DETAILED ANSWERS

to STOICHIOMETRY-1 and EQUATIONS PROBLEMS

NOTE: Detailed workings are not given in questions where a detailed answer is already printed at the end of the problem set. 'INTRO' refers to the introductory section printed at the beginning of the assigned problems, where a number of the stoichiometry problems are solved in detail.

Further NOTE: Don't worry if your answer differs in last significant figure from that given here. Small differences arising from 'rounding off' or the use of atomic weights, etc., to different numbers of S.F. may be ignored.

Take the value of the Avogadro Constant, N_A , as 6.02×10^{23} mol⁻¹.

- 1. An organic compound has molecular formula C_2H_6O . For this compound:
 - (a) what is the molar mass? 46.07
 - (b) what is the mass of one molecule (i) in amu 46.07 amu, (ii) in g? $46.07 / N_A g$
 - (c) how many atoms are there in the molecule? 9
 - (d) how many atoms are there in one mole of C_2H_6O ? $9 \times N_A$
 - (e) how many mol of C_2H_6O are present in 100 g of the compound?

100 / 46.07 = 2.17 mol

- (f) how many H atoms are there in 100 g of C_2H_6O ?
 - 2.17 mol as (e) with 6 H atoms per mole $2.17 \times 6 = 13.02 \text{ mol H}$
 - contains $13.02 \times N_A$ H atoms
- (g) what is the mass % of carbon in this compound? $100 \times 2 \times 12.01 / 46.07 = 52.2\%$
- (h) what is the mole fraction of C atoms in the molecule of C_2H_6O ? 2/9 = 0.222
- (i) what is the *mole* % of carbon in this compound? $100 \times 2/9$
- (j) how many mol of C_2H_6O contain 100 mol of atoms (total all elements)? nine mol of atoms in each mol, 100 / 9 = 11.1
- (k) what is the mass of deuterium, ${}^{2}_{1}$ H or D, present in 100 g of C₂H₆O?

The abundance of deuterium in natural hydrogen is 1.4×10^{-2} atom %.

Take the atomic mass of deuterium as 2.0 g mol^{-1} . As in (f), 13.02 mol H,

so mol of D = $13.02 \times 1.4 \times 10^{-2} / 100 = 1.82 \times 10^{-3}$ mol

mass $1.82 \times 10^{-3} \text{ mol} \times 2.0 \text{ g mol}^{-1} = 3.6 \times 10^{-3} \text{ g D}$

- How many mol of *ions* are present in total in each of the following?
 (a) 1.00 mol of NaBr
 (b) 0.400 mol of CaCl₂
 - (c) 2.50 mol of $(NH_4)_2SO_4$ (d) 0.500 mol of K_3PO_4 as answers given, see also INTRO, p. 12
- 3. A stainless steel alloy contains 5.0% nickel by mass.
 (a) What mass of nickel is contained in 1.8 kg of the alloy?
 1.8 × 5.0 / 100 = 0.090 kg or 90 g Ni
 - (b) What mass of the alloy would contain one mole of nickel?one mol, 58.7 g Ni, in 58.7 × 100 / 5.0 = 1174 g or 1.17 kg alloy
- 4. Natural gallium contains two isotopes. 60.4 atom % is in the form of ⁶⁹Ga, molar mass 68.926 g mol⁻¹. What is the mass number of the other gallium isotope? Suppose the mass of the other isotope is *x*, then we can write:
 (68.926 × 60.4 / 100) + (x × 39.6 / 100) = 69.71 [known av at mass of Ga] whence x = 70.9 and the mass number is 71
- 5. A element Q forms a chloride QCl₃ containing 46.62% chlorine by mass. Calculate the atomic weight of the element. Referring to the Periodic Table, identify element Q.
 53.38 g Q combines 46.62 g Cl
 53.38 × (3 × 35.45) / 46.62 combines 3 mol Cl in one mol QCl₃ one mol Q mass 121.8 g; Q must be Antimony, Sb
- 6. Consider the reaction by which HF dissolves glass: SiO₂ + 4 HF → SiF₄ + 2 H₂O
 (a) To react with 256 g of SiO₂, what quantity of HF is required in (i) mol (ii) g 256 / 60.1 = 4.26 mol, needs 4 × 4.26 = 17.0 mol, 17.0 × 20.0 = 341 g HF
 (b) Suppose 300 g of SiO₂ were dissolved in excess HF.
 What quantity of SiF₄ would be produced, measured in (i) mol (ii) g? 300 / 60.1 = 4.99 mol SiO₂, gives 4.99 mol SiF₄, mass 4.99 × 104.1 = 520 g
- 7. A compound contains carbon, hydrogen, and oxygen only. When a sample of mass 0.246 g is burned in excess oxygen, 0.600 g of CO_2 and 0.080 g of H_2O are produced. (a) Calculate the empirical formula.
 - (b) Given that the molar mass is about 160 g mol⁻¹, what is the molecular formula? see detailed answer, INTRO p. 9

