	Chemistry 2211a – Bioinorganic Chemistry MJ Stillman
Coi	ntacts: e-mail: Martin.Stillman@uwo.ca
Off	ice: ChB 064 (Office hours: 1-2; 3-4 MWF, and by appointment).
	Final Exam Preparation – Check the lectures and suggested web sites for
	answers to the questions
<mark>Sy</mark> l	llabus for Final Exam 2018 (Bring a calculator; no Periodic Table provided)
The 25% con 75%	e Final Exam will be weighted approximately % first part of the term up to the 1 st test; - MAINLY PERIODIC TABLE – electronic ifigurations but also amino acids % lecture material since the term test.
The ans	e Final Exam will comprise a mix of multiple choice questions, short answer questions and writter wers.
ł	FINAL EXAM REVIEW TOPICS see topic questions after the Term Test
	after about line 420
LE	CTURE SECTIONS COVERED IN 2018
	Introduction – background to essential – toxic metals and ligands
	Important chemistry and special inorganic chemistry for bioinorganic chemistry
	Biology and Biochemistry important for bioinorganic chemistry
	Biologically important ligands that coordinate metals
	The role of zine (an assential group 12 metal)
	Toxicity of metals: As Pb Cd Hg
	Mg in chlorophyll
<mark>TO</mark>	PIC: INTRODUCTION
Maj	jor points to review:
	Metals and life
	Critical or essential metals Beneficial metals
	Group 1 and 2
	Alkali metals – Na, K - role
	Alkaline earths – Mg, Ca
	Charge/Size ratios important Concentration gradients across cell membranes
	Concentration Pranches and one con memory and

42	
43	Details of each Group 1 and 2 metal
44	I ransition metals
45	Co, Ni, Cu (Wilson's disease; respiration), Zn – numerous enzymes – we studied 3
46	All are trace metals (except may be for Fe)
47	Key to know are Cr, Mn, Fe (v. imp – daily intake 10-15 mgs)
48	Toxic metals
49	Why toxic? Interactions possible? Chelators
50	Fe – various roles – transporters: transferrin; storage: ferritin; ferrochelatase
51	Fe in heme proteins
52	
53	Qu. What are the arguments used to support why mammals use the metals they do in
54	their physiological chemistry?
55	4 essential metals are? 3 toxic metals are?
56	
57	What are metal complexes?
58	Identify a number of essential metals.
59	Identify toxic metals.
60	Answer the question – how are metals essential?
61	How are metals toxic?
62	
63	Are all essential metals nontoxic to babies and young people?
64	
65	What are the oxidation states that copper adopts in the body?
66	What does copper do in the body? You may need to visit other sites.
67	Is the text correct do you think about how copper assists in biological functions?
68	What is the recommended intake of copper? Is this controversial?
69	Is there any indication that we over- or under- ingest copper?
70	
71 72	What will you plan to do? Search out more copper-containing foods or eat fewer?

6) Review the information here – learn the role of the following metals – note they are the same as above:

Metals that we cannot live without are sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn)

Metal:	Function:
cobalt (Co)	core of Vit B ₁₂ (required to make blood cells)
copper (Cu)	part of redox enzymes used in defense against oxidative damage, for example superoxide dismutase (SOD)
sodium (Na)	important for extra cellular cations (positively charged ions or molecules) and nerve function
calcium (Ca)	part of bones; important for blood clotting
potassium (K)	major cation in intracellular fluids; essential for nerve and heart function
zinc (Zn)	part of dozens of enzymes; plays a role in reproduction and sexual maturation
iron (Fe)	found in hemoglobin and other enzymes

77 <u>7) Explain the dose response for all metals. This is the Bertrand Diagram turned upside down</u>

- As an example: Cobalt is an essential metal for humans. People who don't get enough
 cobalt in their diet have trouble making enough red blood cells. Cobalt is a component of
 vitamin B₁₂ which helps in the process of making red blood cells. Without enough red
 blood cells, anemia develops. People with anemia experience symptoms of tiredness,
- 82 weakness and listlessness. However, too much cobalt is also dangerous. When someone
- 83 is exposed to too much cobalt, they may develop blood diseases and heart problems.

84 Some people exposed to cobalt occupationally have developed lung disease and it may be 85 linked to lung cancer.

85

76

e increasing cobat levels

Cobalt Dose Response Curve

87 8) Consider the following questions – research using the web sites above

88 Which of the following is NOT a normal function/role of metal in the body?

- A. iron in the heme of hemoglobin
- B. calcium in bones
- C. cobalt in Vitamin B_{12}
- **D.** phosphorus in ATP
- E. arsenic in ATP

89

90 9) Which of the following is NOT characteristic of metals?

- A. Metals are often charged ions.
- **B.** Metals can be destroyed or degraded in the body.
- C. Metals easily bond to other molecules.
- **D.** Metals can have various oxidation states.

