Detailed Solutions to Limiting Reagent Problems

1. Disulfur dichloride is prepared by direct reaction of the elements:

$$
\mathrm{S}_{8}(s)+4 \mathrm{Cl}_{2}(g) \rightarrow 4 \mathrm{~S}_{2} \mathrm{Cl}_{2}(l)
$$

What is the maximum amount of $\mathrm{S}_{2} \mathrm{Cl}_{2}$ that could be made by the reaction of 64.0 g of sulfur with 142 g of chlorine? What quantity of which reagent would remain unreacted?
we have $64.0 / 256.5=0.249 \mathrm{~mol} \mathrm{~S}_{8}$
and $142 / 71.0=2.00 \mathrm{~mol} \mathrm{Cl}_{2}$; the ratio $\mathrm{Cl}_{2} / \mathrm{S}_{8}$ is $2.00 / 0.249=8.0$
but the reaction only requires 4 mol of Cl_{2} per mol of S_{8}
so Cl_{2} is in excess and S_{8} is limiting
$0.249 \mathrm{~mol} \mathrm{~S}_{8}$ give $0.249 \times 4=0.998 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{Cl}_{2}$
mass $0.998 \times 135.1=135 \mathrm{~g} \mathrm{~S}_{2} \mathrm{Cl}_{2}$
this needs $0.249 \times 4=0.998 \mathrm{~mol} \mathrm{Cl}_{2}$
remaining $\mathrm{Cl}_{2} 2.00-0.998=1.00 \mathrm{~mol}$, mass 71.0 g
2. Phosphorus trichloride reacts with water according to the stoichiometry:

$$
\mathrm{PCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}+3 \mathrm{HCl}
$$

A 200 g sample of PCl_{3} was reacted with excess water and 120 g of HCl was isolated.
What was the percent yield of HCl in this experiment?
Either masses or moles may be compared. Here we compare 'moles expected’ with 'moles obtained'
$200 \mathrm{~g} \mathrm{PCl}_{3}$ is $200 / 137.5=1.45 \mathrm{~mol}$
from equation, expect $1.45 \times 3=4.36 \mathrm{~mol} \mathrm{HCl}$
actual yield 120 g or $120 / 36.5=3.29 \mathrm{~mol}$
yield $100 \times 3.29 / 4.36=75.3 \%$
3. Silver, an expensive metal, may be recovered from waste AgCl by the reactions:

$$
\begin{aligned}
2 \mathrm{AgCl}+\mathrm{Na}_{2} \mathrm{CO}_{3}^{\circ} & \rightarrow \mathrm{Ag}_{2} \mathrm{O}+2 \mathrm{NaCl}+\mathrm{CO}_{2} \\
\mathrm{Ag}_{2} \mathrm{O}+2 \mathrm{HNO}_{3} & \rightarrow 2 \mathrm{AgNO}_{3}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

250 g of AgCl treated in this way yielded 236 of AgNO_{3}. What was the percent yield? 250 g AgCl is $250 / 143.4=1.74 \mathrm{~mol}, 1: 1$ stoich, expect 1.74 mol AgNO 3 obtained 236 g or $236 / 169.9=1.39 \mathrm{~mol} \mathrm{AgNO}_{3}$
yield $100 \times 1.39 / 1.74=79.6 \%$
4. Aluminum hydroxide is insoluble in water. Write a balanced equation for the reaction of aqueous $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ with aqueous NaOH . If 75.0 g of hydrated $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O}$ is dissolved in water and reacted with 20.5 g of NaOH , what mass of $\mathrm{Al}(\mathrm{OH})_{3}$ would be formed?
$\mathrm{Al}^{3+}+3 \mathrm{OH}^{-} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(s)$
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O} \quad 75.0 / 375=0.200 \mathrm{~mol}$
$\mathrm{NaOH} \quad 20.5 / 40.0=0.513 \mathrm{~mol}$
ratio $\mathrm{OH}^{-} / \mathrm{Al}=2.56$, less than required $3: 1, \mathrm{OH}^{-}$limiting
$\mathrm{Al}(\mathrm{OH})_{3}$ formed $0.513 / 3=0.171 \mathrm{~mol}$, mass $0.171 \times 78.0=13.3 \mathrm{~g}$
5. Ethyl cyanide is prepared from ethyl bromide by the reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{NaCN} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}+\mathrm{NaBr}
$$

