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ABSTRACT
By combining geochemical data and geodynamical models, evi-

dence is provided to address the existence and style of Archaean plate 
tectonics, a topic of vigorous debate for decades. Using careful analy-
ses of lithostratigraphic Archaean assemblages and numerical model 
results, we illustrate that a short-term episodic style of subduction 
was a viable style of tectonics in the early Earth. Modeling results 
show how, due to the low strength of slabs in a hotter Earth, frequent 
slab break-off events prevented a modern-style long-lived subduction 
system, and resulted in frequent cessation and re-initiation of the sub-
duction process on a typical time scale of a few million years. Results 
fi t with geochemical observations that suggest frequent alternation of 
arc-style and non-arc-style volcanism on a similarly short time scale. 
Such tectonics could provide the link between early pre-plate tectonic 
style of tectonics (or stagnant-lid convection) and modern-style plate 
tectonics, in which short-term episodes of proto-subduction evolved 
over time into a longer-term, more successful style of plate tectonics 
as mantle temperature decayed.

INTRODUCTION
A key issue to our understanding of Archaean tectonics is the appar-

ent contradiction between the petrological and structural/geophysical 
observations. While the former show that many Archaean felsic igneous 
rocks do carry an “arc” geochemical signature, structural analysis, such 
as the lack of clear thrust and fold belts, tectonic mélanges, or undisputed 
ophiolites, seems at odds with subduction-related deformation in the 
Archaean (e.g., Stern, 2005). Geodynamical models for Archaean tecton-
ics also illustrate the diffi culties of having modern-style stable subduction 
in a hotter Archaean mantle (e.g., Davies, 1992; Sizova et al., 2010; van 
Hunen and van den Berg, 2008).

In this study, we demonstrate that the Archaean subduction record 
typically corresponds to short-lived events, much shorter than in the 
modern Earth, and show how this fi ts geodynamical modeling results for 
Archaean subduction.

SHORT-LIVED ARCHAEAN SUBDUCTION EPISODES: THE 
GEOLOGICAL RECORD

One of the main arguments for the existence of Archaean subduc-
tion is geochemical; i.e., the existence of an “arc” signature in some rocks 
(Polat and Kerrich, 2001; Wyman et al., 2002). The core feature of the arc 
signature is decoupling of large-ion lithophile elements (LILE) and high-
fi eld strength elements (HFSE) (Pearce and Peate, 1995). Two relevant 
petrogenetic scenarios can account for this signature. Firstly, fl uid-fl uxed 
melting of a (depleted) upper mantle, with LILE being preferentially car-
ried over HFSE (Pearce and Peate, 1995) will form mafi c to intermediate 
“arc” rocks. As this requires burying of hydrated surface matter down into 
the mantle, it is commonly taken as evidence for subduction. Secondly, 
Archaean granitoids forming the widely occurring TTG (tonalites, trond-
hjemites, and granodiorites) suite (Martin, 1994) also carry an arc signa-
ture, which refl ects melting of mafi c compositions (Moyen and Stevens, 
2006), with stable rutile and/or amphibole in the residuum trapping HFSE 
(Foley et al., 2002). TTGs are actually rather ambiguous as a subduction 

marker; while the genesis of part of the TTG group (with very high La/Yb 
and low HFSE) does require high-pressure melting, at 20 kbar or more 
(Halla et al., 2009; Moyen, 2011), and can therefore be regarded as a sub-
duction indicator, it is equally possible to form TTG(-like) rocks at much 
lower pressure (Willbold et al., 2009). TTGs are a composite group made 
of a range of distinct rock types, and some care must be exercised in using 
them as evidence for subduction.

