## Geological contacts

Primary contacts:

- Depositional
  - Conformity
  - Unconformity:
    - Disconformity (parallel unconformity)
    - Unconformity (angular unconformity
    - Non-conformity
- Intrusive

Tectonic contact fault

### <u>Note the relative time</u> <u>relationship between units</u>



### **Three Types of Unconformities**

### Formation of a disconformity



Figure 10.6c

Copyright © W. W. Norton & Company

### Formation of angular unconformity and nonconformity



Figure 10.6a, b

Copyright © W. W. Norton & Company



- Geological mapping is essentially: 1) putting important geological contacts onto a base topographic map, 2) putting geol measurement on the map.
- Note geological contacts are complicated surfaces; they are NOT lines!
- A lot is learned about Earth history from geological mapping.

### Attitudes of Planes and Lines

The first thing to do in a structural study is to determine the orientation of various structures.

Any structure can be reduced to planar and linear elements.

Let us therefore start with attitudes of planes and lines.

- <u>Attitude</u>: general term for the orientation of a plane or line in space.
- <u>Azimuth</u>: the angle of a horizontal line with respect to the North measured clockwise.
- <u>Trend</u>: the direction of a line in a horizontal plane, specified by its azimuth.

#### <u>The direction can be expressed in either azimuth or</u> <u>quadrant format.</u>

Strike and Dip of a plane Horizontal planes Vertical planes (strike) Dipping planes True and Apparent dips

## Relation between true and apparent dips

•  $tan (\delta) = tan (\alpha) cos (\beta)$ 

where  $\alpha$  is true dip,  $\delta$  apparent, and  $\beta$  is the angle between true dip-direction and apparent dip direction.



Derive the formulae by solving right-angle triangles (OCH, ODG, and ODC); <u>review trigonometry</u>...

Construct the paper model!!

# Statement of the dip of a plane

 Strike, dip, dip-direction indicator examples:

> 030°, 60°E; 030°, 60°W; 310°, 70°NE; N30°E, 60°E; S30°W, 60°W

- 2. Strike, dip (implying righthand rule), examples: 030°, 60°; 210°, 60°; 310°, 70°
- 3. Dip, dip-direction, examples: 30°, 260°

### Attitudes of Lines

### Plane dips and line plunges!

Plunge of a line

Vertical lines: need no further qualification Horizontal lines: need specification of trend (azimuth) Plunging lines: trend (direction of plunge) & angle of plunge



## Thickness of a bed

Thickness of vertical beds

Thickness of horizontal beds

Thickness of dipping beds



 $t = h \sin \alpha$ 



t = (h – v/tan  $\alpha$ ) sin  $\alpha$  = h sin  $\alpha$  – v cos  $\alpha$ 



 $t = h \, \sin \, \alpha - v \, \cos \, \alpha$ 

## Geological Maps

A geological map shows the distribution of bedrocks in an area. It usually consists of:

- Topographic map (base map)
- Contacts between different rock units
- Structural measurements
- Scale
- Cross sections (and block diagrams)
- Stratigraphic column