If 8.53 g of NaCN is reacted with 11.0 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$, what mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ will be formed? If the density of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ is $0.783 \mathrm{~g} \mathrm{~mL}^{-1}$, what volume would this occupy?
8.53 g NaCN is $8.53 / 49=0.174 \mathrm{~mol}$
$11.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ is $11.0 / 108.9=0.101 \mathrm{~mol}$
stoich required is $1: 1, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ is limiting
obtain $0.101 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$, mass $0.101 \times 55.0=5.56 \mathrm{~g}$
volume $(5.56 \mathrm{~g}) /\left(0.783 \mathrm{~g} \mathrm{~mL}^{-1}\right)=7.10 \mathrm{~mL}$
6. A 12.0 g sample of a mixture containing NaNO_{3} and NaCl only is dissolved in water and excess AgNO_{3} solution is added. If 0.120 mol of insoluble AgCl precipitates, what is the percent by mass of NaCl in the mixture?
$1: 1$ stoich, 0.120 mol of NaCl present
mass of $\mathrm{NaCl}=0.120 \times 58.5=7.02 \mathrm{~g}$
percent $\mathrm{NaCl}=100 \times 7.02 / 12.0=58.5 \%$
7. Calcium carbide, CaC_{2}, reacts with water to produce acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, and $\mathrm{Ca}(\mathrm{OH})_{2}$.
(a) Write a balanced equation for this reaction. See answer
(b) What mass of pure CaC_{2} must be added to excess water to produce $41.6 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}$?
$41.6 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}$ is $41.6 / 26.0=1.60 \mathrm{~mol}$
1:1 stoich, comes from $1.60 \mathrm{~mol} \mathrm{CaC}_{2}$
mass of $\mathrm{CaC}_{2} \quad 1.60 \times 64.0=102 \mathrm{~g}$ pure CaC_{2}
(c) Calcium carbide is commonly less than 100% pure. If the sample used in (b) above had a purity of 90% by mass, the remainder being unreactive CaCO_{3}, what mass would be required? $\quad 102 \times 100 / 90=114 \mathrm{~g}$ impure CaC_{2}
8. Dinitrogen pentoxide is made by the reaction:
$4 \mathrm{HNO}_{3}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}+4 \mathrm{HPO}_{3}$
15.1 g of $\mathrm{P}_{4} \mathrm{O}_{10}$ is heated with 10.7 g of HNO_{3}. Calculate:
(a) what is the maximum amount of $\mathrm{N}_{2} \mathrm{O}_{5}$ that could be formed?
$15.1 \mathrm{~g} \mathrm{P}_{4} \mathrm{O}_{10}$ is $15.1 / 284=0.0532 \mathrm{~mol}$
$10.7 \mathrm{~g} \mathrm{HNO}_{3}$ is $10.7 / 63.0=0.170 \mathrm{~mol}$
ratio $\mathrm{HNO}_{3} / \mathrm{P}_{4} \mathrm{O}_{10}=3.2$, less than required $4: 1, \mathrm{HNO}_{3}$ limiting
$\mathrm{N}_{2} \mathrm{O}_{5}$ produced $0.170 / 2=0.085 \mathrm{~mol}$
mass $0.085 \times 108=9.17 \mathrm{~g}$
(b) if only 1.96 g of $\mathrm{N}_{2} \mathrm{O}_{5}$ is obtained, what is the percent yield in the reaction? $100 \times 1.96 / 9.17=21.4 \%$ yield
9. A mixture of CaCl_{2} and CaO is known to contain 55% by mass CaCl_{2}. What is the maximum amount of CaCO_{3} that could be produced by the reaction of 100 g of this mixture with 50.0 g of CO_{2} ? The reaction is: $\quad \mathrm{CaO}+\mathrm{CO}_{2} \rightarrow \mathrm{CaCO}_{3}$
$45 \% \mathrm{CaO}$, so 100 g contains 45 g CaO
this is $45 / 56=0.804 \mathrm{~mol} \mathrm{CaO}$
CO_{2} present $50 / 44.0=1.14 \mathrm{~mol}$
1:1 stoich, so CaO is limiting
obtain $0.804 \mathrm{~mol} \mathrm{CaCO}_{3}$, mass $0.804 \times 100=80.4 \mathrm{~g} \mathrm{CaCO}_{3}$
10. Hydrazine hydrochloride, $\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{Cl}$, is oxidized by potassium iodate according to:

