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INTRODUCTION
Banded iron formations (BIFs) record chang-

ing environmental conditions and are a precur-
sor to the world’s largest iron ore deposits. Vast 
volumes of BIFs were deposited on passive 
margins from ca. 2.6 Ga to the Great Oxygen-
ation Event (GOE) at ca. 2.4 Ga (e.g., Beukes 
and Gutzmer, 2008). After 1.85 Ga, formation 
of iron formations essentially ceased until a 
restricted resurgence in the late Neoproterozoic 
(Young, 1976; Klein and Beukes, 1993) and 
more recent minor occurrences.

The temporal distribution of BIFs records a 
complex interplay between a cooling Earth and 
changes in mantle plume events, continental 
growth and tectonics, evolution of the biosphere 
and an increased fl ux of iron to the hydrosphere, 
which in turn had a fundamental control on the 
oxygen contents of the hydrosphere and redox 
state of the oceans (Isley and Abbott, 1999; Hol-
land, 2005; Bekker et al., 2010). In most giant 
Paleoproterozoic BIF-hosted iron ore deposits 
(~35 wt% Fe) the formation of high-grade (>58 
wt% Fe) iron ore from Lake Superior–type 
BIF is thought to have occurred post 2.2 Ga, 
after the GOE (Taylor et al., 2001; Rasmussen 
et al., 2007; Thorne et al., 2009), so the BIF-
ore upgrade provides a record of the changing 
chemistry of the hydrosphere and atmosphere in 
the Paleoproterozoic.

In the Hamersley province, Western Austra-
lia, the BIF-ore upgrade is proposed to involve 
basinal brines, meteoric fl uids, and supergene 
enrichment (e.g., Morris et al., 1980; Barley 
et al., 1999; Taylor et al., 2001; Thorne et 
al., 2004, 2008). Silica removal is proposed 
to occur by upward, down-temperature fl ow 
of basinal brines (e.g., Thorne et al., 2004; 
Gutzmer et al., 2006; Thorne et al., 2008), and 
it is this stage of the BIF-ore upgrade that is 
explored in this paper.

The challenge for models that involve 
removal of SiO2 from BIF by down-temperature 
fl ow is that quartz solubility decreases with 
decreasing temperature (e.g., Manning, 1994), 
so fl uid that moves down-temperature is a poor 
agent for quartz removal, unless large volumes 

of fl uids enter the BIF in a silica-undersaturated 
state. Here, we combine numerical constraints 
with petrological, geochemical and isotopic 
characteristics of BIF-hosted iron ore from the 
Hamersley province, Western Australia, to con-
strain the conditions associated with silica loss 
and carbonate precipitation, and discuss the 
fi ndings in the context of the temporal evolution 
of the world’s atmosphere and oceans.

DEPOSIT SCALE PARAGENESIS
The mineralogy of BIF, hydrothermally altered 

BIF, and iron ore varies (e.g., Thorne et al., 2004; 
Rosiere et al., 2008; Mukhopadhyay et al., 2008; 
Angerer and Hagemann, 2010) but some features 
are suffi ciently common to allow generalization. 
BIF protolith (Figs. 1A, 1B1, and 1B2) consists 
of magnetite- and chert-rich bands, iron silicates 
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Figure 1. A: Commonly observed banded iron formation (BIF) alteration stages related to the 
formation of iron ore and their characteristics. B(b1–b8): Polished blocks and photomicro-
graphs of the typical alteration stages. mplH—microplaty hematite; mar—martite. C: Results 
of mass balance calculations to determine the relative distances moved by decarbonation, 
desilicifi cation and oxidation fronts. Values indicate distance traveled by front relative to the 
carbonation front for a solution with 1 mol L−1 CO2.
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± diagenetic carbonates. Initial hydrothermal 
alteration (Figs. 1A, 1B3, and 1B4), which may be 
gradational, involves conversion of some of the 
silicates to carbonates. Subsequently, chert and 
quartz are replaced by iron-bearing carbonate 
with, in some cases, conversion of magnetite to 
hematite, often with no apparent change in vol-
ume. Reaction fronts may be gradual (millimeter 
to decimeter scale) or knife-sharp on the scale 
of individual bands.  Quartz may be precipitated 
locally in fault zones within shear veins (e.g., 
Hagemann et al., 1999; Thorne et al., 2010). 

