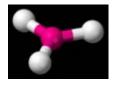

A. Molecular Geometry

• Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the 3-D structure of the molecule.

 CH_4 as drawn conveys no 3-D information (bonds appear like they are 90° apart)

- The Valence Shell Electron Pair Repulsion Theory (**VSEPR**), developed in part by Ron Gillespie at McMaster in 1957, allows us to predict 3-D shape. This important Canadian innovation is found worldwide in any intro chem course.
- VSEPR theory has four assumptions
 - 1. Electrons, in pairs, are placed in the valence shell of the central atom
 - 2. Both bonding and non-bonding (NB) pairs are included
 - 3. Electron pairs repel each other \rightarrow maximum separation.
 - 4. NB pairs repel more strongly than bonding pairs, because the NB pairs are attracted to only one nucleus
- To be able to use VSEPR theory to predict shapes, the molecule first needs to be drawn in its Lewis structure.

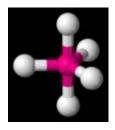
 VSEPR theory uses the AXE notation (m and n are integers), where m + n = number of regions of electron density (sometimes also called number of charge clouds).


1. Molecules with no NB pairs and only single bonds

- We will first consider molecules that do not have multiple bonds nor NB pairs around the central atom (n = 0).
- Example: BeCl₂

• Molecule is linear (180°)

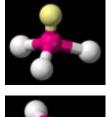
• Example: BF₃


• Molecule is trigonal (or triangular) planar (120°)

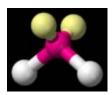
• Example: CH₄

• Molecule is tetrahedral (109.5°)

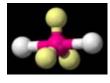
• Example: PF₅


- Molecule is trigonal bipyramidal (90° and 120°). There are three X atoms in a planar triangle and two axial atoms, one above and one below the central atom.
- Example: SF₆

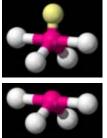
o Molecule is octahedral (all 90°)

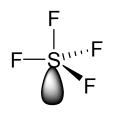

2. Molecules with \geq 1 NB pairs and only single bonds

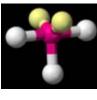
- The geometry of the *regions of electron density* is roughly the same as what we see when no NB pairs are involved.
- However, the shape of the molecule is determined by looking at only the bonding pairs, NOT the non-bonding pairs.
- Example: NH₃

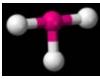

- There are four regions of electron density (m + n = 4), and the electronic arrangement is still tetrahedral.
- Yet, the shape of the molecule (look at bonding pairs only) is trigonal pyramidal. Angles < 109.5° (why?)
- Example: H₂O

Electronic arrangement is tetrahedral.
 Shape of molecule = bent

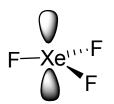

• Example: XeF₂ (or I₃⁻)

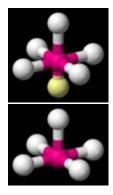

Electronic arrangement is trigonal bipyramid.
 Shape of molecule = linear




Electronic arrangement is trigonal bipyramidal.
 Shape of molecule = see saw

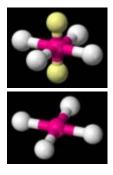
Why is this better than triganol pyramid?


Example: XeF₃⁺



Electronic arrangement is trigonal bipyramidal.
 Shape of molecule = **T-shaped**

Why is this better than triganol planar?



• Example: XeF₅⁺

Electronic arrangement is octahedral.
 Shape of molecule = Square pyramidal

• Example: ICl₄⁻

Electronic arrangement is octahedral.
 Shape of molecule = Square planar

Why is this better than?

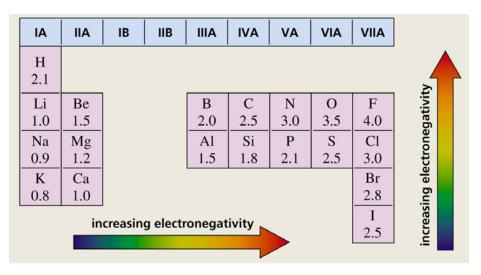
- Example: the amino acid alanine
 - o There can be more than one "central atom"

3. Molecules with double or triple bonds

- These are quite simple: treat multiple bonds as single bonds, and the AXE system still works. *i.e.* a multiple bond is still considered to be **one region** of electron density.
- Examples: predict the shapes of CO₂, C₂H₄, and NO₂⁻

Summary

Species type	Orientation of electron pairs	Predicted bond angles	Example	Ball and stick model
AX ₂	Linear	180°	BeF ₂	
AX3	Triangular planar	120°	BF ₃	120°
AX4	Tetrahedron	109.5°	CH4	109.5°
AX ₅	Triangular bipyramid	90° 120° 180°	PF 5	
AX	Octahedron	90° 180°	SF ₆	90°


