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Abstract 

The continental growth mechanism of the Altaids in Central Asia is still in controversy 

between models of continuous subduction-accretion versus punctuated accretion by 

closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern 

Altaids, is a natural laboratory to address this controversy. Key questions that are 

heavily debated are: the closure time and subduction polarity of former oceans, the 

emplacement time of ophiolites, and the styles of accretion and collision. This paper 

reports new structural data, zircon ages and Ar-Ar dates from the eastern Beishan 

Orogen that provide information on the accretion process and tectonic affiliation of 

various terranes. Our geochronological and structural results show that the younging 

direction of accretion was northwards and the subduction zone dipped southwards 

under the northern margin of the Shuangyingshan micro-continent. This long-lived and 

continuous accretion process formed the Hanshan accretionary prism. Our field 

investigations show that the emplacement of the Xiaohuangshan ophiolite was 

controlled by oceanic crust subduction beneath the forearc accretionary prism of the 

Shuangyingshan-Mazongshan composite arc to the south. Moreover, we address the 

age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital 

zircon geochronology of meta-sedimentary rocks. We provide new information on the 

ages, subduction polarities, and affiliation of constituent structural units, as well as a 

new model of tectonic evolution of the eastern Beishan orogen. The accretionary 

processes and crustal growth of Central Asia were the result of multiple sequences of 

accretion and collision of manifold terranes. 
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1. Introduction 

The Altaids lies between the North China and Tarim Cratons in the south, and the 

Siberian and Eastern European Cratons in the north, and extends from the Urals in the 

west to the Sikhote-Alin Range in the Russian Far East (Kovalenko et al., 2004; De 

Jong et al., 2006; Kröner et al., 2007; Safonova et al., 2011; Wilhem et al., 2012; Zhou 

and Wilde, 2013; Donskaya et al., 2013; Safonova and Santosh, 2014; Kroner et al., 

2014) (Fig. 1a); this is the largest accretionary orogenic belt, but it is limited to the 

period c. 650-250 Ma and does not include the older belts of northernmost Siberia 

(Şengör et al., 1993; Şengör and Natalin, 1996; Yakubchuk, 2004; Xiao et al., 2009b). 

The alternative, more appropriate term „Central Asian Orogenic Belt (CAOB)‟ is now 

more commonly used, because it covers the period 1.0 Ga to 250 Ma and includes 

northern Siberia (Mossakovsky et al.,1994; Badarch et al., 2002; Windley et al., 2007; 

Kröner et al., 2013; Xiao et al., 2013). The continental growth mechanism of the CAOB 

in Central Asia is now no longer as controversial as it was for the Altaids, when Şengör 

et al. (1993) suggested that the accretionary growth developed from movement on one 

subduction zone (or two, Yakubchuk, 2004). But now, there is considerable evidence 

that the development was mainly achieved by punctuated accretion and collision on 

multitudes of subduction zones (Mossakovsky et al.,1994; Xiao et al., 2004, 2009a, b; 

2010; Windley et al., 2007; He et al., 2014; Safonova and Santosh, 2014; Kröner et al., 

2014). 

The Beishan orogen, located in the southern CAOB or Altaids, played an important 

role in the crustal evolution, particularly because it links the Southern Tianshan suture 
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to the west with the poorly exposed Inner Mongolia Solonker suture to the east (Fig. 1a) 

(Şengör et al., 1993; Xiao et al., 2003, 2014; Windley et al., 2007; Xu et al., 2009; Jian 

et al., 2010; Xiao and Santosh, 2014; Guy et al., 2014). Accordingly, the strategically 

positioned and well-exposed Beishan orogen provides critical information on the final 

stages of evolution of the orogen just before formation of the terminal suture.   

During the last decades numerous studies have focused on the Paleozoic architecture 

and development of the Beishan (Zuo et al., 1990a, b; 1991, 2003; Liu and Wang, 1995; 

Ao et al., 2010; Xiao et al., 2010; Song et al., 2012; 2013a, b; Cleven et al, 2015; Tian et 

al., 2013a, b; Wan et al., 2013; Zheng et al., 2013). Most researchers consider that the 

Beishan orogen was welded by amalgamation of different terranes that were separated 

by narrow oceans, broadly similar to present-day SE Asia (Wakita et al., 2013). 

However, many parts of the orogen have still to be studied in detail, and so many key 

questions remain to be resolved, such as the subduction polarity of arcs, the 

emplacement time of ophiolites, the mechanism of exhumation of high-pressure rocks, 

the structure of accretionary prisms, and the time of ocean closure and terminal 

collision (Xiao et al., 2004, 2009a; Li, 2006; Jian et al., 2008, 2010; Johnson et al., 2008; 

Ao et al., 2012; Long et al., 2012a, b; Mao et al., 2012a). Furthermore, it is unclear 

whether some terranes can be mutually correlated, and whether certain displaced 

terranes were originally contiguous.  

In this paper, we address the subduction polarity of the Xiaohuangshan ocean 

through detailed field investigations and new zircon and 
40

Ar/
39

Ar geochronological 

data of meta-sedimentary and meta-igneous rocks. Moreover, we address the age and 
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terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon 

geochronology of meta-sedimentary rocks. With this information we aim to document 

the structure, make-up and age of several poorly known tectonic belts in eastern 

Beishan, and integration with published data will enable us to present a new model of 

tectonic evolution of the Beishan orogen. 

 

2. Regional geology 

The Beishan orogen (Fig. 1a) is composed of several EW-trending arc belts that are 

separated by ophiolite-strewn mélange zones (Zuo et al., 1990a, 1991, 2003; Liu and 

Wang, 1995) that were displaced by the NE-trending strike-slip Altyn Tagh fault (Wang 

et al., 2010). In summarizing the regional geology of the Beishan orogen Xiao et al. 