In the Western Abitibi in the Superior Province, Canada, several 
lithostratigraphic “assemblages” and concomitant plutonic complexes 
have been recognized and analyzed, each representing a distinct age 
between 2750 and 2670 Ma (Ayer et al., 2004). Different assemblages 
clearly show distinct geochemical affi nities (Fig. 1; see the review in Benn 
and Moyen, 2008): (1) an “arc” affi nity (calc-alkaline associations), (2) a 
“plume” affi nity (komatiites and tholeitic basalts), or (3) a bimodal affi n-
ity with both types of rocks present. TTGs from the nearby Kenogamissi 
complex (Benn and Moyen, 2008) show a similar pattern. An early group 
of ca. 2740 Ma “low-pressure TTGs” (Moyen, 2011) was interpreted by 
Benn and Moyen (2008) as melting at the base of an oceanic plateau, and 
are synchronous with the “plume” Pacaud assemblages. In contrast, the 
ca. 2710 Ma tonalitic plutons of the Kenogamissi complex (Kidd-Munro 
to Tisdale time) show a clear “deep” signature. The 2720−2740 Ma 
Gogama orthogneisses show a more heterogeneous signature, as can be 
expected from a complex of tectonically mixed rocks (Benn, 2004); at 
least part of the gneisses show a “deep” signature, and Benn and Moyen 
(2008) suggested that this would correspond to the “Deloro-age” portion 
of the orthogneisses. So, the “subduction” events in the Western Abitibi, 
as recorded by both plutonic and volcanic geochemical record, seem to 
occur in three to four discrete events, all of them short-lived (5−10 Ma) 
and superimposed on a “background” plume-like activity.

Although not always so well documented, a similar pattern can be 
observed throughout the Archaean (see the GSA Data Repository1). In the 
paleo-Archaean East Pilbara (Australia) (felsic interruptions in the Warra-
woona groups; Smithies et al., 2007; Van Kranendonk et al., 2007), as 
well as in the Barberton Belt of South Africa) (H6 unit and concomittant 
Theespruit and Stolzburg TTG plutons; Lowe and Byerly, 2007) rare fel-
sic layers that can be regarded as evidence for subduction correspond to 
ca. 10 Ma intervals, interlayered in a dominantly “plume” sequence. The 
well-characterized meso-Archaean assemblages of boninites, and light rare 
earth element (LREE)-enriched basalts in the Whim Creek Belt and the 
Mallina basin of the West Pilbara (Smithies et al., 2005; Smithies and Cham-
pion, 2000), are equally short-lived; the longest (in the Whundo group) not 
exceeding 20 m.y. A similar episodicity is observed in the Zimbabwe craton 
(Rollinson, 2011), with four short “arc” events between 2.74 and 2.62 Ga.

In contrast, Phanerozoic (and late-Proterozoic) subduction is much 
longer (see the Data Repository). The duration of a subduction in an accre-
tionary orogen is commonly on the order of 100 m.y.; individual pulses of 
arc-related magmatism, such as calc-alkaline batholiths, are commonly in 
the region of 20−40 m.y., fi ve times more than the Archaean subduction 
events identifi ed here. This suggests that Archaean subduction events were 
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uniquely short-lived compared to their modern counterparts, and requires 
a geodynamic explanation.

GEODYNAMICAL MODELS OF ARCHAEAN SUBDUCTION—
WHY SUBDUCTION WAS DIFFERENT IN THE ARCHAEAN

The primary cause for potentially different tectonic styles in the 
Archaean is the change in the thermal regime on Earth (van Hunen et 
al., 2008). The Archaean mantle was hotter than today, and cooled by 
~100 K/G.y., as evidenced by liquidus temperatures and MgO contents 
of basaltic lavas through time (Abbott et al., 1994; Herzberg et al., 
2010). This resulted in (1) more extensive mantle partial melting, and 
(2) reduced plate strength. More melting gave more (oceanic) crustal 
production: a 200–300 K hotter mantle resulted in a 15−23-km-thick 

crust (van Thienen et al., 2004). Near the surface, crustal material is 
signifi cantly less dense than mantle material, and this adds to the buoy-
ancy of oceanic lithosphere. Because today’s plate tectonics is primarily 
driven by negative buoyancy of downgoing slabs, Archaean plates might 
have been diffi cult to subduct, although eclogitization of basalt might 
help (van Hunen and van den Berg, 2008). As mantle rock weakens by 
about one order of magnitude for every 100 K temperature increase, 
plates were likely weaker by up to 2−3 orders of magnitude.

