CHEMICAL EQUILIBRIUM
[MH5; 12.1, 12.2, 12.4, 12.5]

- Recall that at equilibrium, the rate of a reaction is equal to the rate of its reverse reaction.
- So......it is going nowhere fast; the amounts of the reactants and the products do not change.
- Every equilibrium is governed by a number which we call the Equilibrium Constant (denoted by $\mathrm{K}_{\text {eq }}$).
- The equilibrium constant defines the relationship between the amounts of each reactant and product in the system.

AN EXPERIMENTAL APPROACH TO EQUILIBRIUM [MH5;12.1]

- Consider the following reaction:

$$
\begin{array}{cc}
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) & \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \\
\text { Colorless } & \text { red-brown } \\
\text { gas } & \text { gas }
\end{array}
$$

- Initially, this is the only reaction taking place. But before long.......

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

- reaction reverses
- And soon......

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

- yellow gas
- equilibrium is established.
- Once the system attains equilibrium, the amounts of the two gases do not change; at $100^{\circ} \mathrm{C}$, the pressures of each gas can be measured and found to be:

$$
\mathrm{P}\left(\mathrm{~N}_{2} \mathrm{O}_{4}\right)=0.22 \mathrm{~atm} \quad \mathrm{P}\left(\mathrm{NO}_{2}\right)=1.56 \mathrm{~atm}
$$

- The following table (MH5: Table 12.2) outlines three different ways that this equilibrium may be approached.

Experiment	Species	P (initial)	P(equilibrium)
1	$\mathrm{~N}_{2} \mathrm{O}_{4}$	1.00	0.22
	NO_{2}	0.00	1.56
2	$\mathrm{~N}_{2} \mathrm{O}_{4}$	0.00	0.07
	NO_{2}	1.00	0.86
3	$\mathrm{~N}_{2} \mathrm{O}_{4}$	1.00	0.42
	NO_{2}	1.00	2.16

- Do these experiments have anything in common?
- It turns out that there is a relationship between the equilibrium pressures of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} that is valid for all three experiments.

$$
\frac{\left(P_{\mathrm{NO}_{2}}\right)^{2}}{\left(P_{\mathrm{N}_{0}} \mathrm{O}_{4}\right)} \simeq 11
$$

THE EQUILIBRIUM CONSTANT EXPRESSION [MH5; 12.2]

- For the reaction: $a \mathbf{A}+b \mathbf{B} \rightleftharpoons c \boldsymbol{C}+d D$

$$
\text { at equilibrium } k_{e q}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
$$

- [A] represents the concentration of A and $K_{e q}$ is the Equilibrium Constant for the reaction at that temperature.
- Concentration is usually expressed in Molarity (molL^{-1}) for solution chemistry; for gases, values may be in molL ${ }^{-1}$ (K_{c} values) or in partial pressures (K_{p} values).
- For the gaseous equilibrium: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$

$$
k_{p}=\frac{\left(P_{H 1}\right)^{2}}{\left(P_{H_{2}}\right)\left(P l_{2}\right)}=55 \quad \text {-at some }
$$

- For the gaseous equilibrium: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
k_{p}=\frac{\left(P_{\mathrm{NH}_{3}}\right)^{2}}{\left(P_{\mathrm{N}_{2}}\right)\left(P_{\mathrm{H}_{2}}\right)^{3}}
$$

- When all reactants and products are in the same phase (all gas phase in the above examples) we have a homogeneous equilibrium.
- In a heterogeneous equilibrium, at least one reactant or product is in a different phase: ie; gas + solid, or solid + solution etc.
- So for: $\quad C(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})$

$$
K_{P}=\frac{P_{C O_{2}}}{P_{O_{2}}}
$$

- The concentration of $C(s),[C]$, is a constant, and is always omitted.

Points about Equilibrium Constants

1) The expression for K depends upon the chemical equation.

$$
\begin{aligned}
H_{2}(g)+1_{2}(g) & \rightleftharpoons 2 H I(g) \\
K_{p} & =\frac{\left(\mathrm{PH}_{\mathrm{H}}\right)^{2}}{\left(\mathrm{P}_{2}\right)\left(P_{I_{2}}\right)}
\end{aligned}
$$

2) If the equation is reversed, the $K_{e q}$ expression is inverted - so the K values are reciprocals of one another.

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { K values are reciprocals of one another. } \\
\rightleftharpoons
\end{array} H_{2}(g)+1_{2}(g) \\
& K_{p}=\frac{\left(P_{H}\right)\left(P_{I_{2}}\right)}{\left(P_{H I}\right)^{2}}=\frac{1}{55}
\end{aligned}
$$

3) If the equation is halved, the $K_{e q}$ expression becomes the square root of the original. Or if the equation is doubled, the $\mathrm{K}_{\text {eq }}$ expression will be squared.
4) For reactions added together, the $K_{e q}$ is the product of the $K_{\text {eq }}$ expressions for each step.

$$
\begin{array}{ll}
\text { i) } \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) & \mathrm{K}_{1}=2.2 \\
\text { ii) } \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) & \mathrm{K}_{2}=4.0
\end{array}
$$

$$
\text { add i) and ii) to get } \ldots .
$$

$$
\text { iii) } \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
$$

$$
k_{3}=k_{1} \times k_{2}=2.2 \times 4.0=8.8
$$

Because: $K_{3}=\frac{\left(P_{\mathrm{sO}_{3}}\right)\left(P_{\mathrm{NO}}\right)}{\left(P_{\mathrm{SO}_{2}}\right)\left(P_{\mathrm{NO}_{2}}\right)}$

$$
k_{1}=\frac{\left(\mathrm{PsO}_{3}\right)}{\left(\mathrm{PSO}_{2}\right)\left(\mathrm{PO}_{2}\right)^{1 / 2}} \quad k_{2}=\frac{\left(\mathrm{PsO}_{2}\right)\left(\mathrm{PNO}_{2}\right)\left(\mathrm{PO}_{2}\right)^{1 / 2}}{\left(\mathrm{PNO}_{2}\right)}
$$