8. Natural bromine consists of two isotopes:

⁷⁹Br, mass 78.9183 g mol⁻¹, 50.69 atom % abundance

 81 Br, mass 80.9163 g mol⁻¹, 49.31 atom % abundance

Calculate the average atomic mass of natural bromine to the appropriate number of significant figures.

 $(78.9183 \times 50.69 / 100) + (80.9163 \times 49.31 / 100) = 79.90 4$ S.F.

9. (a) The mass composition of a compound is found to be:

C, 53.31%; H, 11.19%; O, 35.51%

Calculate the empirical (simplest) formula. Another experiment shows the molar mass to be 90 \pm 4 g mol⁻¹. Calculate the molecular formula and the accurate molar mass.

divide by atomic weights, giving C, 4,439; H, 11.10; O, 2.219 mol divide by smallest, C_2H_5O formula weight of empirical formula is 45, so 90 / 45 = 2 molecular formula $C_4H_{10}O_2$, molar mass 90.12 g mol⁻¹

(b) A compound contains carbon and hydrogen only. On combustion, 0.150 g of the compound gives 0.488 g CO₂ and 0.150 g H₂O. The molar mass is found to be 52 ± 5 g mol⁻¹. Calculate the empirical and molecular formula of the compound.

 $0.488 \text{ g CO}_2 = 0.488 / 44.0 = 0.0111 \text{ mol, from } 0.0111 \text{ mol C}$

 $0.150 \text{ g H}_2\text{O} = 0.150 / 18.0 = 0.00833 \text{ mol},$

from $0.00833 \times 2 = 0.0167 \text{ mol H}$

H / C ratio 0.0167 / 0.0111 = 1.50, simplest formula C_2H_3 , formula weight 27 g mol⁻¹ molecular formula C_4H_6 (molar mass 54.0 g mol⁻¹)

10. Electrolysis of brine produces three products according to the equation:

 $2 \operatorname{NaCl}(aq) + 2 \operatorname{H}_2 O \rightarrow \operatorname{H}_2(g) + \operatorname{Cl}_2(g) + 2 \operatorname{NaOH}(aq)$

If 2550 g of NaCl is electrolysed, what quantity of each product would be obtained? Express your answers in both mol and g amounts.

2550 / 58.5 = 43.6 mol NaCl. Gives $43.6 / 2 = 21.8 \text{ mol H}_2, 43.9 \text{ g}$ $43.6 / 2 \text{ mol Cl}_2, \text{ mass } 1.55 \text{ kg}$ and 43.6 mol NaOH, mass 1.75 kg

- 11. A compound contains carbon, hydrogen, and oxygen only. When a sample of mass 1.60 g is burned in excess oxygen, 2.20 g of CO_2 and 1.80 g of H_2O are produced.
 - (a) What is the mass percentage of oxygen in the compound?

2.20 g CO₂ is 2.20 / 44.0 = 0.0500 mol CO₂ from 0.0500 mol C in compound, mass 0.0500 × 12.0 = 0.600 g C 1.80 g H₂O is 1.80 / 18.0 = 0.100 mol H₂O from 0.100 × 2 = 0.200 mol H, mass 0.200 × 1.01 = 0.202 g H
By difference, mass of oxygen in sample 1.60 - 0.600 - 0.20 = 0.80 g O 100 × 0.80 / 1.60 = 50% oxygen by mass
(b) Calculate the empirical formula.

mol of oxygen 0.80 / 16 = 0.050 mol, combining ratio is 0.0500:0.200:0.0500, 1:4:1 or CH₄O

12. A compound is analyzed for its bromine content by converting all bromine to AgBr.If a sample of the compound of mass 0.295 g gave 0.668 g of AgBr on analysis, what was the mass percent of bromine present?