91

92 10) Some comments – consider these facts:

93 Metals are elements, so they cannot be destroyed or broken down. Metals can remain in the environment and in human 94 bodies for long periods of time. Metals cannot be broken down to reduce toxicity but the speciation – that is – the form of 95 the ligand molecules bound to the metals can have a profound effect on toxicity. EG, ionic, trivalent arsenic can be made 96 less toxic by the addition of a methyl (CH₃) group. For which metal is the biological toxicity exactly the opposite of this?

97

98 <u>11) How does the size of the metal change with its oxidation state?</u>

- 100 12) What controls the ability of a metal to form a complex with a ligand?
- 101 Background: Metals can have different species with different amounts of charge and these charged atoms easily and
- 102 quickly form complexes with enzymes and other biological molecules. The amount of charge also affects how easily the
- 103 metal can get into cells. Iron, for example, in the Fe(III) species, cannot cross membranes very easily. This restricts
- where it can go in the body. Hg can only easily penetrate membranes and be quickly distributed around the body if it is
- what form? Which form of Hg will not be so toxic to humans? Why not?
- 106 13) Who is LEAST likely to be exposed to toxic metals?
 - A. a technician working on a computer component board assembly line
 - **B.** a person who drinks water from a ground water well
 - **C.** a person smoking a cigarette
 - **D.** a person working on a new home computer
 - E. a painter renovating an 100 year old home
- 107
- 108 <u>Background:</u>
- 109 Metals can occur naturally

110 Cadmium and human activities

Many metals exposures are due to human activities. For example, almost everyone is occasionally exposed to cigarette smoke and cigarette smoke contains cadmium, a potentially toxic metal. Cadmium is also found in lead and zinc ores. Symptoms of cadmium poisoning include nausea and vomiting, and if inhaled, lung lesions and chronic bronchitis.

111 Lead-based paint

Another common source of metals in our environment is old paint. Paint applied before 1973 is very likely to contain lead, a toxic metal. Old paint can often be 100% lead salt because the original organic solvents have evaporated, so chips of the paint are deadly to young children and dust can be inhaled by adults doing renovations. Lead poisoning in adults can result in a wide range of symptoms from weakness and loss of appetite to coma and death in very acute or massive exposures.

112 Metals in computers

The semiconductor industry uses many types of metals. Semiconductors are parts of personal computers. During the manufacturing process, toxic metals are often created as by products. There is no exposure from the use of the finished product.

113 Mercury in fish

Some people have been exposed to mercury in the fish that they eat. Many of the fish in the Great Lakes region of Canada and the United States are contaminated with methylmercury. People are often requested to limit their intake of fish from these lakes. Mercury was deposited in the lakes from air contaminated by the smokestacks of coal-burning power plants, waste incinerators, and factories, as well as from pulp and paper run-off. Bacteria in the lakes convert many forms of mercury into methylmercury, which can be concentrated in fish. Mercury is a "neurotoxin." It damages the brain and nervous system. Symptoms include weakness, fatigue, not being able to concentrate, headaches, tremors in the hands, and memory loss. Even more severe symptoms are possible.

114 115 14) Big ligands – enough of salts – covalently bound metals are important too

116

117 118	Nomenclature of Tetrapyrroles – that is the generic name of the chlorins, corrins, corroles, porphyrins
119	Chlorin
120 121 122	- notice how chlorin is not quite the same as protoporphyrin IX – takes a bit of searching for the very subtle changes – that means everything to the way chlorophyll works.
123 124 125	Chlorophyll a – notice the R = phytol chain – what is that? Be able to draw chlorophyll with its peripheral decoration but not the chain!
126 127	<u>Cobalamin – the corrin ring you do not need to draw cobalamin but be able to select it from a set of others</u>
128	Protoporphyrin IX need to be able to draw and as heme add the Fe!
129	
130	15) Which metals typically bind in chlorophyll, corrin, and protoporphyrin IX in biology?
131 132 133	16) What is the difference between these 3 metals? Calculations to try
134	Equilibrium:
135	1) Calculate K for $N_2 + 3H_2 -> 2NH_3$ if at equilibrium $[N_2] = 1.03 \text{ mol/L} : [H_2] = 1.62 \text{ mol/L} : and [NH_2] = 0.102 \text{ mol/L}$
137	(=0.00238)
138	
139	2) $Br_2 + Cl_2 \rightarrow 2BrCl$ at 25 C 1 atm program AH = +20 kJ/mal; AS = 105 J/mal dag. Calculate AC for this resultion (P=8.21 J/mal dag)
140	T=298 K
142	(-2)
143	
144	3) Calculate $\log_{10}\beta_6$, β_6 , ΔG°_1 and ΔS°_1 (that is for the 1 st step) using these data:
145 146	$[N1(H_20)_6]^{-1} + NH_3 \rightarrow [N1(NH_3)(H_20)_5]^{-1} + NH_3 \rightarrow [N1(NH_3)_2(H_20)_4]^{-1}$ etc to $[N1(NH_3)_6]^{-1}$ in 6 steps with the following log K values:
147	n=1-6: 2.79, 2.26, 1.69, 1.25, 0.74, 0.03 at 303 K.
148	$\Delta H^0_{1} = -16.8 \text{ kJ/mol and } R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}$
149	$(8.76; 5.75 \times 10^8; -16.2 \text{ kJ mol}^{-1}; 1.98 \text{ JK}^{-1} \text{mol}^{-1})$
150	
151	TOPIC: INORGANIC CHEMISTRY
152	Major points to review:
153	Metals in the Periodic Table V_{1} and V_{2} the electronic configurations of the 'last' high given table V_{2}
154	Know the d block metals know the electronic configurations of the key biological metals – see p $2/3$
155	Complete the table on p 3
157	Know the orbital shapes
158	Know why the CO and O_2 bend when bound to the Fe(II) in the heme
159	Ionization controls the electropositive / electronegative nature of all elements
160	Know the common biological oxidation states – see the table on p 6
161	How does size, matter for cations and anions?
162	Know donor atoms of ligands – these control the Hard/Intermediate/Soft nature of the ligand – see p 9
163	So which metal matches up with which donor atom? And, where do you find those donor atoms, which ligand?
104	ilgand :