© 2006 Thomson Higher Education

	5 ELECTRON PAIRS						
Species type	Structure	Description	Example	Bond angles			
AX ₅	÷	Triangular bipyramidal	PF ₅	90°, 120°, 180°			
AX4E	÷	See-saw	SF4	90°, 120°, 180°			
AX3E2	}	T-shaped	CIF3	90°, 180°			
AX2E3	ું	Linear	XeF ₂	180°			
		6 ELECTRON PAIRS		14 12			
AX ₆	8 4 8	Octahedral	SF _é	90°, 180°			
AX ₅ E	***	Square pyramidal	CIF ₅	90°, 180°			
AX4E2	***	Square planar	XeF4	90°, 180°			

© 2006 Thomson Higher Education

B. Molecular Polarity

• Recall that electronegativity is a relative measurement of an atom's ability to attract a bonding electron pair to itself.

- Differences in electronegativity between two covalently bonded atoms result in a polar covalent bond, and atoms have a partial negative or partial positive charge.
- These bonds are said to have dipole moments, which can be experimentally quantified. If placed in an electric field, the molecule will rotate and line up to the field.
- The greater the bond polarity, the greater the dipole moment. However, can we say that a molecule with a polar bond must also be a polar molecule? Not necessarily!

- Note: The overall polarity of a molecule depends on its geometry and the presence of polar bonds.
 - The presence of polar bonds does not necessarily imply that the molecule is polar. This is because the bond dipole moments can cancel out (no net dipole moment).
 - Think of the bond dipoles as vectors, and if the sum of all of the vectors is zero, the molecule is not polar.

 H_2O

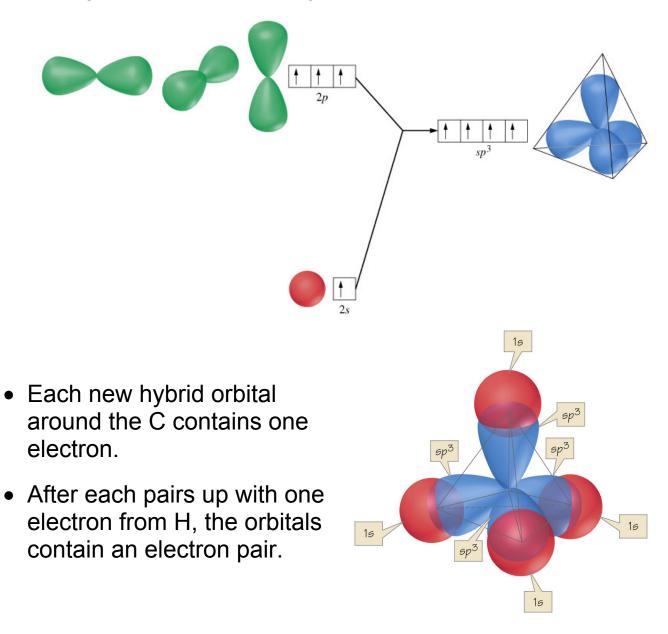
• Examples:

CO₂

 NH_3

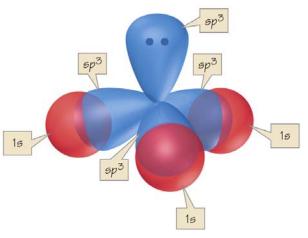
CFCI₃

- Notice that non-polar molecules are highly symmetrical, allowing the bond dipole moments to cancel out.
- In a set of resonance structures, the overall polarity is averaged out over the resonance structures. For example, CO₃²⁻ and SO₄²⁻ are non-polar (no net dipole moment).


C. Hybridization (Compounds with Single Bonds)

- How does molecular shape relate to the orbitals in the valence shell?
- Consider methane, CH₄, which uses the valence electrons in the 2s, 2p_x, 2p_y, and 2p_z orbitals. These electrons must become unpaired prior to making bonds with H.

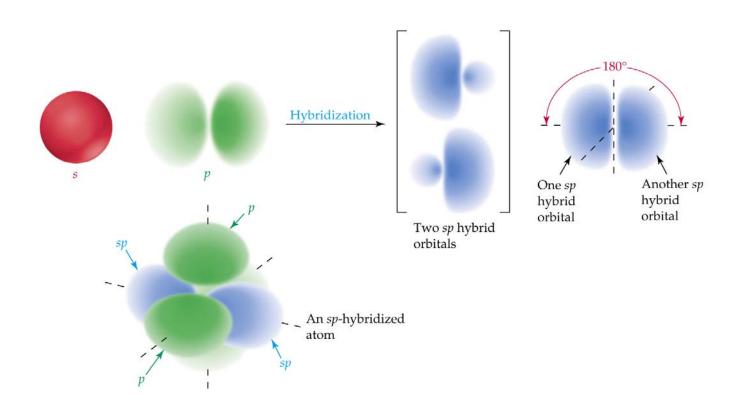
• Recall the shapes of the *s* and *p* orbitals.


