<u>Strain Ellipsoid</u> and <u>Deformation Path</u>

- Strain of <u>a line</u>
 - Longitudinal strain
 Elongation
 Stretch
 Natural strain
 - Shear strain of a line
 - Step 1: Identify another line that initially (in the undeformed configuration) at 90 degree with this line
 - **Step 2:** Find the angle between the above two lines (ϕ)
 - **<u>Step 3</u>**: The deviation of ϕ from 90 degree is the shear angle (ψ). Pay attention to the sign of the shear angle (+ cw, ccw).

<u>Step 4</u>: The shear strain γ is tan ψ .

 How about strain of a continuous body which is 3 D?

Volume strain

- Dilation = (Vf-Vi) / Vi
- Volume stretch = Vf/Vi

Natural Strain increments are additive

Strain Ellipse (Ellipsoid)

Strain Ellipse/Ellipsoid

- Lines parallel to the long axis of the ellipse have the maximum extension and stretch (e₁, S₁)
- Lines parallel to the short axis have the least extension and stretch (e₃, S₃)
- If the initial circle has radius of 1, the final lengths of the two semiaxes of the ellipse are respectively S₁ and S₃
- All above statements are applicable in 3D cases. In a strain ellips<u>oid</u>, three semi-axes are S₁, S₂, S₃.

Principal strains and Principal strain axes

- The longitudinal strains along the three axes directions (S₁ > S₂ >S₃) are called <u>principal</u> <u>strains</u>
- The three axes (orientation) are called principal strain axes
- Remarkably, shear strains along principal strain axes are zero!!

Strain measurement

 Determination of the state of strain in the rock using various techniques including deformed fossils and other strain markers (E. Cloos 1947, deformed oolites in South Mountain, Maryland)

Deformed pebbles

Shape of Strain Ellipsoid – the Flinn Diagram

- Plane-strain: If the deformation is restricted in 2D, i.e., in the 3rd dimension, there is no strain, the deformation is said to be of <u>plane</u> <u>strain.</u>
- Uniaxial extension: extension along one direction S₁>S₂=S₃.
 - What does the strain ellipsoid look like?
- Pure flattening: $S_1 = S_2 > S_3$
 - What does the strain ellipsoid look like?

K = ∞