165	Ale har and intermediate hand and it matching which have store is achief. We are Table 2 and
100	An, na, soit, intermediate, nard – which metal is which? which donor atom is which? Know Table 2 on $p = 10$
167	p. 10. Essential metals in biology
168	Ligands – know the names AND molecular structures of the important metal binding amino acids – p_13
169	And, the rings on p 14-22
170	How do the 3d orbitals split for Fe(II) and Fe(III)? – see p 25
171	Redox properties of oxygen – see p 27 – the important oxygen species.
172	Read the 'Key Points' section, p 29 to end.
173	Essential Metals
174	Know an example of group 1 and 2
175	Know example charge/size rule
176	Know form concentrations in and out of cells – concept of pumps
170	Know what these metals do $-$ simple examples
1/8	I ransition Metals or d block metals (dbM)– important metals: Cr, Fe, Co, (not Ni) Cu, Zn, and the triad
1/9	ZII, Cu, Fig Make sure you have learnt the leastion in the Deriodic Table of: No. Ma. K. Co. and the d block
101	which we sure you have realing the location in the Periodic Table of. Na, Mg, K, Ca, and the u block
181	metals we ve discussed or are part of posters.
182	OUESTIONS
183	VLSIIONS What is evidetical meduction? Why is it as immentant in high an?
184	What is oxidation - reduction? Why is it so important in biology?
185	what are metals? Why are metals so prevalent in the environment today?
186	What are the electronic configurations of the 12 key elements?
187	How are d orbitals different from p orbitals?
188	What are ligands? How can you define the chemical property of a ligand?
189	Donor atoms are selective for similar types of metal – what is this property?
190	Which metals are hard? Which donor atoms are hard?
191	Name 4 hard metals, 4 soft metals, 4 intermediate metals, 4 hard ligands, 2 soft ligands, 2
192	intermediate ligands
193	Draw three amino acids that are intermediate or hard ligands.
194	Is ATP a hard, Intermediate or soft ligand?
195	Identify 3 important natural rings in biology
196	Why do the electrons pair up in 'high field splitting'?
197	When does this happen with myoglobin and hemoglobin?
198	Name the 5 important oxygen species in biology
199	What is BAL? What was Lewisite? Name the compound –
200	What are essential metals?
201	Are all metals essential?
202	Are all metals toxic?
203	How would you compare essential/beneficial metals to 'toxic metals'?
204	Is this a fair comparison?
201	Is it Black and White?
205	How many metals are essential? Have no known use? Are toxic?
200 207	Is it clear out which metals are toxic?
201 200	How any you define an a motal as assential as a unl 2 shows
208	now can you denne an a metal as essential – see un 5 above

