

Spin-orbit term in H induces coupling of orbital and spin angular momenta to give total angular momentum:

 $\vec{J} = \vec{L} + \vec{S}$

 $\chi(D_L(\alpha)) = \frac{\sin\left[\frac{(2L+1)\alpha}{2}\right]}{\sin\left(\frac{\alpha}{2}\right)}$

-splits Russell-Saunders multiplets into their components labeled by the J quantum number.

- recall:

- A deeper analysis shows that this result is related to commutation relations for L operators.

Since S and J obey

the same relations:

$$\Rightarrow \chi(D_J(\alpha)) = \frac{\sin\left[\frac{(2J+1)\alpha}{2}\right]}{\sin\left(\frac{\alpha}{2}\right)}$$
Spin-orbit coupling and double 2

 $\therefore J \equiv \text{integer } \chi[D_{J}(\alpha + 2\pi)] = \chi[D_{J}(\alpha)] \text{ as expected}$ However, when $J \equiv \frac{1}{2}$ -integer (odd # of electrons) $\chi[D_{J}(\alpha + 2\pi)] = -\chi[D_{J}(\alpha)]$ This behaviour arises because state functions are spinors (orbital x spin function) and not vectors. Need a new operator: $\overline{E} = R(2\pi, n) \neq E = R(0, n)$ Adding \overline{E} to the group $G = \{R\}$ gives a **double group** \overline{G} with elements $\{R\} + \overline{E}\{R\}$ Spin-orbit coupling and double

Characters of the matrix representatives
of D_r for large integral T
For
$$R(x, \frac{3}{2}), X_{T}(x) = \frac{\operatorname{aui}(T+\frac{1}{2})x}{\operatorname{aui} \frac{1}{2}x}$$

 $For \overline{R}(x, \frac{3}{2}) = \overline{E}R(x, \frac{3}{2}), X_{T}(x+2\pi) = (-1)^{2T}X_{T}(x)$
 $\overline{\frac{E}{x}} \frac{C_{2}}{x} \frac{C_{3}}{x} \frac{C_{4}}{x} \frac{T_{2}}{x} \frac{T_{2}}{x}$

Let
$$\chi_J(\alpha) = \frac{\sin\left[\frac{(2J+1)\alpha}{2}\right]}{\sin\left(\frac{\alpha}{2}\right)} = \chi_J[R(\alpha, n)]$$

 $\chi_J(\alpha + 2\pi) = (-1)^{2J} \chi_J(\alpha) = \chi[\overline{R}(\alpha, n)]$
Equations work for integer and ½-integer **J**-values
Note: the characters of the new classes \overline{C}_k of \overline{G} are for integer **J** the same as those of the classes C_k of G, but for ½-integer **J** have the same magnitude but opposite sign.

The new representations for \overline{G} by $\frac{1}{2}$ -integer **J** are called **spinor representations**

Spin-orbit coupling and double groups

8

Labels for D _J representations					
1.) Bethe's notation: the spinor represntati	Γ_j where $j \equiv$ the number of integer values necessary to label all ons.				
2.) Mulliken-Herzbe dimensionality 2, 4, which the IR first oc	erg notation: IRs are labelled E, G, H, according to their 6, with a subscripts J which corresponds to the representation D_J i curs	in			
Example:	\overline{O}				
	Spin-orbit coupling and double	q			
	groups	-			

0	3C ₂ 6C ₂	E 8C3 6C4		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(x, y, z)(R_x, R_y, R_z)$	$x^{2} + y^{2} + z^{2}$ $(x^{2} - y^{2}, 2z^{2} - x^{2} - y^{2})$ (xy, xz, yz)
$ \begin{array}{c} F_{b} & E_{1/2} \\ F_{7} & E_{5/2} \\ F_{8} & G_{3/2} \\ D_{7}^{5/2} \\ D_{7}^{1/2} \\ F_{7} \end{pmatrix} + D_{7/2} \\ Reduction \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{12} = \frac{1}{2} \frac{1}{2} + \frac{1}{2}$	the new representations: + $3^2 + l_b^2 + l_7^2 + l_8^2 = 48$ $l_b = 2$, $l_7 = 2$, $l_8 = 4$ 1(4) + 8(1) + 6(2) + 1(4) + 8(1) + 6(2)
ar, ar, D ₇ ,	$= \frac{1}{48} \begin{bmatrix} 16 + 8 + 16 \\ 16 + 8 + 16 \end{bmatrix}$ $= \frac{1}{48} \begin{bmatrix} 16 + 8 + 16 \\ 16 - 8 + 16 \end{bmatrix}$	$\begin{array}{c} + 8 \\ + 8 \\ \end{array} = 1 \\ + 8 \\ \end{array}$	$ \begin{array}{c} = \\ \mathbb{D}_{3/2} : & \sum_{\tau} \chi_{i}(\tau) ^{2} = \\ & \tau & \dots & \mathbb{D}_{3/2} \end{array} $	$48 = \overline{g} \therefore \ D_{1/2} \text{ is an } IR, \\ \Gamma_6 \text{ or } E_{1/2} \\ I(16) + 8(1) + I(16) + 8(1) = 48 = \\ \text{is an } IR, \ G_{3/2} \text{ or } \Gamma_8.$
.,	6 0 - · p		$D_{s/2} : \sum_{\tau} \chi_{1}(\tau) ^{2} =$ $a_{\tau_{6}} = \frac{1}{48} [i(2)(6) + 6(1-6)(1-6)(1-6)(1-6)(1-6)(1-6)(1-6)(1-6$	$i(34) + 6(2) + 1(36) + 6(2) = 96 >$ $\therefore \text{reducide}$ $i[2](-i[2]) + 1(-2)(-6) + 6(-i[2])(i[2])] = 0$ $(-4](-6)] = \frac{49}{49} = 1$

Question:

Examine the effect of spin-orbit coupling on the states that result from an intermediate-field of O symmetry on the Russell-Saunders multiplet ⁴F.

Correlate these states with those produced by a weak crystal field of O symmetry on the components produced by spin-orbit coupling on the ⁴F multiplet.

Answer:

⁴F implies L =3 in an intermediate field $\Rightarrow A_2 \oplus T_1 \oplus T_2 = \Gamma_2 \oplus \Gamma_4 \oplus \Gamma_5$

To examine the effect of spin-orbit coupling on the intermediate field use $\psi = \phi^i \chi^j$ where ϕ^i forms a basis for Γ^i and χ^j forms a basis for Γ^j . This means $\psi = \phi^i \chi^j$ forms a basis for the direct product $\Gamma^i \otimes \Gamma^j$

$$\therefore 2S + 1 = 4 \Longrightarrow S = \frac{3}{2} \qquad \therefore \Gamma^{j} \equiv D_{\frac{3}{2}} \equiv \Gamma_{8}$$

Spin-orbit coupling and double groups

13

Spin-orbit coupling and double groups

14

Splitting of the ⁴F state in weak and intermediate fields of cubic symmetry.

$$\frac{4}{F_{\frac{\pi}{2}}} (10) - \frac{\Gamma_{\frac{\pi}{2}}(12)}{\Gamma_{\frac{\pi}{2}}(12)} -$$