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Spin-orbit term in H induces coupling of orbital and spin angular momenta to give
total angular momentum:

J=L+S

-splits Russell-Saunders multiplets into their components labeled by the J quantum number.
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- recall:

- A deeper analysis shows that this result is related to commutation relations for L operators.
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Since S and J obey the same relations: (2 J+ l)a
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Since L = integer and S = integer or Y2-integer

Means J can be an integer or Y4-integer

|

no problem problem

Consider a proper rotation through an angle a + 2x

i @302 o5
7(D,(a+27))= { Sinz[wz(j)]} 1) }
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.+ sin(A+ B) = sin(A)cos(B )+ cos(A)sin(B)

o B feofa ] (21 4[D, ()]
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J = integer 2D (e +27)]= 2[D, ()] as expected

However, when J = s-integer (odd # of electrons)

Z[DJ (a + 2”)] = _Z[DJ (a)]

This behaviour arises because state functions are spinors (orbital x spin function)

and not vectors.
Need a new operator: £ = R(zﬂ', I’l) zE= R(O, n)

Adding E to the group G = {R} gives a double group G

with elements {R}+E{R}
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What about Improper Rotations?
IfieG, iy =4y’

and Z(Df(lR ))= iZ(DJi(R))

it 1¢G,7(D,(IR))=7(D,(R))

These rules hold for J integer or }2-integer, and
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IR here means improper rotation

so for L and S also.
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Note: C_; contains 2 x # elements of G (hence the name), but not necessarily 2 x # classes
The number of new classes in G are given by Opechewski’s Rules

1.) 62[1 = ECZH and C,, are in the same class iff there is another C, axis with a rotation axis

perpendicular to n

2) én = ECH are always in different classes if n # 2

3.) forn>2, C Kand C * are in the same class, and so are C, and C;*
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Let

1 (a+27)=(1)" 7,(@)= #[R(a.n)]

Equations work for integer and '4-integer J-values

Note: the characters of the new classes ék of G are for integer J the same as those

of the classes C, of G, but for /2-integer J have the same magnitude but opposite sign.

The new representations for G by %-integer J are called spinor representations
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Labels for D, representations

1.) Bethe’s notation: I'; where j = the number of integer values necessary to label all
the spinor represntations.

2.) Mulliken-Herzberg notation: IRs are labelled E, G, H, ... according to their
dimensionality 2, 4, 6, with a subscripts J which corresponds to the representation D, in
which the IR first occurs

Example: O
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All new representations generated by half-integer J are at least 2-fold degenerate
in any electrostatic field = Kramer’s Theorem
Further splittings are possible in a magnetic field.

For inversion symmetry:

O\ even (gerade)

) U e
1.) Bethe’s notation: Fj ") odd (ungerade)

2.) Mulliken-Herzberg notation: use superscripts g and u.
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Weak Crystal Fields

Means weaker than HES‘
Therefore a weak crystal field acts on the components of the Russell-Saunders multiplets.

Depending on their degeneracy these components may undergo further splittings in a
weak crystal field.

Example: In O the following splittings:

D, =T,
5 =T, @r,
y=T,@r, @,
5 =T @2,

{I'; that given in Table}

D Selected spin-orbit components

D
D
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Question:

Examine the effect of spin-orbit coupling on the states that result
from an intermediate-field of O symmetry on the Russell-Saunders multiplet *F.

Correlate these states with those produced by a weak crystal field of O symmetry on
the components produced by spin-orbit coupling on the 4F multiplet.

Answer:

4F implies L =3 in an intermediate field = A, @T,®T, =1, @', ®T

To examine the effect of spin-orbit coupling on the intermediate field use y = ¢y where
¢! forms a basis for I'" and ¥/ forms a basis for 1. This means y = ¢’y forms a basis for the
direct product ' ® I

3 )
w2S+1=4=S==- .. I'=D, =TI
2 Z
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S T,®I, =T,
I,®I, =T, @&, ®2I,
I,®I,=I @&, ®2r,

Final correlation diagram on the next slide:
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Splitting of the *F state in weak and intermediate fields of

cubic symmetry.
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