209	Iron is essential – how much is best? Is 'too much' possible?
210	Chromium is essential – in all oxidation states?
211	Are essential metals always present in mg/kg quantities in the average numan body?
212	Are roles for all metals known?
213	Are all essential metals now known?
214	Can an essential metal become toxic? Give examples.
215	Why do we need metals anyway?
216	And, what about human health – how many do we require?
217	Deinte te consider from the mitter meter from the construction from Constantion
218	Points to consider from the written notes from the overhead starting from September – (a)
219	Calculate the mass of CH ₃ HgCl in a 10 mL cell culture sample (assume = 10 g) for 0.06
220	ppb concentration of the Hg.
221	The common exidetion states (numbers) of No. V. Ma. Co. Cr. Eo. Co. Cu. Zn. Cd. Ha
222	The common oxidation states (numbers) of Na, K, Mg, Ca, Ci, Fe, Co, Cu, Zii, Cu, Hg,
223	P0, As ale
224 225	Name three electronositive elements
223	Name three electropositive elements
220 227	Name three electronegative elements
227 228	Name three electronegative elements
220	What are the donor atoms in desferrioxamine B? How many hind the metal?
22)	what are the donor atoms in desternoxamme D: now many ond the metal?
231	For that matter – which is the metal targeted? Why do you think this metal AND its
232	oxidation state bind to Desferrioxamine?
233	
234	What is the shape called?
235	What is this chelator used for?
236	What is a ligand?
237	Name a good hard ligand molecule
238	
239	EDTA is what? Draw its structure
240	
241	How does it bind to metals? What is it used for in medicine?
242	Name three hard amino acids
243	
244	Name a good soft ligand
245	Name 1 soft amino acid
246	Which amino acids does Zn bind to usually?
247	
248	K?
249	Ca?
250	What does K _{sp} describe?
	2211a-REVIEW-TEXT-FOR-FINAL-2018DEC13-cD.docx 2018-12-09 PAGE 7 of 20

251	
252	What does it mean when we say the K_{sn} for HgI ₂ is 10 ⁻³⁰ ?
253	And K_{sp} for HgS is 10 ⁻⁵³ ? Calculate the free Hg ²⁺ concentration at equilibrium assuming
254	pH 7 and no other ions are present.
255	
256	Calculate β_4 for the reaction in which $Cd^{2+} + GSH => => [Cd(GSH)_4]^{2-}$
250	For which $K_1 = 10^8$. $K_2 = 10^8$. $K_3 = 10^{10}$.
257	What is the difference between K and β ?
250	What is the chelate effect in this context?
239	What controls the value of β for EDT A^{4-} binding to a motal?
200	what controls the value of p for EDTA - binding to a metal?
201	TODIC: Diele au naeded fan Dielne naenie Chemistan
262	IOPIC: Biology needed for Bioinorganic Chemistry
203	Major points to review:
204	Annino actus Protoing pontido hond
203	Proteins – peptide bolid
200	Nonenzymatic proteins, enzymes
207 268	Aromatic amino acids
208	Protein structure – pentide bond
20)	How proteins are made – tRNA codes for each amino acid
270	Folding – primary secondary tertiary and quaternary structures
272	Nucleic acids: DNA and RNA – the nurines and pyrimidines
273	How the DNA chain is formed $-$ tying bases to the sugar phosphate chain
274	(Need to be able to draw the 4 DNA bases, adenine, guanine, cytosine, thymine; know which form pairs;
275	TA & CG; be able to draw the sugar phosphate backbone – see 27^{th} Oct lecture – and attach a base)
276	
277	Know an example of basic, acidic, aromatic amino acid
278	Know example of N- binding; S- binding; -O ⁻ binding amino acids
279	Know form of peptide bond
280	Know about the absorption spectrum of aromatic amino acids
281	Know how proteins are synthesized using RNA in vivo
282	Know the 4 structural features of proteins
283 281	DNA Know the 4 DNA bases
204 285	Know how they bind using hydrogen bonding - see the course outline above
286	Know now mey ond using nyarogen bonding see the course outline upove
287	OUESTIONS
288	
289	Which amino acids are important for metal binding?
290	What are structures of these amino acids?
291	What are the donor atoms? Are they hard, intermediate or soft?
292	How do amino acids form a peptide chain?
293	The peptide bond is special, why?
294	What is the template for protein synthesis?
295	How is the peptide chain lengthened?
	representation