$$
\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{IO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{N}_{2}+\mathrm{ICl}+3 \mathrm{H}_{2} \mathrm{O}
$$

When sample of impure $\mathrm{N}_{2} \mathrm{H}_{5} \mathrm{Cl}$, mass 1.00 g , is oxidized in this way, 224 mL of N_{2} gas are evolved. What is the percent purity of the sample?
(The molar volume of N_{2} is $22.4 \mathrm{~L} \mathrm{~mol}^{-1}$)
mol of N_{2} evolved $224 \mathrm{~mL} / 22400 \mathrm{~mL} \mathrm{~mol}^{-1}=0.0100 \mathrm{~mol}$
from $0.0100 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{5} \mathrm{Cl}$, mass $0.0100 \times 68.5=0.685 \mathrm{~g}$ pure compound
purity $100 \times 0.685 / 1.00=68.5 \%$
11. A sample of a mixture of CaCl_{2} and NaCl , total mass 5.34 g , was dissolved in water and excess of sodium oxalate, $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, solution added. If the mass of insoluble calcium oxalate, $\mathrm{CaC}_{2} \mathrm{O}_{4}$, precipitated was 3.84 g , what was the composition of the mixture?
(a) expressed as percent by mass of CaCl_{2}
$\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{NaCl} 1: 1$ stoich
$3.84 \mathrm{~g} \mathrm{CaC}_{2} \mathrm{O}_{4}$ is $3.84 / 128=0.0300 \mathrm{~mol}$
from $0.0300 \mathrm{~mol} \mathrm{CaCl}_{2}$, mass $0.0300 \times 111=3.33 \mathrm{~g} \mathrm{CaCl}_{2}$
mass composition $100 \times 3.33 / 5.34=62.4 \% \mathrm{CaCl}_{2}$
Note: It is not necessary to know the identity of the second component when working out the mass composition
(b) expressed as mole percent CaCl_{2}
defined as (mol of CaCl_{2}) / (total mol present)
now we must know the identity and molar mass of the second component
mass of $\mathrm{NaCl}=5.34-3.33=2.01 \mathrm{~g} \mathrm{NaCl}$
which is $2.01 / 58.5=0.0344 \mathrm{~mol} \mathrm{NaCl}$
$\mathrm{mol} \% \mathrm{CaCl}_{2}=100 \times 0.0300 /(0.0300+0.0256)=46.6 \%$
12. An impure sulfide ore contains $26.0 \% \mathrm{Cu}_{2} \mathrm{~S}$ by mass. It is converted to copper metal by the sequence:

$$
\begin{aligned}
\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{O}_{2} & \rightarrow 2 \mathrm{CuO}+\mathrm{SO}_{2} \\
2 \mathrm{CuO}+\mathrm{C} & \rightarrow 2 \mathrm{Cu}+\mathrm{CO}_{2}
\end{aligned}
$$

What mass of ore would be needed to produce 1.00 kg of copper metal?
1.00 kg Cu is $1000 / 63.5=15.7 \mathrm{~mol} \mathrm{Cu}$ from $15.7 / 2=7.87 \mathrm{~mol} \mathrm{Cu}_{2} \mathrm{~S}$
mass $7.87 \times 159.1=1253 \mathrm{~g}$ or $1.25 \mathrm{~kg} \mathrm{Cu}_{2} \mathrm{~S}$
contained in $1.25 \times 100 / 26.0=4.82 \mathrm{~kg}$ of ore
13. A deposit of uranium ore contains 0.40% by mass of the oxide $\mathrm{U}_{3} \mathrm{O}_{8}$.