In an attempt to capture the effects of this combination of processes 
on the characteristics of Archaean subduction, we performed a series 
of numerical model calculations for various mantle temperatures, rang-
ing from today’s mantle temperature to 300 K warmer. The details of 
the model setup are further elaborated in the Data Repository. Figure 2 
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Figure 1. The succession of “arc” and “non-arc” events in the Western Abitibi, Canada (time line, middle, and top legend) is 
geochemically defi ned by (1) the nature of mafi c (SiO2 <62%) lava assemblages (top; data from http://www.discoverabitibi.
com/, and Ayer at al. [2004]), and (2) concomitant (tonalites, trondhjemites, and granodiorites: TTG) plutons in the Kenoga-
missi complex, Abitibi greenstone belt (bottom; modifi ed from Benn and Moyen, 2008). For mafi c lavas, Rb/Y versus Zr/Y 
allows us to take into account X-ray fl uorescence analyses from the database that lack a whole set of trace elements; Th/Yb 
versus Nb/Yb (see the Data Repository [see footnote 1]) show the same pattern. Symbols refl ect the major element charac-
teristics of the samples, based on Jensen (1976) classifi cation: circles—calc-alkaline; crosses—komatiitic; stars—tholeitic. 
The main criteria used to classify an assemblage as “arc” or “non-arc” are (1) the position in these diagrams (omitting outli-
ers); (2) the presence or absence of komatiites; and (3) the existence of intermediate to acid calc-alkaline lavas (not plotted 
here). (See details in Benn and Moyen, 2008; Kerrich et al., 1999a; Kerrich et al., 1999b; Sproule et al., 2002; Wyman, 2003; 
Wyman et al., 2002). Three examples (the “non-arc” Pacaud, the “arc” Deloro, and the “mixed” Kidd–Munro assemblage) 
are displayed; see Appendix DR1 (see footnote 1) for the whole stratigraphy. For plutonic rocks, the age determinations are 
slightly less precise and do not allow a perfect fi t with the supracrustal stratigraphy. The ca. 2710 Ma plutons (synchronous 
with subduction-related lavas in the greenstone belt stratigraphy) belong to the low-HREE (high rare earth element), high-
pressure group defi ned by Halla et al. (2009) and Moyen (2011), and are geochemically clearly different from older TTG. They 
are synchronous with the emplacement of the Kidd–Munro and Tisdale assemblages, which do contain an “arc” component. 
In contrast, ca. 2740 Ma low-pressure TTGs occur at the same time as the non-arc Pacaud assemblage. In between, the long-
lived Gogama gneisses contain both low- and high-pressure components, and cover a time period corresponding to both 
the “arc” Deloro period, and the “non-arc” Pacaud.
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summarizes the typical model results, in which the subduction process 
for a Phanerozoic setting is compared to an Archaean setting (with an 
assumed 200 K hotter mantle). The Phanerozoic model illustrates continu-
ous subduction with a typical 5−10 cm/yr convergence rate, representative 
for today’s subduction. The Archaean setting displays a different behavior, 
as slabs frequently break off from the trailing plate and sink down into the 
transition zone. This change in subduction behavior is a consequence of 
several effects: (1) the thicker oceanic crust creates a larger tensile stress 
between the buoyant crust near the surface and the dense (eclogitic) crust 
at depth; (2) due to the larger average subduction velocity, oceanic plates 
are younger and therefore thinner and weaker when arriving at the trench; 
(3) a weaker mantle leads to more vigorous sublithospheric small-scale 
convection and subsequent lithospheric thinning (van Hunen et al., 2005); 
(4) the thick, intrinsically weaker oceanic crust leads to a reduced inte-
grated strength of the subducting plate; and (5) the weaker mantle pro-
vides less support for the sinking slab. This combination of effects leads to 
weaker slabs that cannot maintain the encountered tensile stresses during 
subduction, and therefore frequently yield in the form of slab breakoff. 
Such breakoff would lead to a temporal loss of slab pull, and a period in 
which subduction would be absent or very slow, with no or very little vola-
tile input in the mantle, and subsequent magmatic quiescence.