296	Wha	t does crosslinking mear	1?		
297	Wh1	ch amino acids are likely	to bind to met	als?	
298	How	is protein structure defin	ned? Describe	the different structural features.	
299	How	v do the heme proteins m	yoglobin and h	emoglobin fold?	
300	Whe	ere about (wavelength rar	nge) do aromat	ic amino acids absorb in the UV-visible	
301	spec	trum			
302					
303	WR'	T to protein structure - W	hat is hemogle	bbin a good example of?	
304		-	-		
305	WR'	T to protein structure – V	What is plastocy	yanin a good example of?	
306		1	1 5		
307	Iron	Copper, and Zinc are ex	amples of cofa	actor – what are the proteins associated with	th
308	these	e metals? (Mn and Mo a	re not part of th	he Final Exam)	•••
309			le not puit of t		
310	Be a	ble to recognize the impo	ortant rings – h	e able to draw PPIX – chlorophyll a	
311	Wha	at does denaturation mean	n? How can it	be observed? Is it reversible?	
312	vv 11e	a doos denataration mea			
312	Ном	v does Ma ²⁺ become invo	lved in ΔTP et	te 9	
21/	Whe	t is the structure of the n	olynucleotide (abain?	
215	Wha	μ is the structure of the Λ	bases? Be abl	a to recognize them if provided with the	
313 216	vv IIc	it is the shutter of the 4	Dases! <u>De aut</u>	<u>number of hydrogen bonds formed (2 for</u>	, л т
310 217	Stille	for CC)	and the	number of hydrogen bonds formed (2 for a	AI
31/ 210	VS 5	101 (0)			
318 210	Vea			$r_{\rm construction}$ (5.4.4)	
319	Kho	w there is a major/minor	groove - rise	per turn (3.4 A)	
320	D	11 / 1 /1 1 1			
321	Be a	ble to draw the polynucl	eotide chain sh	lowing where the bases are located – this	
322	mea	ns be able to identify a co	orrect sugar-ph	osphate backbone see p 20	
323	Whe	ere does protein formation	n take place in	the cell?	
324				, , , , , , , , , , , ,	
325	Wha	at is the structure of lipids	s - 3 types, sat/	/unsat/polyunsat (which is one your instruc	ctor
326	shou	ild eat, NOT eat?)			
327	Kno	w that all sorts of chemis	stry take place	through the membrane	
328					
329	Stru	cture of prokaryotes vs e	ukaryote cells -	- which are typical of mammals?	
330	<u>Kingdom</u>	When Evolved	Structure	Photosynthesis	
331	Prokaryotes:	-	··· · · · · ·		
332	Bacteria	3 to 4 billion years ago	Unicellular	Sometimes	
333 224	Archaea	3 to 4 billion years ago	Unicellular	No	
334	Protista	1 5 hillion years ago	Unicellular	Sometimes	
336	Fungi	1 billion years ago	Unicellular or	r Multicellular No	
337	Animalia	700 million years ago	Multicellular	No	
338	Plantae	500 million years ago	Multicellular	Yes	

339 340	First free surger in stressphere
340	First free oxygen in almosphere Banded iron (rust) formations appeared in inorganic geochemical record 1.8 BVA
342	Soluble iron (II) oxide (FeO) was oxidized and precipitated out of ocean water as iron (III) oxide (Fe2O3)
343	Source was photosynthetic bacteria.
345	First eukaryotic cells
346	1.5 BYA
347	Shortly after increase in atmospheric O2 killed most anaerobic bacteria (e.g., tetanus).
348 349	First cells to have nucleus and organelles like mitochondria and chloroplasts.
350	Time line
351	4.5 BYA Earth formed
352	3.5 BYA First prokaryotic cell
333	1.5 BYA First eukaryotic cell
354	0.7 BYA Multicellular organisms
333 256	0.53 BYA Cambrian "Explosion"
350	Dise of Multicellular Organisms
358	Kise of Multicellular Organishis Soft-bodied worms, jellyfish appeared 600-700 MVA, but most decomposed by bacteria before they could be fossilized
359	Multicellular organisms (with hard body narts) become abundant at the start of the Cambrian period (about 543 MYA)
360	Diversity "exploded" 530-525 MYA.
361	
362	Precambrian fossils
363	700-544 MYA
364	Multicellular, but soft bodied: worms, algae, jellyfish, cyanobacteria.
365	Few specimens preserved.
366	Probably much more abundant in life than in fossil record.
368	Combring Deriod
369	Californal Ferrou 544 MVA First fossile of "hard bodied" organisms (shells, etc.) appear
370	530-525 MYA An explosive "radiation" of life forms including all the animal phyla (major body plans) in existence today, plus many others now
371 372	long extinct.
373	Fossils of the Burgess Shale
374	515 MYA a major underwater mud slide buried animals into deep, oxygen-free water and so preserved both hard- and soft-bodied diversity, even
375	internal structures (guts)
376	These underwater layers now exposed in an outcropping in the Canadian Rockies.
377	Excavated in early 1900's, then ignored.
3/8	
279 280	Uzone layer 450 MV A star fold in space in stars where 1 and 4 in space in space formation (O2 - lightning > O2)
381	450 MYA a ten-total increase in atmospheric oxygen lead to increase in ozone formation (02lightning> 05)
382	Ozone provided protection from 0 v radiation which had previously been too intense for the to exist on fand.
383	Terrestrial vertebrates
384	350 MYA fish "walked out of the water"
385	Probably not like present-day "walking catfish"
386	
38/	Age of the dinosaurs
200 280	200-65 MYA Disectory filled meet of the nickes accumied by present day memoryly large and small herbiveres and comineres
390	Mammals were present but small-bodied and nocturnal
391	Wannals were present, out sman obtied and notarnal.
392	And so on
592	
393	
394	
395	OUESTIONS
200	What are vitamine? Define the term
390	what are vitaninis? Define the term.
397	How they classified
398	What is the classification of the cobalt containing vitamin?