This is sometimes called the "Rule of Multiple Equilibria".
EXAMPLE of 4:

$$
\begin{aligned}
& 1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 212(\mathrm{y}) \rightleftharpoons \mathrm{H}(\mathrm{y}) \\
& K_{p}=\frac{\left(P_{H_{1}}\right)}{\left(P_{H_{2}}\right)^{1 / 2}\left(P_{I_{2}}\right)^{1 / 2}}=(55)^{1 / 2}=\sqrt{55}
\end{aligned}
$$

Given the following equilibria:

1) $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{c} 1}=4.3 \times 10^{-25}$
2) $\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c} 2}=1.25 \times 10^{-5}$

Calculate the value of K_{c} for: $\left.{ }^{(}\right) \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
i) $\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \times 0 \quad K_{1}=4.3 \times 10^{-25}$

Rev 2) $\times 2: 2 N O+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2} \quad K_{2}^{*}=\frac{1}{\left(1.25 \times 10^{-52}\right)^{2}}$
add: $\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{2}$

$$
\begin{aligned}
k_{3}=k_{1} \times k_{2}^{*} & =4.3 \times 10^{-25} \times \frac{1}{\left(1.25 \times 10^{-5}\right)^{2}} \\
& =2.752 \times 10^{-15}
\end{aligned}
$$

5) The magnitude of the equilibrium constant is indicative of the position of the equilibrium.......

If " K " is large (greater than 1), the equilibrium lies towards the right, or the product side.
If " K " is small (less than 1), the equilibrium lies towards the left, or the reactant side.

The Reaction Quotient, Q [MH5; 12.4]

- For any equilibrium: $\mathbf{a A}+b B \rightleftharpoons c C+d D$
we may write a Reaction Quotient, "Q":

$$
Q=\frac{[C]^{c}[D]^{3}}{[A]^{a}[B]^{b}}
$$

- looks just like the eq CONSTANT
- If the concentrations (or pressures of gaseous species) of the reactants and products are known, a numerical value for Q can be calculated.
- Comparison of this numerical value for Q to the equilibrium constant, $K_{\text {eq }}$ gives us information about the direction of the reaction and the position of the equilibrium.
- For: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$

$$
K_{\text {eq }}=\frac{(P H I)^{2}}{\left(\mathrm{PH}_{2}\right)\left(\mathrm{P}_{2}\right)}=55 \quad\left(\text { at } 426^{\circ} \mathrm{C}\right)
$$

	$\mathrm{H}_{2}(\mathrm{~g})$	$+\mathrm{I}_{2}(\mathrm{~g})$	\rightleftharpoons
Before:	100	$\mathrm{HI}(\mathrm{g})$	
After:	20	100	0
	20	$2(80)$	

Before: $\quad Q=\frac{(0)^{2}}{(100)(100)}=0$

Since $Q<K$, reaction goes forward.

After: $Q=\frac{(160)^{2}}{(20)(20)}=64$

If $Q>K$, reaction goes in reverse direction.

$$
64>55 \quad \therefore \text { action }
$$

If $Q=K$, the system is at equilibrium.

LE CHATELIER'S PRINCIPLE [MH5; 12.5]

- "If a chemical system at equilibrium is disturbed by addition or removal of a reactant or product, the equilibrium will shift in a way to minimize the disturbance". $K_{p}=\frac{\left(P_{N_{3}}\right)^{2}}{\left(P_{N_{2}}\right)\left(P_{H_{2}}\right)^{3}}$
Consider the equilibrium:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

- Addition of $\mathrm{H}_{2}(\mathrm{~g})$ causes:
- increase sen amt of NH_{3} to wy caus em tries
- decrease the ant of $\mathrm{ON}_{2} \int_{\mathrm{H}_{2}}^{\text {to }}$
- Removal of $\mathrm{NH}_{3}(9)$ causes:
- decueasa ins H_{2} and N_{2}
- they react to form more NH_{3}
- Not only can addition or removal of a reagent affect the position of equilibrium, but also a change in pressure. \qquad

- If the system is compressed: (smaller volume)
- pressure increases
- system shift to offoct inc. pressure
\Rightarrow To RIGHT ; smaller $\#$ moles, \therefore Poe leach
- If the system is expanded: (volunce increases)
- pressure decreases
- dy stem shifts to incuecse pressure
\Rightarrow To LEFT; greater \#mdes, \therefore Pinceases
- What about:

$$
\underbrace{\mathrm{H}_{2}(g)+I_{2}(g)}_{2 m \mathrm{~mol}} \rightleftharpoons \underbrace{2 \mathrm{HI}(g)}_{2 \mathrm{~mol}}
$$

- position of equilibrium not affected bey pressure changes
- A temperature change also affects the position of an equilibrium.....
- The change will affect the magnitude of the equilibrium constant.
- If a reaction produces heat as it proceeds, K will decrease as the temperature increases.
- If a reaction requires heat to proceed, K will increase as the temperature increases.