0.668 g AgBr is $0.668 / 187.7 = 3.56 \times 10^{-3}$ mol AgBr 1:1 stoich, comes from 3.56×10^{-3} mol Br in the compound mass of Br in compound $3.56 \times 10^{-3} \times 79.9 = 0.284$ g Br % Br = $100 \times 0.284 / 0.295 = 96.3\%$ by mass

13. The body's only use for the element fluorine is in tooth enamel, which consists of *fluorapatite*, Ca₅(PO₄)₃F. Use of a fluoridated toothpaste converts *hydroxyapatite*, Ca₅(PO₄)₃(OH), into fluorapatite. If you convert 0.50 g of hydroxyapatite into fluorapatite, what mass of fluorine have you incorporated into your teeth?

0.50 g Ca₅(PO₄)₃(OH) is 0.50 / 500 = 1.0×10^{-3} mol 1:1 stoich; incorporates 1.0×10^{-3} mol F, mass $1.0 \times 10^{-3} \times 19.0 = 0.019$ g F 14. The gaseous pollutant SO_2 can be removed from flue gas by reaction with MgO:

 $SO_2 + H_2O + \frac{1}{2}O_2 \rightarrow H_2SO_4$

 $MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$

The MgO is obtained by strong heating of MgCO₃:

 $MgCO_3 \rightarrow MgO + CO_2$

(a) What mass of MgCO₃ would be required to remove 1 kg of SO₂ from the flue gas? $1000 / 64.1 = 15.6 \text{ mol SO}_2$ stoich is 1:1 throughout, need 15.6 mol MgCO₃

mass $15.6 \times 84.3 = 1320$ g or 1.32 kg

- (b) What mass of MgSO₄ would be produced by removal of 1 kg of SO₂? still 1:1, produce 15.6 mol, mass $15.6 \times 120.4 = 1878$ g or 1.88 kg
- 15. A sample of lead, mass 2.07 g, is dissolved in nitric acid to give a solution of lead nitrate, $Pb(NO_3)_2$. When this is made basic, $Pb(OH)_2$ precipitates. Oxidation of this compound gives PbO_2 , which dissolves in HCl to yield $PbCl_4$. Addition of NH_4Cl then precipitates the complex salt $(NH_4)_2PbCl_6$. What is the maximum amount of the final compound that could be produced? [Hint: this problem is much easier than it looks!] start with 2.07 / 207 = 0.0100 mol Pb, *ignoring all the intermediate steps*, one mol $(NH_4)_2PbCl_6$ must come from one mol of Pb

obtain 0.0100 mol $(NH_4)_2$ PbCl₆, mass 4.56 g

- A certain compound is known to contain C, N, and S only. When a sample of mass 1.68 g is burned in excess oxygen 1.76 g of CO₂ is produced. In another experiment, a sample of the compound of mass 0.561 g is burned and the sulfur present converted to 1.56 g of BaSO₄. Calculate the empirical formula of the compound. see detailed answer, INTRO p. 10,11
- 17. A metal M forms the oxide M₂O₃, which contains 68.42% by mass of metal M. Calculate the atomic weight of the metal. Referring to the Periodic Table, identify the metal M. 68.42 g of metal combine with 31.58 g O. Therefore there are 68.42 × 48.0 / 31.58 g metal and 3 mol (48.0 g) oxygen in one mol M₂O₃ 104.0 g metal represents M₂. Molar mass of metal 104.0 / 2 = 52.0 g mol⁻¹ from table, M must be Chromium, Cr

Biphenyl is an aromatic hydrocarbon of formula C₁₂H₁₀. Chlorination gives compounds known as *polychlorinated biphenyls*, or PCB's, general formula C₁₂H_mCl_(10-m). If a PCB contains 58.9% chlorine by mass, what is the value of *m* in its formula? (*Hint:* work out the % Cl in terms of *m*; put the expression equal to 58.9) In one mole: mass of Cl = 35.45(10 - m) g molar mass (12 × 12.01) + 1.008m + 35.45(10 - m) g
% Cl = 100 × 35.45(10 - m) / [(12 × 12.01) + 1.008m + 35.45(10 - m)] = 58.9 solving, m = 4

19. Nitric acid is produced commercially from ammonia by a three-stage process:

 $4 \text{ NH}_3 + 5 \text{ O}_2 \rightarrow 4 \text{ NO} + 6 \text{ H}_2\text{O}$ $2 \text{ NO} + \text{ O}_2 \rightarrow 2 \text{ NO}_2$ $3 \text{ NO}_2 + \text{ H}_2\text{O} \rightarrow 2 \text{ HNO}_3 + \text{ NO}$

(a) Combine these equations to give an overall reaction is which ammonia is converted to nitric acid as the *only* nitrogen–containing product (i.e., no oxides of nitrogen).

