OXIDATION - REDUCTION REACTIONS [MH5; 4.4]

- Commonly called Redox reactions, these reactions involve a transfer of electrons one species gives them up, another receives them.
- They are easiest to deal with if we divide the overall reaction into two half - reactions.
- In one half-reaction, electrons are LOST; this is called the OXIDATION half - reaction.

 $\frac{\text{EXAMPLES:}}{a) \text{Na} \rightarrow \text{Na}^{+} + e^{-} \qquad b)$

- In each case, the reactant is **losing** electrons.
- In the other half-reaction, electrons are **GAINED**; this is called the **REDUCTION** half-reaction.

EXAMPLES:

a) $C\ell_2$ + 2 $e^- \rightarrow 2 C\ell^-$ b) $Cu^{2+} + 2 e^- \rightarrow Cu$

- In each case, the reactant is **gaining** electrons.
- It may help to remember that "LEO says GER ".....
 Loss of Electrons is Oxidation and Gain of Electrons is Reduction
 OIL RIG = Oxidation is Loss, Reduction is Gain
- The reactant taking part in the **oxidation** half reaction is called the **REDUCING AGENT** because it is reducing the other reactant.
- In doing so, it is OXIDIZED !
- The reactant taking part in the reduction half -reaction is called the OXIDIZING AGENT because it is oxidizing the other reactant.
- In doing so, it is **REDUCED** !

<u>EXAMPLE:</u> 2 Fe²⁺ + $Cl_2 \rightarrow 2$ Fe³⁺ + 2 Cl^-

- Fe²⁺, the reducing agent, is reducing Cl_2 ; the Fe²⁺ is oxidized
- Cl_2 , the oxidizing agent, is oxidizing Fe^{2+} ; the Cl_2 is reduced
- Reduction and oxidation always go together; one cannot occur without the other.
- Notice that there are no electrons in the "overall" equation.....
- In any REDOX reaction, the electrons lost in the oxidation half reaction must exactly equal those gained in the reduction half reaction.

OXIDATION NUMBERS and BALANCING REDOX EQUATIONS

- Balancing Redox Reactions is a bit of a tedious process, but necessary.
- Any "method" giving the right answer may be used use the one that you prefer!
- We shall use a modification of that described in MH5, section 4.4, the half-reaction method.
- Before beginning, it is often helpful (but not essential!!) to decide what is being oxidized, and what is being reduced.
- To do that, we use **Oxidation Numbers or States**, an artificial way of showing the "degree of oxidation" of an element.
- We assume that the more electronegative element in a compound has acquired all the shared electrons in a covalent bond.

EXAMPLE:	HBr	H — Br	Br is more electronegative
			than H; Br gets the electron
		+1 -1	(and the -1 charge)

Recall the order of **electronegativity** of the elements.....

F > O > Cl > N > Br > C,S,I > H > ...metals high low

Values are given in Table 6.5; MH5, p154

RULES FOR ASSIGNING OXIDATION NUMBERS [MH5; page 88]

- 1) Oxidation Number is always zero in the pure element: $(H_2(g), Cl_2(g), Na(s) etc)$
- 2) Oxidation Number is always equal to the charge on a monatomic ion:

Na⁺ is +1 Ba²⁺ is +2 $C\ell^-$ is -1 etc.

3) In a neutral molecule, the total charge on the molecule must be equal to 0.

H - **Br**: (+1) + (-1) = 0 **PBr**₅: (+5) + 5(-1) = 0

4) In a complex ion, the total charge must be equal to the charge on the ion.

 NH_4^+ : (-3) + 4(+1) = +1 BF_4^- : (+3) + 4(-1) = -1

 $C\ell O_4^{-}$: (+7) + 4(-2) = -1

5) Priority Rules (Memorize these!!!)

These rules, based on the electronegativity scale are useful in assigning Oxidation Numbers in a compound:

- a) Fluorine is always -1
- b) Group I metals (Na, K, etc.) always +1
- c) Group II metals (Ca, Mg, etc.) always +2
- H is always +1 except when combined with a metal to d) form a hydride **EXAMPLE:** LiH is $[Li^+][H^-]$; therefore H is -1
- **Oxygen** is always -2 except when combined with fluorine e)

EXAMPLES: OF_2 : O is +2 (because F is -1)

In Peroxides, which contain the O – O bond; such as H - O - O - H (Hydrogen Peroxide), where O is -1

 Na_2O_2 : is 2 $Na^+ [O - O]^{2-}$, therefore O is -1

f)Other Halogens (Group VII) are always -1, except when combined with fluorine or oxygen.....

-243- Nerall =

 BrF_5 : Br is + 5

 Cl_2O : Cl is +

BALANCING REDOX EQUATIONS BY HALF REACTIONS

EXAMPLE 1:

Permanganate ion oxidizes oxalate ions in **ACIDIC** solution.....