399	What is a coenzyme?
400	What is an apoenzyme?
401	Holoenzyme?
402	What is the effect of deficiency in vit B12?
03	We didn't cover cobalamin in detail this year 2018 so questions below for interest.
-04	What is the oxidation state of the metal when bound to the axial group?
05	What does cobablamin catalyse ?
06	What is Homocysteine? What is methionine?
07	Why is folic acid connected with B12 activity?
-08	Is there one form of B12?
-09	Name 4 axial groups
10	
11	

412

FROM THE TERM TEST... 413

11	
14	
15 <u>1</u>	<u>IOFIC: ZIIIC</u> Maior points to review:
10 <mark>1</mark>	Zinc is a major part of enzymes
-18	Zn binds to certain amino acids – hard, intermediate and soft donor atoms
19	Catalysis often is due to polarization of H ₂ O or COOH bonds
20	Need to look at the different structures adopted
21	We studied in details CA, CPA and ADH
22	Metallothionein is a key Zn and Cd binding protein – not an enzyme
23	Zn finger proteins use 4 CYS so Zn is structural
24 25	Usual terrestrial distribution aided by man's activities
23 26	CA = key is the activation of CO2 by polarized water
20	CPA – attack of the peptide bond by polarized activated water is the key plus the hydrogen bonds
28	Liver ADH -2 cycles needed $-$ NAD $+$ and the alcohol
29	Zn finger proteins can contain many different loops and therefore a number of Zn atoms are required.
-30	
31	QUESTIONS
-32	What are the common ligands for Zn in biological systems? The donor atoms? The
33	amino acids? The molecules?
34	Name 5 different Zn-containing proteins or enzymes
35	
36	What is Zn essential for in mammals?
37	
38	What does deficiency result in?
39	
40	Under what conditions is severe deficiency found in humans?
41	What is special about metallothionein?
42	
43	What are the ligands in metallothionein?
44	What is the reaction catalysed by CA?
45	What are the ligands for Zn in CA?
46	What is the effect of pH on CA activity? Why is this the case?
40 17	What is the key reaction that Zn is involved with in $C\Delta^2$
47 10	What is a protease?
40 40	What is a processe? Why do we need them?
49 50	How is the Zn bound in CDA?
50 51	Now is the law feature of this reaction? What makes it work?
51	what is the key reature of this reaction? What makes it work?
52 52	What is the vale of water in this was sting?
55	what is the fole of water in this reaction?
54	what do the hydrogen bonds do in CPA?
55	How many Zn are there in liver alcohol dehydrogenase? LADH

456	What are the ligands in the binding site(s) of the $Zn(s)$ in LADH?
457	Why is there a difference? How does the difference relate to the function of LADH?
458	What is the actual reaction catalysed?
459	Is there a 2 nd reaction?
460	What is NADH? Why is iT involved with LADH?
461	Without using formula $-$ describe the oxidation/reduction reaction of NADH
462	
463	TOPIC: Toxic Metals
464	Major points to review: (note that the yellow highlighting identifies key points – the text around those
465	key points amplifies and explains the heading)
466	Know where in the Periodic Table all the key toxic metals are located – know if they are soft,
467 468	intermediate or hard metals.
408	Toxicity depends on speciation $-$ know what changes the speciation $-$ know what increases solubility -
470	very important to know the species that is most toxic
471	Know key metals
472	Know example of mercury – speciation – toxicity – where - when
473	Know cadmium, lead and arsenic
474	Mercury – cations vs methylated forms; Minamata Disease – what, why, where, when, where else
475	Cadmium – only cations – itai itai disease
476	Arsenic 3+ vs 5+; drinking water; protecting wood in the ground
4// 178	Leau Chalators what are they what are their formulae what are their names how do they work describe
479	which used for which metal(s) – be able to recognize the molecules (n 6)
480	Know routes of exposure and toxic response – acute vs chronic
481	Poisoning in not included in the exam.
482	Know the details of the metals, first the summary: -1) lead – the yellow highlighting are the key points
483	-2) cadmium, 3) arsenic, 4) mercury – see the banners for key points about Hg.
484	Chelators – as before – now with metals connected – know top 2 chelators for each metal (Pb, Cd, As,
485	Hg). Where do toxic offects coour?
480	where do toxic effects occur?
48/	OUESTIONS Note there are large number of comments and questions at the and
488 180	of the TOXIC METALS unit as well as here
490	What are toxic metals?
491	Which metals are very toxic?
492	Which are the 4 or 5 most toxic metals? And where are humans exposed to them and
493	what is the overall effect of this exposure?
494	What is the Bertrand diagram? What does it tell us?
495	What sort of diseases do toxic metals cause?
496	Is there any difference in the site of the toxicity for each metal or do they all cause the
497	same sort of damage?
498	Which toxic metals commonly found around the home?