The carbonate-bearing alteration assemblage 
(Figs. 1A, 1B5, and 1B6) is separated from almost 
pure (hypogene) hematite iron ore (Figs. 1A, 
1B7, and 1B8) by a sharp or gradational reaction 
front. Carbonate loss is thought to occur without 
iron mobility on a scale greater than a few cm 
(Taylor et al., 2001). Carbonate dissolution con-
tinues in the weathering environment.

Upgrade of BIF in the Hamersley province, 
Western Australia, is thought to have occurred 
from 2.15 Ga onwards during the waning stages 
of the Opthalmian orogeny (Rasmussen et al., 
2007). There is evidence for extensional faulting 
and orogenic collapse at the proposed time of 
ore upgrade (Müller et al., 2005) and it has been 
suggested that topographic relief drove circula-
tion of surface-derived waters through the fault 
system at this time (e.g., Hagemann et al., 1999; 
Oliver and Dickens, 1999).

Constraints on ore upgrade in the Hamer-
sley are provided by fl uid inclusion, isotopic, 
and halide concentration measurements. Fluid 
inclusions in carbonates are hypersaline, up to 
24 wt% CaCl2 equivalent, which were trapped at 
temperatures between 150 and 400 °C (Thorne 
et al., 2004; Brown et al., 2004), mainly at the 

lower end of this range. Quartz-hosted fl uid 
inclusions (e.g., Brown et al., 2004) records 
periods of quartz growth, not quartz removal, 
so such inclusions may record either a different 
event, or a later stage of the silica dissolution 
event that is of interest here.

Iron oxide oxygen isotopes in unaltered 
BIF have δ18OVSMOW (Vienna Standard Mean 
Ocean Water) between 4‰ and 13‰, whereas 
hematite and magnetite in altered and miner-
alized rocks have δ18OVSMOW between −9‰ 
and −2.9‰ (Thorne et al., 2009). Carbon iso-
topes of carbonate minerals lie between −10‰ 
and 0‰, relative to Vienna Peedee belemnite 
(VPDB). The lower values are typical of unal-
tered BIF. Values in altered rocks could record 
equilbrium with either Paleoproterozoic ocean 
water or dolomite in the underlying Wittenoom 
Formation. Fluid inclusion Na/Br and Cl/Br 
ratios record overlapping populations of fl uids: 
(1) seawater that has evaporated to halite satu-
ration; and (2) meteoric waters that interacted 
with evaporites (Thorne et al., 2010).

CONSTRAINTS ON  SILICA REMOVAL 
AND CARBONATE PRECIPITATION

Fluids in Equilibrium with BIF
Quartz solubility is sensitive to pressure, tem-

perature (e.g., Manning, 1994), pH (Busey and 
Mesmer, 1977), and salinity (e.g., Shmulovich 
et al., 2006). Quartz and carbonate solubilities 
were calculated as a function of pressure, tem-
perature and salt content (Fig. 2) using the 
methods outlined in the GSA Data Repository1. 
Calcite, rather than iron carbonate was used for 
the models because data for iron carbonates is 
sparse, but similar trends for iron carbonates are 

expected. Temperature is the fi rst order control 
on quartz solubility, whereas calcite solubility 
depends strongly on pressure (Fig. 2A). Salin-
ity-driven mineral precipitation/dissolution is 
minor for geothermal gradients <50 °C km−1 
(Fig. 2B).  There is no geothermal gradient for 
which silica dissolution is accompanied by car-
bonate precipitation in the observed quantities, 
so it is necessary to consider infi ltration of out-
of-equilibrium fl uids.