These results suggest a subduction episodicity of a few million years, 
but the exact duration of break-off events is somewhat uncertain. The dura-
tion of modern, continental collision-triggered events is a topic of signifi -
cant debate, with estimates ranging from a few million years up to 20 m.y. 
(Andrews and Billen, 2009; Duretz et al., 2011; van Hunen and Allen, 
2011). This is controlled by a range of geodynamical parameters, most of 
which are unconstrained for the generic Archaean scenario studied here.

DISCUSSION AND CONCLUSION
The use of a geochemical “arc” signature as a marker of subduc-

tion is debatable. Firstly, a range of petrogenetic processes can yield “arc” 
signatures (Bédard et al., 2010; van Hunen and Moyen, 2012), and burial 
of mafi c rocks in the mantle is not the only option; however, the close 

temporal association of distinct types of rocks, all with some kind of arc 
affi nity, suggests that this petrogenetic scenario is still the most likely on a 
regional scale (Smithies et al., 2005). Secondly, the burial of mafi c rocks 
in the mantle can occur in nonsubduction environments (e.g., by delami-
nation of the mafi c crust; Bédard, 2006), but in these models, it is unclear 
how hydrous rocks are transported down. We acknowledge, however, that 
geochemistry puts only weak constraints on the size and shape of the 
buried parcels of mafi c rocks. Thirdly, there may be preservation issues 
such that some time slices could be missing, therefore creating an appar-
ent episodicity. However, in the Abitibi case (as in most other examples 
cited), we do have a continuous or nearly continuous stratigraphic record, 
without long breaks (Fig. 1; see the Data Repository). Therefore, we can 
confi dently state that no known event of “arc” magmatism in the Archaean 
lasted longer than a few tens of millions of years.

Cessation of arc magmatism can occur for reasons other than slab 
breakoff. (1) During modern subduction of oceanic buoyant plateaus, 
magmatism ceases temporarily due to fl attening of the subducting slab. 
Such a mechanism, however, is not likely to be viable in an Archaean, 
hotter mantle (van Hunen et al., 2004). (2) Modern subduction stops with 
continental collision, and the same probably occurred in the Archaean as 
well. Depending on the intermediate ocean size, Phanerozoic collision 
intervals varied from a few to several hundred million years (i.e., a much 
larger range than observed in the Archaean rock record), and applying 
this mechanism to the observed short-lived “arc” signature would suggest 
a dramatic change of the size of ocean basins throughout Earth history. 
The mechanism of spontaneous, frequent slab breakoff of weak slabs in a 
hotter Earth is more appealing, because it only requires a (well-accepted) 
change in mantle temperature to explain the difference between Archaean 
and modern subduction dynamics. It does provide an elegant explanation 
to the classical interleaving of both “arc” and “plume” rocks in Archaean 
rock sequences (i.e., plume-arc interaction; Wyman et al., 2002).

We do not know when the plate tectonics–style of convection started 
on Earth, with estimates ranging from nearly 4.5 Ga. down to 2 Ga (or 
even later according to some authors; Stern, 2005). Our work suggests 
a way to evolve a single-plate, stagnant lid style of tectonics into mod-
ern plate tectonics. Early subduction events in a hot mantle were small 
and short. As the mantle cooled down, the size and duration of the down-
wellings increased, and they evolved into proper, permanent subduction. 
This short-term episodicity may have been superimposed to a longer-
term periodicity (100 m.y.), related to episodic mantle overturns (Davies, 
1995), supercontinent formation and breakup (Silver and Behn 2008), or 
to intermittent plate locking (O’Neill et al., 2007). Therefore, plate tec-
tonics may not have “appeared,” but rather matured, over a long period 
of time (perhaps of several gigayears), during which subduction became 
progressively more widespread, effi cient, and stable.
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