What mass of this ore would be required to produce 1.0 kg of uranium metal?
see detailed answer, INTRO, p. 10
14. Fluoride may be estimated gravimetrically as lead chloride fluoride, PbFCl .

A sample of mass 0.800 g of a mixed mineral known to contain CaF_{2} yielded 2.615 g of PbFCl . What was the mass percent of CaF_{2} in the mineral?
2.615 g PbClF is $2.165 / 261.7=0.0100 \mathrm{~mol}$
since CaF_{2} contains two F^{-}in the mole, this is from
$0.0100 / 2=0.0500 \mathrm{~mol} \mathrm{CaF}_{2} \quad$ of mass $0.0500 \times 78.0=0.390 \mathrm{~g}$
$\operatorname{mass} \% \mathrm{CaF}_{2}=100 \times 0.390 / 0.800=48.8 \%$

1. (i) (a) monoprotic, $\left[\mathrm{H}^{+}\right]=0.025 / 0.400=0.0625 \mathrm{M}, \mathrm{pH}=1.20$
(b) diprotic, $\left[\mathrm{H}^{+}\right]=2 \times 0.600 / 1.50=0.800 M, p H=0.10$
(ii) (a) monoprotic, $\left[\mathrm{OH}^{-}\right]=0.350 / 0.600=0.583 \mathrm{M}, \mathrm{pOH}=0.23, p H=13.77$
(b) diprotic, $\left[\mathrm{OH}^{-}\right]=2 \times 0.450 / 2.50=0.360 \mathrm{M}, \mathrm{pOH}=0.44, \mathrm{pH}=13.56$
(iii) (a) $\left[\mathrm{H}^{+}\right]=[\mathrm{HCl}]=3.16 \times 10^{-3} \mathrm{M}$
(b) $3.16 \times 10^{-3} \times 36.5=0.115 \mathrm{~g} \mathrm{~L}^{-1}$
(iv) (a) diprotic, $\left[\mathrm{H}^{+}\right]=0.126 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=0.126 / 2=0.063 \mathrm{M}$
(b) $0.063 \times 98=6.2 \mathrm{~g} \mathrm{~L}^{-1}$
(v) (a) monoprotic, $p O H=14-12.50=1.50,[\mathrm{KOH}]=0.0316 \mathrm{M}$
(b) $0.0316 \times 56.0=1.77 \mathrm{~g} \mathrm{~L}^{-1}$
(vi) diprotic, $\mathrm{pOH}=3.50,\left[\mathrm{OH}^{-}\right]=3.2 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=3.2 \times 10^{-4} / 2=1.6 \times 10^{-4} \mathrm{M}$
(b) $1.6 \times 10^{-4} \times 74.0=0.0117 \mathrm{~g} \mathrm{~L}^{-1}$
2. (i) $\left[\mathrm{H}^{+}\right]=0.200 \times 25.0 / 350=0.0143 \mathrm{M}, \mathrm{pH}=1.85$
(ii) $\left[\mathrm{OH}^{-}\right]=0.240 \times 0.125 / 1.00=0.0300 \mathrm{M}, \mathrm{pOH}=1.52, \mathrm{pH}=12.48$
3. take 1 L of $\mathrm{HCl}, \mathrm{mol}$ of $\mathrm{HCl}=\mathrm{mol}$ of $\mathrm{NaCl}=0.150$ vol NaOH required $0.150 / 0.100=1.5 \mathrm{~L}$, total volume 2.5 L
$[\mathrm{NaCl}]=0.150 / 2.5=0.0600 \mathrm{M}$
4. need $0.250 \times 0.200=0.0500 \mathrm{~mol} \mathrm{HCl}$
contained in $0.0500 / 12.0=0.00417 \mathrm{~L}=4.17 \mathrm{~mL}$ conc HCl
5. diprotic. need $\left[\mathrm{H}^{+}\right]=0.316 \mathrm{M}$ or $\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=0.158 \mathrm{M}$ in $0.500 \mathrm{~L}, 0.0791 \mathrm{~mol}, 0.0791 \times 98.0=7.76 \mathrm{~g}$ pure $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $7.76 / 0.96=8.08 \mathrm{~g}$ impure acid, volume $8.08 / 1.83=4.41 \mathrm{~mL}$
6. diprotic, $\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=1.7 / 74.0=0.023 \mathrm{M},\left[\mathrm{OH}^{-}\right]=0.046 \mathrm{M}, \mathrm{pH}=12.66$
7. at $p H=12.00,\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-2} \mathrm{M}$
$100 \mathrm{NaOH}=100 / 40.0=2.50 \mathrm{~mol}$
volume $2.50 /\left(1.00 \times 10^{-2}\right)=250 \mathrm{~L}$ of solution
8. (i) (a) monoprotic, $40.0 \times 0.150 / 0.200=30.0 \mathrm{~mL}$
(b) diprotic, $2 \times 0.100 \times 0.250 / 0.200=0.250 \mathrm{~L}$
(ii) (a) monoprotic, $50.0 \times 0.400 / 0.150=133 \mathrm{~mL}$
(b) diprotic, $2 \times 0.400 \times 0.350 / 0.150=1.87 \mathrm{~L}$