- 499 Why are many toxic metals classified as intermediate or soft?
- 500 What are the primary exposure routes for humans?
- 501 What does acute and chronic mean wrt to toxicity?
- 502 Why are the kidneys and liver prime sites for damage from most toxic metals?
- 503 What does LD50 mean?
- About what quantity represents a super toxic material? What might this be?
- 505 How do metals enter the cell? Name 4 routes
- 506 Why is crossing the blood brain barrier so often referred to when speaking of mercury?
- 507 Why did the Romans have an issue with Pb?
- 508 How is heme synthesis related to the presence of Pb?
- 509 As a follow up think what you could do in your daily life to reduce lead exposure. OR
- 510 how to protect yourself against lead & other metal poisoning
- 511 What does exposure to Pb result in for children?
- 512 Is Pb as deadly in adults?
- 513 How does Pb lead to anemia?
- How has a change in gasoline been mirrored in the humans?
- 515 Where is Pb used in products?
- 516 Where is Pb likely an exposure risk to humans?
- 517 What is the role of D-ala in Pb poisoning?
- 518
- 519 ANS-Pb blocks ALA synthetase so that dALA builds up and heme is not made

538 Where in the world is mercury a current problem?

	Chemistry 22114 That Exam preparation notes Questions and comments to consider
539 540	Are there any elements/compounds that protect mammals from the effects of toxic metals? What are they?
541	What makes a metal toxic?
542	Is it easy to identify a toxic metal?
543	Which metals are absolutely toxic?
544	Which metals may be essential at some concentration?
545	Which metals are always non-toxic?
546	Which As compounds are not toxic?
547 548	A major recent concern from As poisoning has been the chemicals used for pressure- treating wood:
549	How are people exposed to arsenic?
550	Arsenic is the most common cause of acute heavy metal poisoning in adults
551	Why is pressure treated wood such a problem?
552	How significant is the health risk posed by CCA-treated wood?
553	CCA= chromate copper arsenate – dyed green
554	What are currently considered the best methods of making a CCA lumber surface
555	sale from arsenic exposure?
556	How can I minimize arsenic exposure if my child plays on CCA lumber?
557	Can I use CCA-treated wood in fireplaces? In a wood-burning stove?
558	What precautions should I take when handling CCA wood?
559 560	What about arsenic contamination of the soil or sand under and around CCA wood structures?
561	What should I do if CCA wood is in or near my garden?
562 563	How long does CCA lumber continue to be an arsenic exposure hazard? Does risk go down over time?
564	Is there any way to look at CCA lumber surfaces and tell how much arsenic might
565	come off from hand contact?
566	What was Lewisite? Where was it used? What is BAL?
567	What is the concern with As and water?
568	Where does the As come from in water?
569	How many people are affected? Roughly.
570	What are the major symptoms of chronic As poisoning?
571	What is glutathione? How does it bind to As?
572	Where in the world are the worst outbreaks of As poisoning today?
573	Is As a concern only there?
574	What causes the As to be released into the water?

575	What is the concern with Cd?			
576	Does Cd poison like Hg?			
577	Is Cd short lived in the body?			
578	What is the major disease caused by Cd?			
579	Where is Cd used in products?			
580	What are the target organs for Cd damage?			
581	Where does Cd enter the environment from? How are we exposed to Cd?			
582	What is metallothionein's role in Cd metabolism?			
583	What happened in Japan wrt Cd?			
584	How many toxic forms of Hg are there?			
585	Have there been instances of Hg poisoning world wide?			
586	Why?			
587	In Canada? Why?			
588	What are the exposure routes for man?			
589	Where is Hg used in products?			
590	Where are we most usually exposed to Hg?			
591 592	What are the health effects of Hg exposure? Are there differences depending on the form?			
593	How does glutathione become involved with Hg?			
594	Why is Hg ⁰ so dangerous?			
595	Where is the target organ for methyl mercury?			
596	Where are we exposed to methylmercury?			
597	What detoxifying agent that could be used?			
598	Where do fish and shellfish enter into the Hg story?			
599	How? Why?			
600	Is exposure the Hg fast acting or slow?			
601	Can hair be used to assess Hg exposure?			
602	What happened in Minamata? When? Where?			
603	When was the case closed?			
604				
605	Critical questions to consider:			
606	Is it safe to allow effluent from a city (storm sewer) or industrial plants to flow into a river –			
607	assuming that a small amount of any metal will probably precipitate and mix with the sediment			
600 600	or be diluted to such a low concentration that it can't harm any organism?			
610 611	All discharges of toxic metals are prohibited in Canada and have not occurred for the last 100 years since we understaood that some metals were toxic.			