Fluid out of Equilibrium with BIF
Infi ltration of high-pH, out-of-equilibrium 

fl uid can drive quartz removal via up- or down-
temperature fl ow, because quartz is 4 orders of 
magnitude more soluble at pH 9 than it is at pH 
6 (Busey and Mesmer, 1977). The desilicifi ca-
tion/carbonation and oxidation fronts observed 
in BIFs are suffi ciently sharp that they can be 
treated as advective chromatographic fronts; 
broadening by diffusion, dispersion and kinetic 
broadening can be neglected. The ratio of the 
distance traveled by a fl uid to that of associated 
reaction front is given by
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−
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(adapted from Evans et al., 2003). d is the posi-
tion of the front relative to the infi ltration hori-
zon in meters, ci is the concentration of the reac-
tant of interest in moles m−3, and θ is porosity.

Relative positions of carbonation, desilici-
fi cation, and oxidation fronts were calculated 
using the values given in Table DR1 (in the Data 
Repository), which are based on the assump-
tion of infi ltration an out-of-equilibrium, pH 
9, SiO2-free, CO2-rich, O2-bearing fl uid (O2 at 
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1GSA Data Repository item 2013024, information on the quartz solubility model and details of values used for calculations, is available online at www.geosociety
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Figure 2. Results of ther-
modynamic calculations 
of SiO2 and calcite solu-
bility as a function of 
pressure and temperature 
(A), and temperature and 
salt concentration (B).
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10% of present-day values).  Front positions 
were normalized to that of the most advanced 
carbonation front (Fig. 1B). The oxidation front 
is predicted to proceed the smallest distance, 
as observed, though the position of this front is 
modifi ed by post-hypogene meteoric fl uid and 
supergene processes. The carbonation front is 
predicted to advance further than the desilicifi -
cation front for any reasonable combination of 
input parameters. In reality, the desilicifi cation 
front coincides with a sharp increase in carbon-
ate content, which suggests a reaction-induced 
porosity control on fl uid infi ltration.

Volumes of Fluid Flow
The relationship between time-integrated 

fl uid fl ux and silica removal for hydrothermal 
alteration where pressure, temperature and fl uid 
composition gradients are fi xed, and for con-
stant fl uid fl ow rates is given by

 =
Δ
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2
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(c.f. Evans and Bickle, 1999, their equation 
6). Q is the time-integrated fl uid fl ux, in cubic 
meters of fl uid per square meter of rock, ΔnSiO2

 
is the SiO2 removed from the volume (moles 
m−3), cSiO2

 is the concentration of SiO2 in the 
fl uid in (moles m−3), and l is distance along 
the fl ow path (m). This expression is based on 
mass balance and can be applied to in- or out-
of-equilibrium situations. Calculations were 
made for fl ow up- or down-temperature of a pH 
9, silica-undersaturated fl uid, such as might be 
derived from an ultramafi c lithology or hyper-
saline evaporite-derived fl uid. pH is assumed to 
drop from 9 to 5 during equilibration. dcSiO2/dpH 
was calculated from Busey and Mesmer (1977) 
and checked against HCh output (Shvarov and 
Bastrakov, 1999).

Flow volumes were calculated for a single 
cubic meter of rock undergoing pH-driven 
quartz dissolution and scaled to estimate the 
volume needed to produce the observed SiO2 
depletion on a scale comparable to observed 
small iron ore deposits (3 × 108 m3). The volume 
of fl uid required is approximately ~109 m3.

DISCUSSION AND CONCLUSIONS
The observed silica removal and carbonate 

precipitation needed for formation of a kilome-
ter-scale BIF-hosted Fe deposit is inconsistent 
with in-equilibrium fl uid fl ow (Fig. 2), but could 
be produced by pervasive infi ltration of ~109 m3 
of a high pH (pH > 9) fl uid fl owing up- or down- 
temperature.