9 . (i) monoprotic, $\left[\mathrm{HNO}_{3}\right]=15.00 \times 0.125 / 24.85=0.0755 \mathrm{M}$
(ii) diprotic, $[\mathrm{NaOH}]=2 \times 35.00 \times 0.480 / 65.00=0.517 \mathrm{M}$

10 (a) $\mathrm{NaOH} 25.0 \times 0.300=7.5 \mathrm{mmol}, \mathrm{HBr} 15.0 \times 0.400=6.0 \mathrm{mmol}$ NaOH excess, 1.5 mmol in total volume $40.0 \mathrm{~mL},\left[\mathrm{OH}^{-}\right]=0.0375 \mathrm{M}, \mathrm{pH}=12.57$
(b) $\mathrm{HNO}_{3} 15.0 \times 0.250=3.75 \mathrm{mmol}, \mathrm{Ba}(\mathrm{OH})_{2} 10.0 \times 0.300=3.00 \mathrm{mmol}$ or $6.00 \mathrm{mmol} \mathrm{OH}^{-}$, an excess. There remains $6.00-3.75=2.25 \mathrm{mmol} \mathrm{OH}^{-}$in a total $25.0 \mathrm{~mL},\left[\mathrm{OH}^{-}\right]=0.0900 \mathrm{M}, \mathrm{pH}=12.95$
(c) $\mathrm{H}_{2} \mathrm{SO}_{4} 20.0 \times 0.125=2.50 \mathrm{mmol}=5.00 \mathrm{mmol} \mathrm{H}^{+}$
$\mathrm{CsOH}=38.0 \times 0.125=4.75 \mathrm{mmol}$, excess $\mathrm{H}^{+}=0.25 \mathrm{mmol}$ total volume $58.0 \mathrm{~mL},\left[\mathrm{H}^{+}\right]=0.25 / 58.0=4.3 \times 10^{-3} M, p H=2.37$
(d) $\mathrm{NaOH} 1.00 / 40.0=0.0250 \mathrm{~mol}$
$\mathrm{HCl} 0.100 \mathrm{~L} \times 0.245 \mathrm{M}=0.0245 \mathrm{~mol}$, excess $0.0005 \mathrm{~mol} \mathrm{OH}^{-}$
$\left[\mathrm{OH}^{-}\right]=0.0005 / 0.100=0.005 \mathrm{M}, \mathrm{pOH}=11.70$
11. (a) at $p H 1.94,\left[\mathrm{H}^{+}\right]=0.0115 \mathrm{M}$, monoprotic, so 1.00 mL contained 0.0115 mol which is $0.0115 \times 100.5=1.15 \mathrm{~g} \mathrm{HClO}_{4}$, purity $100 \times 1.15 / 1.66=69.5 \%$
(b) 0.0115 mol in 1.00 mL is $0.0115 / 0.00100=11.5 \mathrm{M}, \mathrm{pH}=-1.06$
yes, a negative $p H$ is possible in the rare case of $\left[\mathrm{H}^{+}\right]>1 M$
12. $\quad \mathrm{K}_{2} \mathrm{O}(s)+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{~K}^{+}+2 \mathrm{OH}^{-}$
$1.0 \mathrm{~g} \mathrm{~K}_{2} \mathrm{O}$ is $1.0 / 94.0=0.0106 \mathrm{~mol}$, gives $0.02123 \mathrm{~mol} \mathrm{OH}^{-}$