- If we used these orbitals to bond with the H atoms, we would get this structure. Yet, we know that the proper structure from VSEPR theory is tetrahedral. This structure shown is clearly incorrect!
- How do we explain this?

Before bonding to H atoms, the one 2s and three 2p atomic orbitals are mixed and rearranged to give a new set of four equivalent (same energy) "hybrid" atomic orbitals (sp³) arranged at tetrahedral angles of 109.5°.

The single bond formed by the *direct, head-on overlap* of orbitals is a sigma bond (σ).

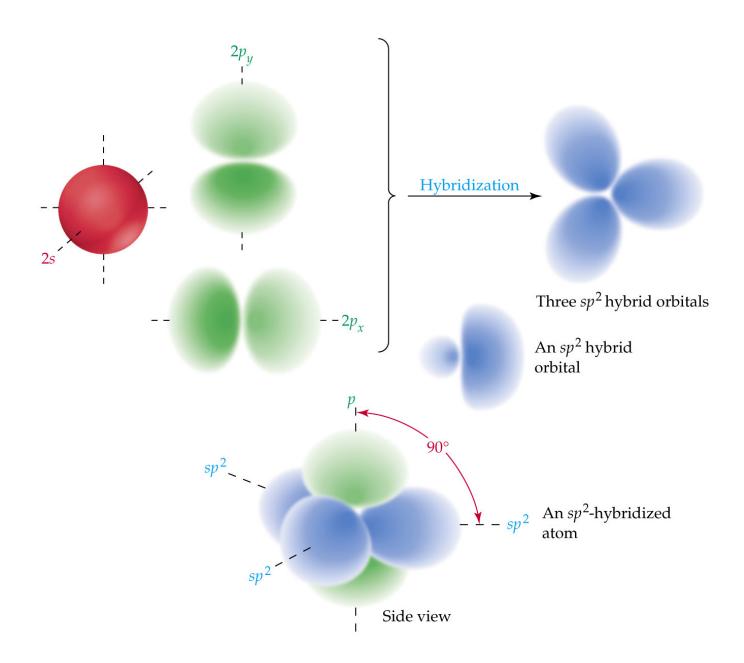
- Note: hybrid orbitals can also contain NB pairs, for example, in ammonia and water. These also have tetrahedral electronic arrangements and are sp^3 .
- NH₃, which has a tetrahedral electronic arrangement, contains three σ bonds. Its shape is trigonal pyramidal.


 sp³ hybridization is just one possibility. Five major hybridization types form the VSEPR structures, and these types are summarized in this table (details follow).

Regions of e [⁻] density	Atomic orbitals	Hybrid orbitals	Electronic arrangement
2	one s, one p	two <i>sp</i>	linear
3	one s, two p	three <i>sp</i> ²	trigonal planar
4	one s, three p	four <i>sp</i> ³	tetrahedral
5	one <i>s</i> , three <i>p,</i> one <i>d</i>	five <i>sp</i> ³ <i>d</i>	trigonal bipyramidal
6	one <i>s</i> , three <i>p,</i> one <i>d</i>	six sp ³ d ²	octahedral

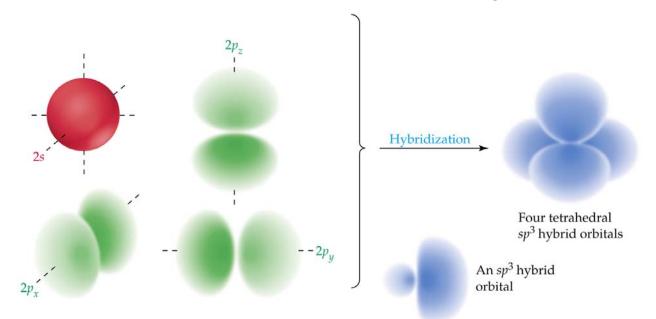
- *Regions of electron density*: an NB pair, a single bond, or a multiple bond each constitute one region.
- *Electronic arrangement* may not equate to molecular shape if there is at least an NB pair present.