612									
613	Comment on this report from the USA - : "For years, the EPA and the Army Corps of Engineers								
614	have maintained the discharges into the Potomac have no effect on the river or its aquatic life,								
615	including the short-nose sturgeon. One discharge is released through the C&O National Historic								
616 617	Park. Preliminary analysis of sludge being dumped into the Potomac River by the Army Corps								
618	selenium. " BUT also consider the statement from the manager. The arsenic discharges are one								
619	to two parts per billion in ray	to two parts per billion in raw water, the aqueduct manager said. He would not address the other							
620	elements until he could review the laboratory findings, but said they should be present only in								
621	nondetectable or trivial amou	unts. What is your o	ppinion? What wo	uld you do?					
622									
623	Are there different effects depending on the dose of a toxic metal?								
624	How dangerous is mercury?								
625	Are we exposed to Hg routinely in our daily lives?								
626	Are the fish safe to eat?								
627	What is the problem with river	What is the problem with rivers in Ontario? Explain the origins of the Hg in rivers.							
628	Why is this Hg so deadly? What happens next, how?								
629	And, where in medicine do we	And, where in medicine do we become exposed to Hg?							
630	How is heme synthesis related	How is heme synthesis related to the presence of Pb?							
631	See above								
632	Qu. As a follow up – think what	Qu. As a follow up – think what you could do in your daily life to reduce lead exposure.							
633	OR How to Protect Yourself A	gainst Lead & Oth	ner Metal Poison	ning					
634			_						
635	CHELATION THERAPY A	ND CHELATOR	<u>S</u>						
636	What is chelation therapy?								
637	How is it applied?								
638	How does it work?								
639	What makes a 'perfect' chelator?								
640	what are the molecules used commonly today?								
641 642	Can you draw their structures?								
643	w hat is a common theme betw	cen ine cherating	noiccules and u	ne metals mey cherate?					
	Chelating Agent	Toxin	Route**	Drug					
	Dimercaprol (BAL)	Arsenic Lead Mercury (inorganic)*	i.m.	Dimercaptol Injection B.P. BAL in Oil					

D-pencillamine	Arsenic Mercury Lead	p.o.	Metalcaptase Pencillamine Cuprimine Depen
Ethylenediamintetra- acetic acid (EDTA) (Edetate disodium)	Lead	IV	Chealamide Versenate
*Not mothylmoroury poisoning			

*Not methylmercury poisoning.

Source: Data from Beers et al. 1999; Micromedex 1999; Roberts 1999; Wentz 2000; Anon. 2001; Ferner 2001; Marcus 2001; USNML/NIH Drug Information 2001a; 2001b; 2001c; 2001d.

644

645 What about the biological chelators metallothionein? – See below for a follow up 646 question.

647 Qu. Explain how this molecule might act as a chelators. Which metals would you 648 predict it would bind. Why? What is is most like as a molecule?

649 650

651

652

653

654

655

656 657

663

668

669

670

QU: Discuss the reason for the following statements that concern the protein metallothionein – first –

- what is metallothionein?
- What is its role in the cell?
 - What type of metal binding protein is it?
- What are the metal binding ligands?
- 658 High metallothionein may be indicator of heavy metal toxicity, especially for cadmium 659 and mercury.
- Low reduced glutathione is indicator of genetic diseases as well as indicator of exposureto toxic halogenated chemicals and heavy metals
- Low reduced glutathione may decrease function of metallothionein

664 Qu. Consider the following statements. The assumption is that both Zn and Cu are 665 absorbed from the diet – so what type of toxic effect is this going to be? What would you 666 consider could be the role of metallothionein? What is your view – considering all the 667 information?

The idea is that if *MT* is low, then metals cannot be removed as quickly as needed. This may lead to higher copper levels. So the idea is to get *MT* levels up to help bring copper (or other metals

	Chemistry 2211a Final Exam preparation notes – Questions and comments to consider
671	or toxins) down. MT needs 7 molecules of zinc to 'activate' and capture some metals/toxins. If
672	zinc is low, it is hard to get MT functioning well.
673	Let's say you start giving zinc which activates some MT. Let's say the MT grabs some copper.
674	So when you supplement with too much zinc too fast, you fill up the MT you have. Well, the MT
675	then leaves the body with the copper it grabbed along with the 7 molecules of zinc - or at least a
676	chunk of them. So now you are deficient 7 zincs although you did get out some copper at the
677	same time.
678	
679	You give more zinc, more MT is made, takes more zincs, MT is activated, it grabs more copper
680	and leaves the body taking the toxin and all the zincs along with it. The MT may not exclusively
681	grab the zinc from the supplement you take. It might take some from the supplement source and
682 692	the rest from other places in your boay. If you were sort of deficient anyway and the MI is
003	souking up all the zinc, you become more deficient even though you supplement. The M1 is
684	soaking the zincs up even though it is also removing some of the copper or whalever loxin.
685	
686	Mg and photosynthesis
687	
688	Know the chlorophyll molecule
689	Know the structures of the key molecules along the chain
690	Know the oxidation numbers of the key accessory molecules PQ NADPH FD
691	Know the ribulose molecules and that cycle
692	Know the oxygen evolving complex molecule and its cycle
693	Be able to describe why PQ is so important to the electron
694	Be able to spell thylakoid correctly!! Lumen? Stroma?
695	
696	Revision –r18-cD 2018 Final Exam