$\left[\mathrm{OH}^{-}\right]=0.02123 / 0.500=0.04246 \mathrm{M}, \mathrm{pOH}=1.37, \mathrm{pH}=12.63$
13. initially $\left[\mathrm{H}^{+}\right]=0.398$, after dilution $0.398 \times 25.0 / 400=0.0249 \mathrm{M}, \mathrm{pH}=1.60$
14. initially $\left[\mathrm{OH}^{-}\right]=3.16 \times 10^{-2}$, require $\left[\mathrm{OH}^{-}\right]=1.00 \times 10^{-3}$
dilute by factor $\left(3.16 \times 10^{-2}\right) /\left(1.00 \times 10^{-3}\right)=31.6$
shortcut: difference in $p H$ is 1.5 , dilute by $10^{1.5}=31.6$
15. KHPh $1.472 / 204.2=7.209 \times 10^{-3} \mathrm{~mol}$, monoprotic
$[\mathrm{NaOH}]=\left(7.209 \times 10^{-3}\right) / 0.03992=0.1806 \mathrm{M}$
16. mol of base $0.02350 \times 0.549=0.01290 \mathrm{~mol}$
mass $0.01290 \times 91.0=1.17 \mathrm{~g}$, conc $100 \times 1.17 / 5.00=23.5 \%$ by mass
17. $0.0500 \mathrm{~g} \mathrm{CaCO}_{3}$ is $0.0500 / 100=5.00 \times 10^{-4} \mathrm{~mol}$, diprotic reacts $1.00 \times 10^{-3} \mathrm{~mol} \mathrm{H}^{+}$, $\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-3} / 0.0400=0.0250 \mathrm{M}$
18. $p H 0.90,\left[\mathrm{H}^{+}\right]=0.126$, in 1.50 L there are $0.126 \times 1.50=0.189 \mathrm{~mol} \mathrm{H}^{+}$ $p H 1.50,\left[\mathrm{H}^{+}\right]=0.0316$, in 1.50 L there are $0.316 \times 1.50=0.0474 \mathrm{~mol} \mathrm{H}^{+}$ difference $0.189-0.0474=0.141 \mathrm{~mol}$ need $0.141 / 2=0.071 \mathrm{~mol}$ of diprotic $\mathrm{Mg}(\mathrm{OH})_{2}$ mass $0.071 \times 58.3=4.12 \mathrm{~g}$
19. 4.00 g Al is $4.00 / 27.0=0.148 \mathrm{~mol}$, reacts $0.148 \times 3=0.444 \mathrm{~mol} \mathrm{H}^{+}$ originally $0.500 \mathrm{~mol} \mathrm{H}^{+}$, remaining 0.0555 mol in 0.500 L ,
$\left[\mathrm{H}^{+}\right]=0.111 \mathrm{M}, \mathrm{pH}=0.95$, up from original $\mathrm{pH}=0.00$
20. $\quad 9.78 \mathrm{~g}$ of KOH is $9.78 / 56.1=0.174 \mathrm{~mol}$, monoprotic