1. sp hybridization

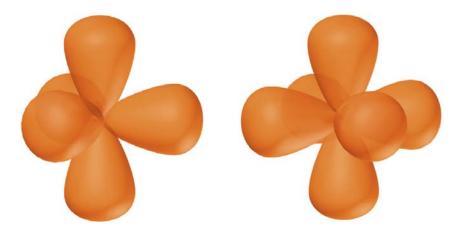

• The combination of one *s* and one *p* results in the formation of two *sp* orbitals. These two hybrid orbitals are 180° apart.

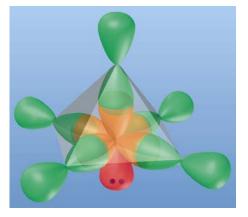
- Where we have used only one of the *p* orbitals, there must be two *p* orbitals remaining. (Recall there are three *p* orbitals). We'll see later on that these leftover orbitals are used when there is multiple bonding.
- The two leftover p are 90° to each other and the sp hybrids.

2. sp^2 hybridization


• One s + two p = three sp^2 orbitals 120° apart.

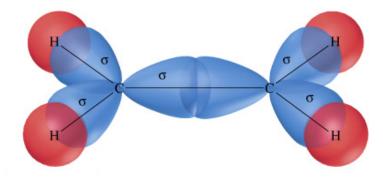
• There is one leftover *p* orbital remaining, since we started with three *p* orbitals and used two of them for hybridization.

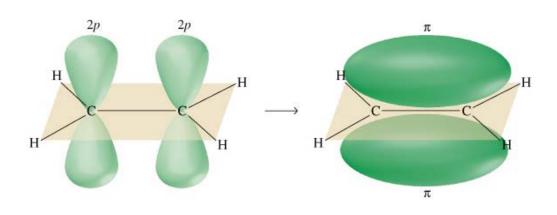

3. *sp*³ hybridization


- One s + three p = four sp^3 orbitals 109.5° apart.
- There are no leftover *p* orbitals. Also see diagram on p. 12.

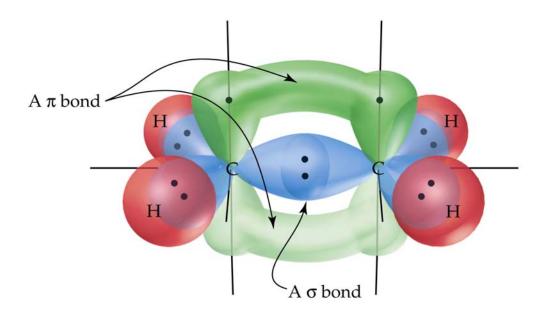
4. Others: sp^3d and sp^3d^2 hybridization

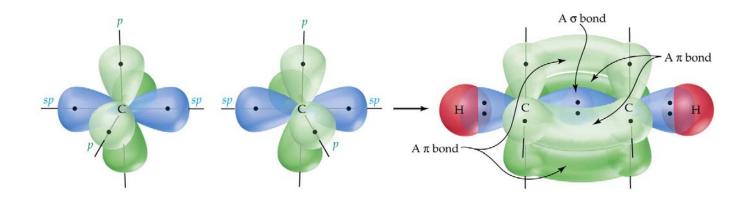
- One *s* + three *p* + one *d* = five sp^3d orbitals
- One s + three p + two $d = \sin sp^3 d^2$ orbitals




IF₅ (sq. pyramidal)

D. Hybridization (Compounds with Multiple Bonds)


- How do we assign hybridization to compounds containing multiple bonds? The same way! We still examine the number of regions of electron density (table on page 13).
- Consider ethene. Each carbon has an AX₃
 configuration (*sp*²-hybridized). Remember to count double bonds as one region. Each C also H has a remaining *p* orbital (see p. 15).
- Recall that σ bonds are formed by the direct overlap of orbitals, which result in single bonds. Where do double bonds come from?
 - $\circ\,$ The first bond in the double bond comes from a regular single bond caused by direct overlap (*i.e.* a σ bond)


• The second bond comes from the *sideways overlap* of the leftover *p* orbitals to give a pi (π) bond. This is 90° to the plane defined by the trigonal-planar σ bonds. The π bond is both above and below the plane (2 lobes).

• Our structure therefore appears like this... note that π bonds involve a sideways overlap, so bond rotation is not possible.

- How about a triple bond? Example: acetylene H—C≡C—H
 - Carbon atoms are *sp*-hybridized, and each has two remaining *p* orbitals 90° to each other (see p. 14)
 - $\circ\,$ The first bond in the triple bond originates from the direct overlap of *sp* orbitals ($\sigma\,$ bond)
 - Both the second and the third bonds in the triple bond are π bonds originating from the sideways overlap of the remaining *p* orbitals. These two π bonds are 90° apart.

• Example: assign the hybridizations and the number of π bonds present in the molecule acetone