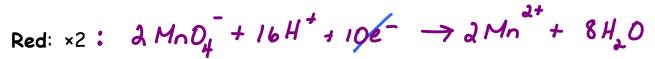
 $MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2$

Separate the reaction into two half-reactions:

 $MnO_4^- \rightarrow Mn^{2+} \& C_2O_4^{2-} \rightarrow CO_2$

Now, deal with each half reaction individually:

- 1) Balance non-O and non-H atoms as usual $MnO_4^- \rightarrow Mn^{2+}$
- Add H₂O to balance oxygen
 MnO₄⁻ → Mn²⁺ + H H₄O
- 3) Add H⁺ to balance H atoms (regardless of acidic or basic) MnO₄⁻ + 8 H⁺ → Mn²⁺ + 4 H₂O → to the more positive side
- 4) Add electrons to balance the charge $MnO_4^- + 8 H^+ + 5e^- \rightarrow Mn^{2+} + 4 H_2O$
- 5) We are told the solution is acidic, so we may use H⁺ ions to balance H.
- 6) Since e⁻ appear on the left, this is **REDUCTION** (gain of electrons).
- 7) Mn goes from Oxidation Number +7 to Oxidation Number +2;
 → it has gained 5 e ⁻


Now deal with the other half reaction:

 $C_2O_4^{2-} \rightarrow CO_2$

 Balance non-O and non-H atoms as usual; in this case we must balance the C:

 $C_2 O_4^{2-} \rightarrow \mathcal{L} CO_2$

- 2) Add H_2O to balance oxygen; oxygen is already balanced!!
- Add H⁺ to balance H atoms (regardless of acidic or basic); there are no H's!!
- 4) Add electrons to balance the charge: $C_2O_4^{2-} \rightarrow 2 CO_2 \rightarrow 2CO_2$
- Since e⁻ appear on the right, this is OXIDATION (loss of electrons)
- Each Carbon has gone from Oxidation Number +3 to
 Oxidation Number +4 ; → each C has lost one e⁻
- In a balanced redox equation, there are no electrons; we must make the number of electrons in the two half reactions equal (then they can be cancelled)
- So.....multiply each half -reaction by the number of e⁻ in the other half reaction!

Ox: x5: 5C, 0, d- __ 10 CO, + 10e-

 The 10 e⁻ on each side may be cancelled; then add the two half reactions together......

2 Mn 04 + 5C2 04 + 16H+ -> 2Mn²⁺ + 10 c0 + 8HO

• Always check that the equation is balanced for both atoms and charge

EXAMPLE 2:

The following reaction occurs in **BASIC** solution......

NH ₃ (aq)	+ $ClO^- \rightarrow$	$N_2H_4 + C\ell^{-1}$	-
ammonia	hypochlorite	hydrazine	

Separate the reaction into two half reactions:

 $NH_3 \rightarrow N_2H_4$ & $C\ell O^- \rightarrow C\ell^-$

- 1) Balance all non-O and non-H atoms; in this case balance N: $1 \to N_2 H_4$
- 2) Add H_2O to balance oxygen; no need as there is no oxygen present.
- 3) Add H⁺ to balance H atoms; although there is no appreciable H⁺ concentration in basic solution, we (temporarily) use H⁺ to balance H....

$$2 \text{ NH}_3 \rightarrow \text{N}_2 \text{H}_4 + 2 \text{H}^+$$

- We are told the solution is basic, so use of H⁺ is NOT really allowed......
- 5) We must neutralize the H+ by adding equal amounts of OH^- to each side; converting all H⁺ to H₂O and retaining the balance:

 $2 \text{ NH}_3 + 20 \text{ H}^- \rightarrow \text{N}_2 \text{H}_4 + 2 \text{ H}^+ + 2 \text{ OH}^-$

6) Now combine the H⁺ and OH⁻ on the right hand side to produce H_2O :

 $2 \text{ NH}_3 + 2 \text{ OH}^- \rightarrow \text{N}_2\text{H}_4 + \text{AH}_3\text{O}$

7) Add electrons to balance the charge:

 $2 \text{ NH}_3 + 2 \text{ OH}^- \rightarrow \text{N}_2\text{H}_4 + 2 \text{H}_2\text{O} + 3 \text{P}^-$

- 8) This is the OXIDATION half-reaction; electrons appear on the right.
- 9) Each Nitrogen has gone from -3 to -2;
 → each Nitrogen has lost one electron

Now for the other half reaction:

