitals, there must be two p orbitals remaining. (Recall there are three p orbitals).
 We'll see later on that these leftover orbitals are used when there is multiple bonding.
- The two leftover p are 90° to each other and the sp hybrids.

2. sp^2 hybridization

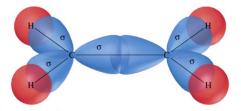

• One s + two p = three sp^2 orbitals 120° apart.

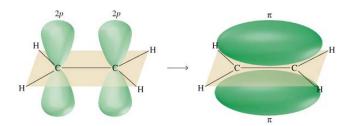
• There is one leftover *p* orbital remaining, since we started with three *p* orbitals and used two of them for hybridization.


3. sp³ hybridization

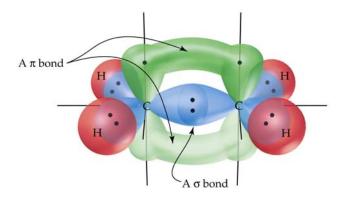
- One s + three p = four sp^3 orbitals 109.5° apart.
- There are no leftover *p* orbitals. Also see diagram on p. 12.

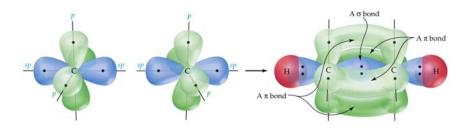
4. Others: sp^3d and sp^3d^2 hybridization


- One s + three p + one d = five sp^3d orbitals
- One s + three p + two $d = \sin sp^3d^2$ orbitals


IF₅ (sq. pyramidal)

D. Hybridization (Compounds with Multiple Bonds)


- How do we assign hybridization to compounds containing multiple bonds? The same way! We still examine the number of regions of electron density (table on page 13).
- Consider ethene. Each carbon has an AX₃ configuration (sp²-hybridized). Remember to count double bonds as one region. Each C also has a remaining p orbital (see p. 15).
- Recall that σ bonds are formed by the direct overlap of orbitals, which result in single bonds. Where do double bonds come from?
 - o The first bond in the double bond comes from a regular single bond caused by direct overlap (*i.e.* a σ bond)


o The second bond comes from the *sideways overlap* of the leftover p orbitals to give a pi (π) bond. This is 90° to the plane defined by the trigonal-planar σ bonds. The π bond is both above and below the plane (2 lobes).

• Our structure therefore appears like this... note that π bonds involve a sideways overlap, so bond rotation is not possible.

- How about a triple bond? Example: acetylene H—C≡C—H
 - Carbon atoms are sp-hybridized, and each has two remaining p orbitals 90° to each other (see p. 14)
 - \circ The first bond in the triple bond originates from the direct overlap of *sp* orbitals (σ bond)
 - o Both the second and the third bonds in the triple bond are π bonds originating from the sideways overlap of the remaining p orbitals. These two π bonds are 90° apart.

• Example: assign the hybridizations and the number of $\boldsymbol{\pi}$ bonds present in the molecule acetone