Density- or topography-driven infi ltration 
(McLellan et al., 2004) of dense hypersaline 
brines evolved on continental margins (Fig. 3) 
provides a plausible source of high-pH fl uid.  
The pH of hypersaline lakes today is up to 10, 
and the CO2 content is high; reported alka-

linities exceed 10,000 mg L−1 (Gosselin et al., 
1994). These brines form on marginal platforms 
(Leach et al., 2010) and were present on the 
north Yilgarn margin in the Palaeoproterozoic 
(El Tabakh et al., 1999) and in Mesoprotero-
zoic dolomitic argillites in the western United 
States (Gonzalez-Alvarez and Kerrich, 2011). 
The Yilgarn and Pilbara cratons may not have 
been adjacent at the time of ore formation, and 
the latitude of the Pilbara margin at that time 
is poorly known but existing constraints place 
the latitude within the range of those required 
for evaporite formation (Li, 2000).  Fault zones 
in similar environments today are suffi ciently 
permeable that proposed volumes could have 
fl owed on a geologically reasonable timescale 
(Jones et al., 2002). 

Carbon and oxygen isotopes of early car-
bonate and iron oxides in mineralized BIF are 
consistent with seawater derivation from Pal-
aeoproterozoic seawater. High salinities and 
Na/Br and Cl/Br ratios record fl uids typical of 
seawater that has evaporated to halite saturation 
(Thorne et al., 2010), which is also consistent 
with an involvement of evaporite-derived fl uids. 
Temperatures of up to 250 °C are consistent 
with fl uid inclusion evidence, and with other 
environments where voluminous quantities of 
surface-derived fl uids infi ltrate basement rocks 
(e.g., Gleeson and Yardley., 2003). However, 
temperatures >300 °C recorded by early assem-
blages at Mount Tom Price require a separate 
high-temperature alteration stage. SiO2 depo-
sition in outfl ow zones from the fl ow system 
described have not been recorded, to date, but 
may prove diffi cult to recognize given that chert 
was a common sedimentary rock at this time.

Some geometric constraints in mineralized 
Pilbara BIFs favour an upwards fl owing fl uid  
(e.g., Dalstra and Rosiere, 2004). The Witte-
noom Formation underlies many of the ore-
bearing units, and has been proposed as a way 
for basinal brines to access the BIF (e.g., Taylor 
et al., 2001).  Dolomite in the Wittenoom For-
mation contains numerous shale bands (Davy, 
1975), and is separated from the BIF by the Si-
bearing Mount McRae shale and Sylvia Forma-
tion, so fl uids from this unit would be at, or close 
to, SiO2 saturation, unless fl uids were focused 
solely within shale-free regions of the dolo-

mite, such as the Paraburdoo Member (Thorne 
and Tyler, 1997).  If this were the case then the 
dolomite in the Wittenoom Formation could 
have acted as an aquifer that supplied overlying 
iron formations with fl uids derived either from 
faults that focused either down-fl owing evapo-
ritic brines with or without a contribution from 
upward-fl owing basinal brines, as suggested by 
previous workers (e.g., Taylor et al., 2001).

Mafi c and ultramafi c rocks are present in 
the Pilbara (e.g., Barnes and Hoatson, 1994) 
and can equilibrate with water to provide high 
pH fl uids, but such fl uids are unlikely to have 
reached the BIF without interacting with Si-
bearing rocks such as the Mount McRae shale.

Oxidized, sulfur-bearing, hypersaline brines 
produced on basin margins since 2.0 Ga have 
been linked to base metal sulfi de deposition, 
including MVT (Mississippi Valley type) and 
SEDEX-Pb-Zn deposits (Leach et al., 2010). 
Such deposits older than 2.02 Ga have not been 
found; Archaean and Paleoproterozoic oceans 
were reduced and largely sulfur-depleted (e.g., 
Farquhar et al., 2010), so marginal hypersaline 
brines at 2.2 Ga, at the time of ore upgrade, 
could have had a signifi cantly different compo-
sition to those today.  It is interesting to specu-
late whether redox controls related to mobili-
zation, transport, and deposition of Pb and Zn 
by Palaeoproterozoic evaporite-derived brines, 
such as a lack of sulfur (Leach et al., 2010) lack 
of oxidized source rocks and aquifers, or reduc-
tion of sulfate via rock-buffering in the immedi-
ate sub-surface, may have prevented formation 
of these deposit types prior to 2.02 Ga.
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