Rocks as time machines: principles of geologic time

Determining geological ages

- Relative dating - placing rocks and events in their proper sequence of formation
- Numerical (absolute) dating - specifying the actual number of years that have passed since an event occurred (known as absolute age dating)

Principles of relative dating

- Principle of original horizontality
- Layers of sediment are generally deposited in a horizontal position
- Rock layers that are flat have not been disturbed

Highly disturbed (deformed)

Undisturbed (flat-lying)

Unconformity

- An unconformity is a break in the rock record produced by erosion and/or nondeposition of rock units
- Represents "lost time"
- Types of unconformities
- Angular unconformity - tilted rocks are overlain by flat-lying rocks
- Disconformity - strata on either side of the unconformity are parallel
- Nonconformity - metamorphic or igneous rocks in contact with sedimentary strata

Correlation of rock layers

- Matching of rocks of similar ages in different regions is known as correlation
- Correlation often relies upon fossils
- William Smith (late 1700s) noted that sedimentary strata in widely separated area could be identified and correlated by their distinctive fossil content
- Principle of fossil succession - fossil organisms succeed one another in a definite and determinable order, and therefore any time period can be recognized by its fossil content

- Basic atomic structure
- Atomic number
- An element's identifying number
- Equal to the number of protons in the atom's nucleus
- Mass number
- Sum of the number of protons and neutrons in an atom's nucleus

- Isotope
- Variant of the same parent atom
- Differs in the number of neutrons
- Results in a different mass number than the parent atom
- For example, carbon-12 has 6 protons and 6 neutrons, whereas carbon-14 has 6 protons and 8 neutrons
- Radioactive decay
- A process in which parent atoms spontaneously change in structure to produce daughter atoms and energy
- In some cases, this decay produces a different isotope (atoms of the same element with a different number of neutrons)
- In other cases, this decay produces an entirely different element via loss or gain of protons, neutrons or electrons

A Familiar Example: Carbon-14

Carbon-12 (with 6 protons and 6 neutrons) is the most common isotope of carbon.

Carbon-14 is an rarer isotope of carbon that is produced by the bombardment of nitrogen-14 (with 7 protons and 7 neutrons) by rogue neutrons

Nitrogen-14 gains 1 neutron but loses 1 proton, changing it to carbon-14 (atomic mass stays the same, but atomic number changes)

Nitrogen-14
atomic numb
atomic number 7
atomic mass
14
 atomic number 6
atomic mass 14

Carbon-14 becomes incorporated into carbon dioxide, along with the more common carbon-12, which circulates in the atmosphere and is absorbed by living things (all organisms, including us, contain a small amount of carbon-14)

As long as the organism is alive, the proportions of carbon-12 and carbon-14 remain constant due to constant replacement of any carbon-14 that has decayed

But...

When the organism dies, the amount of carbon-14 gradually decreases as it decays to nitrogen-14 by the loss of an electron (so one neutron is changed to a proton)

By comparing the proportions of carbon-14 and carbon-12 in a sample of organic matter, and knowing the rate of conversion, a radiocarbon date can be determined

If parent:daughter ratio is 1:1 (1/2 original amount of parent remaining) one half-life has passed
If parent:daughter ratio is $1: 3$ ($1 / 4$ original amount of parent remaining) two half-lives have passed
If parent:daughter ratio is $1: 7$ (1/8 original amount of parent remaining) three half-lives have passed
If parent:daughter ratio is $1: 15$ (1/16 original amount of parent remaining) four half-lives have transpired

In other words, each half-life represents the "halving" of the preceding amount of parent isotope

So:

1. If the half-life of carbon-14 is 5730 years
2. If $1 / 16$ of the original amount of parent remains..

Then we can deduce that..

1. 4 half lives have passed
2. The age of the sample is 4×5730 years $=22,920$ years!

Other useful radioisotopes

In addition to Carbon-14, other radioisotopes can be used for dating (very old samples must rely on radioisotopes with longer half lives).

	Stable Daughter Product	Currently Accepted Half-life Values
Uranium-238	Lead-206	4.5 billion years
Uranium-235	Lead-207	713 million years
Thorium-232	Lead-208	14.1 billion years
Rubidium-87	Strontium-87	47.0 billion years
Potassium-40	Argon-40	1.3 billion years

All of the above radioisotopes occur in minerals found in rocks (generally igneous rocks).

Example: Potassium-Argon

89% of potassium- 40 decays to calcium- 40 (by electron loss)
11% of potassium-40 decays to argon-40
(by electron gain)
Calcium-40 is not useful in dating (can't be distinguished from other isotopes of calcium that may have been present when the rock formed)

But
Argon-40 is a gas that doesn't combine with other elements and becomes trapped in crystals (so amount produced by decay can be measured)

Using radioactivity in dating

- Difficulties in dating the geologic time scale
- Not all rocks can be dated by radiometric methods
- Grains comprising clastic sedimentary rocks are not the same age as the rock in which they formed (have been derived from preexisting rocks)
- The age of a particular mineral may not necessarily represent the time when the rock formed if daughter products are lost (e.g. during metamorphic heating)
- To avoid potential problems, only fresh, unweathered rock samples should be used

Importance of radiometric dating:
• Rocks from several localities have been dated
at more than 3 billion years
immense
imfirms the idea that geologic time is

Geologic time scale

- A product of both relative and absolute dating is the geological time scale
- The geologic time scale is a "calendar" of Earth's 4.5 billion year history
- Subdivides geologic history into units for easy reference
- Originally created using relative dates
- Absolute dates later applied with development of radiometric dating techniques

Importance of Dating Rocks

Rocks contain valuable information on physical, chemical, and biological processes in the Earth's past

It is only through relative and numerical dating that we can put these processes in the context of time

Bottom line: Theories can be made on what might have happened in the Earth's past, but it is geology that tells us what did happen. Rocks are our only basis for interpreting the Earth's history !