HBr 0.175 mol in 0.0100 L , conc 17.4 M
(solution density is not needed!)
21. take 1 L of each in each case:
(a) $\mathrm{H}_{2} \mathrm{SO}_{4}$ diprotic, $0.0400 \mathrm{~mol} \mathrm{H}^{+}$

NaOH 0.0300 mol , excess $0.0100 \mathrm{~mol} \mathrm{H}^{+}$in 2 L
$\left[\mathrm{H}^{+}\right]=0.00500, p H=2.30$
(b) $0.0180 \mathrm{~mol} \mathrm{H}^{+}$from HCl
$\mathrm{Sr}(\mathrm{OH})_{2}$ diprotic, $2 \times 0.0120=0.0240 \mathrm{~mol} \mathrm{OH}^{-}$
excess $0.0060 \mathrm{~mol}\left[\mathrm{OH}^{-}\right]$in $2 \mathrm{~L},\left[\mathrm{OH}^{-}\right]=0.0030 \mathrm{M}, \mathrm{pH}=11.48$
$22\left[\mathrm{OH}^{-}\right]=3.16 \times 10^{-3} \mathrm{M}, 0.0158 \mathrm{~mol}$ in 5.00 L
required $3.16 \times 10^{-4} M, 0.00158 \mathrm{~mol}$ in 5.00 L
difference 0.0142 mol , need 0.0142 mol of HCl
volume of conc acid $0.0142 / 12.0=0.00119 \mathrm{~L}$ or 1.19 mL
23. as given answer

24 final solution volume $0.450 \mathrm{~L},\left[\mathrm{OH}^{-}\right]=0.0122$,
$0.0122 \times 0.450=0.00505 \mathrm{~mol} \mathrm{OH}^{-}$present
originally $0.250 \times 0.300=0.0750 \mathrm{~mol} \mathrm{OH}^{-}$present
mols OH^{-}removed $=\mathrm{mol} \mathrm{HBr}=0.0750-0.00505=0.0700 \mathrm{~mol}$
$[\mathrm{HBr}]=0.0700 / 0.200=0.350 \mathrm{M}$
25. originally $4.58 \times 10^{-3} \times 0.650=2.98 \times 10^{-3} \mathrm{~mol} \mathrm{OH}^{-}$
final $p H=10.42,\left[\mathrm{OH}^{-}\right]=2.63 \times 10^{-4}$
in $650 \mathrm{~mL}, 2.63 \times 10^{-4} \times 0.650=1.71 \times 10^{-4} \mathrm{~mol} \mathrm{OH}^{-}$
difference $2.81 \times 10^{-3} \mathrm{~mol}$, need $1.40 \times 10^{-3} \mathrm{~mol}$ diprotic $\mathrm{H}_{2} \mathrm{SO}_{4}$
26. Before reaction, 40.0 mL of 0.160 M HCl contain $0.0400 \times 0.160=6.4 \times 10^{-3} \mathrm{~mol} \mathrm{H}^{+}$ After reaction, need 20.0 mL 0.12 M NaOH , reacts $0.0200 \times 0.120=2.4 \times 10^{-3} \mathrm{~mol} \mathrm{H}^{+}$ difference $4.0 \times 10^{-3} \mathrm{~mol} \mathrm{H}^{+}$has reacted with CaCO_{3}
reacts $2: 1$, so reacted with $2.0 \times 10^{-3} \mathrm{~mol} \mathrm{CaCO}_{3}$,
mass $2.0 \times 10^{-3} \times 100=0.200 \mathrm{~g} \mathrm{CaCO}_{3}$
composition $100 \times 0.200 / 0.250=80 \% \mathrm{CaCO}_{3}$
27. $1: 1$ reaction, molarity $112 \times 1.25 / 10.0=14.0 M$
mass of NH_{3} in $1 \mathrm{~L}, 14.0 \times 17.0=238 \mathrm{~g}$
mass of 1 L of solution 880 g , composition $100 \times 238 / 880=27.1 \% \mathrm{NH}_{3}$ by mass