 $C\ell O^- \rightarrow C\ell^-$

- 1) Balance all non-O and non-H atoms; the Cl is already balanced.
- 2) Add H_2O to balance oxygen: $ClO^- \rightarrow Cl^- + H_2O$
- 3) Add H⁺ to balance hydrogen: $ClO^{-} + \partial H^{+} \rightarrow Cl^{-} + H_2O$

- 247 -

4) Add OH^- to remove H^+ :

$$ClO^{-} + 2H^{+} + AOH^{-} \rightarrow Cl^{-} + H_2O + AOH^{-}$$

5) Combine the H⁺ and OH⁻ on the left hand side to produce H_2O :

 $ClO^- + \lambda H_2O \rightarrow Cl^- + H_2O + 2OH^-$

6) Add electrons to balance the charge:

 $ClO^- + 2H_2O + 2a^- \rightarrow Cl^- + H_2O + 2OH^-$

- 7) This is the **REDUCTION** half-reaction; electrons appear on the left.
- 8) Cl has gone from +1 to -1;
 → each Cl has gained 2 electrons
- 9) As we have 2 electrons in each half reaction; add the two half reactions together, cancelling the electrons.
- 10) Also cancel any H_2O or OH^- possible.....

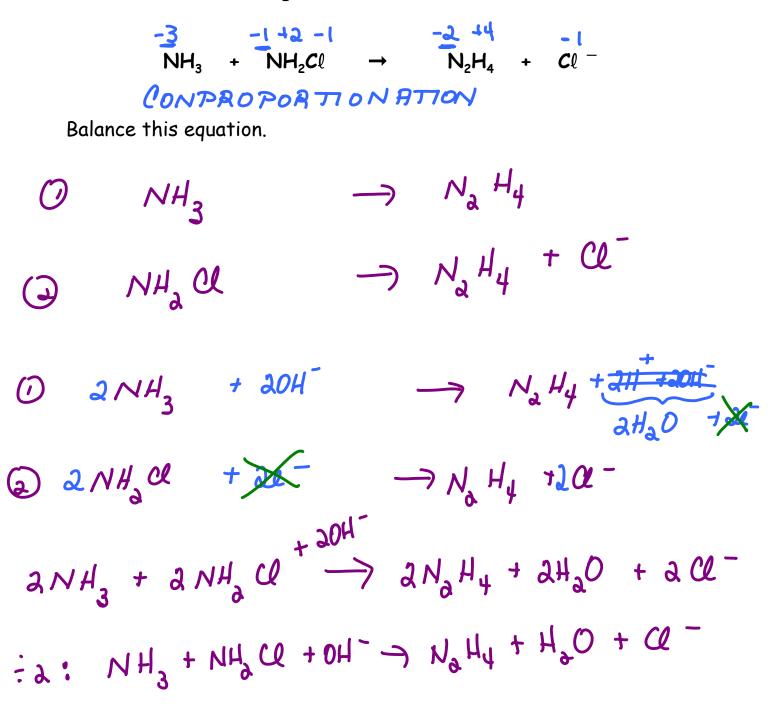
 $ClO^{-} + H_2O + 2e^{-} \rightarrow Cl^{-} + 2OH^{-}$ $2 NH_3 + 2 OH^{-} \rightarrow N_2H_4 + 2H_2O + 2e^{-}$ $2 NH_3 + ClO^{-} \rightarrow N_2H_4 + Cl^{-} + H_2O$

Check the final equation for balance in both atoms and charge.

 A DISPROPORTIONATION reaction is a redox reaction in which a substance in an intermediate oxidation state goes to both a higher and a lower state by e⁻ transfer.

EXAMPLE:

Copper, Cu, may exist in the +1 oxidation state, which is less stable than either +2 or 0.


- The opposite of disproportionation is **CONPROPORTIONATION**.
- There are two reactants; one is oxidized and one is reduced.....but there is only one product.
- The oxidation state of the product is an intermediate state to those of the reactants.

EXAMPLE 1: Balance the following reaction which occurs in acidic solution. DISPROPORTIONATION

 $I_3^- \rightarrow IO_3^- + I^$ $l_3 \rightarrow l^ \bigcirc$ $l_3 \rightarrow l_3$ ٩ \bigcirc 13 + 20 -> 31-Red $I_3 + 9H_0 - 3IO_3 + 18H^+ + 16e^ \textcircled{\textbf{a}}$ () × 16: 813 + 16e - > 241-12 + 9H20 -> 3103 + 18H + 100e-() x X: $(add: 91_3^+ + 9H_2 O) \rightarrow 310_3^- + 241^- + 18H^+$ $\div 3: 31_{3}^{-} + 31_{3}^{-} 0 \rightarrow 10_{3}^{-} + 81^{-} + 61^{+}$

EXAMPLE 2:

Hydrazine, N_2H_4 , is prepared by reaction of ammonia with chloramine in basic solution, according to :