The suggested method is to eliminate NO_2 between the second and third equation, then eliminate NO between the resulting equation and the first equation.

(b) Assuming 100% yield, what mass of NH_3 would be needed to make 1.00 kg HNO_3 ?

 $1.00 \text{ kg is } 1000 / 63.0 = 15.9 \text{ mol HNO}_3$

1:1 stoich; comes from 15.9 mol NH₃, mass $15.9 \times 17.0 = 270$ g

20. A metal M forms the oxide M_2O . Reduction of 28.6 g M_2O yields 25.4 g of metal M. Calculate the molar mass of M and identify the metal.

by difference, sample contained 28.6 - 25.4 = 3.2 g oxygen 25.4 g metal combined with 3.2 g O. Therefore in one mol oxide, $25.4 \times 16.0 / 3.2 = 127$ g metal combined with 16.0 g O 127 g represents 2 mol of metal in formula M₂O molar mass of M 127 / 2 = 63.5, and oxide must be Cu₂O 21. It was once thought (mistakenly) that compounds known as *boron hydrides* would be suitable as rocket fuels. The following reaction of *pentaborane* may be postulated:

 $2 B_5 H_9(l) + 12 O_2(l) \rightarrow 5 B_2 O_3(s) + 9 H_2 O(l)$

If a tank of pentaborane has a volume of 1000 L, what volume should the tank of liquid oxygen be to ensure that stoichiometric quantities of the two reactants were carried and nothing remained unreacted at the completion of combustion?

(Densities of the liquids are: $B_5H_9(l)$, 0.637; $O_2(l)$, 1.118 g mL⁻¹)

1000 L × 637 g L⁻¹ [note units] = 6.37×10^5 g B₅H₉ that is $6.37 \times 10^5 / 63.0 = 1.01 \times 10^4$ mol B₅H₉ from equation, reacts with $1.01 \times 10^4 \times 12 / 2 = 6.07 \times 10^4$ mol O₂ of mass $6.07 \times 10^4 \times 32.0 = 1.94 \times 10^6$ g of volume $(1.94 \times 10^6$ g) / (1118 g L⁻¹) = 1733 L

- What mass of sulfur must be burned to yield enough SO₂ to react with 1 L of a solution of NaOH which contains 8.00% by mass of NaOH and has a density of 1.087 g mL⁻¹?
 What mass of NaHSO₃ would be produced? see detailed answer, INTRO, p. 11,12
- 23. Magnesium is added to aluminum before fabrication to improve its strength. When a sample of a Mg / Al alloy of mass 1.00 g is dissolved in excess acid, 0.0527 mol of H_2 is evolved. What is the composition of the alloy by mass?

(*Hint:* reactions of Mg and Al with acid give Mg²⁺ and Al³⁺ respectively.)

We have to write two separate equations for the reactions of the metals.

 $Mg(s) + 2 H^+ \rightarrow Mg^{2+} + H_2(g)$

 $Al(s) + 3 H^{+} \rightarrow Al^{3+} + 3 / 2 H_{2}(g)$

1:1 for Mg to H_2 , 1:1.5 for Al to H_2

see given answer for the ensuing arithmetic

24. A certain reaction has the stoichiometry:

 $A + 2B \rightarrow 2C + D$

where the molar masses of A, C, and D are respectively 60, 50, and 120 g mol⁻¹.

What is the molar mass of compound B? What mass of compound B is required to produce

100 g of compound D? (*Hint:* remember the law of conservation of mass!)

see given answer

25. Considerable excitement has attended the discovery of an important nickel deposit at Voisey Bay in Labrador. A typical nickel ore contains about 2% by mass of a nickel polysulfide with approximate formula Ni_9S_8 . If the nickel can be extracted with an efficiency of 80%, what mass of ore would have to be processed to produce 1 kg of nickel?

1 kg of Ni is 1000 / 58.7 = 17.0 mol comes from 17.0 / 9 = 1.89 mol Ni₉S₈ mass $1.89 \times 785.2 = 1486$ g or 1.49 kg Ni₉S₈ if the efficiency of extraction is only 80%, we would need to start with 1.49×100 / 80 = 1.86 kg Ni₉S₈ this is contained in 1.86×100 / 2 = 93 kg ore