

Determining geological ages

Relative dating – placing rocks and events in their proper sequence of formation

• Numerical (absolute) dating – specifying the actual number of years that have passed since an event occurred (known as absolute age dating)

- Matching of rocks of similar ages in different regions is known as correlation
- · Correlation often relies upon fossils
 - William Smith (late 1700s) noted that sedimentary strata in widely separated area could be identified and correlated by their distinctive fossil content
 - Principle of fossil succession fossil organisms succeed one another in a definite and determinable order, and therefore any time period can be recognized by its fossil content

Carbon-14 becomes incorporated into carbon dioxide, along with the more common carbon-12, which circulates in the atmosphere and is absorbed by living things (all organisms, including us, contain a small amount of carbon-14)

As long as the organism is alive, the proportions of carbon-12 and carbon-14 remain constant due to constant replacement of any carbon-14 that has decayed

But...

ldition to Carbon-14, other radioisotopes can be used for dating old samples must rely on radioisotopes with longer half lives)		
Uranium-238	Lead-206	4.5 billion years
Uranium-235	Lead-207	713 million years
Thorium-232	Lead-208	14.1 billion years
Rubidium-87	Strontium-87	47.0 billion years
Petersium 40	Argon-40	1.3 hillion years

Example: Potassium-Argon

89% of potassium-40 decays to calcium-40 (by electron loss)

11% of potassium-40 decays to argon-40 (by electron gain)

Calcium-40 is not useful in dating (can't be distinguished from other isotopes of calcium that may have been present when the rock formed)

But

Argon-40 is a gas that doesn't combine with other elements and becomes trapped in crystals (so amount produced by decay can be measured)

Igneous rocks, both intrusive and extrusive, come from magma- potassium minerals can be dated

To determine age, the potassium-40/argon-40 ratio is measured and the half life of K-40 is applied

So now, we have a means of bracketing periods of time in rock sequences, and can apply absolute dates to important events in earth history

Using radioactivity in dating

- Difficulties in dating the geologic time scale
 Not all rocks can be dated by radiometric methods
 - Grains comprising clastic sedimentary rocks are not the same age as the rock in which they formed (have been derived from preexisting rocks)
 - The age of a particular mineral may not necessarily represent the time when the rock formed if daughter products are lost (e.g. during metamorphic heating)
 - To avoid potential problems, only fresh, unweathered rock samples should be used

Geologic time scale

- A product of both relative and absolute dating is the geological time scale
- The geologic time scale is a "calendar" of Earth's 4.5 billion year history
 - Subdivides geologic history into units for easy reference
 - · Originally created using relative dates
 - Absolute dates later applied with development of radiometric dating techniques