(2010) showed that it comprises from south to north the following units: the Shibanshan, 

Shuangyingshan, Mazongshan, Hanshan and Quershan, which are separated 

respectively by the following (ophiolitic) mélanges: the Liuyuan, 

Hongliuhe-Xichangjing, Xingxingxia-Xiaohuangshan, and Hongshishan (Fig. 1b). 

Here we deal only with the geology in the Xiaohuangshan-Yueyashan area (Fig. 2) in 

which three tectonic units from south to north: the Shuangyingshan, Mazongshan and 

Hanshan are separated by two ophiolite melanges.  

The Shuangyingshan Unit consists of Precambrian to Ordovician shelf carbonates 

and clastic sediments including limestone, flysch, chert and meta-sandstone; Ao et al. 

(2012) interpreted this Unit as a micro-continental block. Several granitic intrusions 

and volcanic rocks crop out in the north of this Unit (Fig. 2). The southern part of this 
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Unit contains many intrusions situated in Ordovician-Permian calc-alkaline basalts, 

andesites, rhyolites that are interbedded with clastic sediments and carbonates (Zuo et 

al., 1990a; Liu and Wang, 1995). Xiao et al. (2010) and Mao et al. (2012b) interpreted 

this Unit as a multiple long-lived arc that evolved from the Ordovician to the Permian.   

The Mazongshan terrane, located between the Xiaohuangshan ophiolite-bearing 

mélange to the north and the Yueyashan ophiolite belt to the south (Fig. 2), is composed 

of Middle/Late Ordovician to Silurian mafic volcanic rocks intercalated with 

limestones and siliceous slates intercalated with a few mafic-felsic volcanic rocks. 

These rocks belong to the Baiyunshan Formation on a geological map by the Gansu 

Bureau of Geology (Anonymous, 1979), interpreted by Ao et al. (2012) as part of an 

island arc.  

The Hanshan terrane is composed of granitic gneisses, felsic volcanic rocks, 

carbonate sediments and terrestrial clastic rocks that are intercalated with cherts, 

limestones and volcanic rocks. The metamorphic age of these rocks is poorly known 

and remains controversial. Based on the fact that whole-rock Rb-Sr and/or Sm-Nd 

model dates (Zuo et al., 1990a; He et al., 2005) yielded Precambrian ages, some of the 

rocks were interpreted as a Neoarchean-Paleoproterozoic “Beishan complex”, which 

rifted from the Tarim-Dunhuang block (Zuo et al., 1990a; Xu et al., 2009). However, 

the rocks have also been termed the Baishan Formation according to regional 

stratigraphic correlations and considered to belong to a Paleozoic arc and its 

accretionary rocks (Anonymous, 1979; Liu and Wang, 1995). Song et al. (2012, 2013b) 

considered that parts of the Beishan complex belong to a Paleozoic arc, and not a 
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Precambrian basement. The Hanshan terrane was interpreted by Xiao et al. (2010) as an 

Early Paleozoic „Japan-type complicated arc‟. 

The Yueyashan ophiolite (Fig. 2) crops out between the Mazongshan and 

Shuangyingshan Units (Fig. 1) and is composed of an incoherent ophiolitic mélange 

and coherent sedimentary rocks. A weighted mean 
206

Pb/
238

U age of 534.4 ± 3.4 Ma 

from a plagiogranite in the Yueyashan ophiolite indicates that the ophiolitic ocean floor 

formed in the early Cambrian. Geochemical data show the Yueyashan ophiolite 

probably formed in a suprasubduction-zone setting. For detailed information about the 

Yueyashan ophiolite, see Ao et al. (2012). The Xiaohuangshan ophiolite mélange (Figs. 

2 and 3) is located between the Mazongshan and Hanshan Units (Fig. 1); the constituent 

lithological associations and field relationships are described in the next section. 

 

3. Field investigations 

The EW-trending Xiaohuangshan ophiolite mélange (about 22 km long and 6 km 

wide) is situated in the Xiaohuangshan fault (TXF) (Fig. 3). A matrix of various schists 

contains about fifty exotic lenticular blocks that are mainly harzburgites and dunites, 

and a few olivine pyroxenites, pyroxenites, andesites, and rhyolites. All the ultramafic 

rocks are intensively serpentinized and carbonatized, and some contain chromitites 

(Anonymous, 1979). The matrix is mainly composed of meta-sandstone, 

plagioclase-amphibole schist, and chlorite-hornblende schist intercalated with chert 

and limestone, and quartz-mica schist intercalated with marble. This ophiolite-bearing 

mélange also contains many, multi-stage granites and a few gabbro plutons. 
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There are three major faults in this area (from north to south, Fig. 3): the 

Xiaohuangshan North Fault (TXNF), the Xiaohuangshan Fault (TXF), and the 

Xiaohuangshan South Fault (TXSF). The TXF fault extends for more than 30 km in a 

NW direction in the west and bends to an E-W direction farther east. This fault is 

expressed topographically as a straight valley with fault facets. It dips SSW at 45º-60º, 

shows top-to-north thrust movement accompanied by sinistral strike-slip, is marked by 

mylonite and breccia zones, and was intruded by late granitic plutons. The 

straight-valley TXNF dips SW at 65º-85º, is a top-to-north thrust that was intruded by 

dioritic porphyry dikes (Anonymous, 1979). The TXSF fault has different lithologies 

on either side; from slickensides in serpentinites it is inferred to be a top-to-south thrust 

(Anonymous, 1977). 

The TXNF fault subdivides the ophiolite-bearing mélange belt into northern and 

southern parts. Fig. 4 is a cross-section based on our structural studies in the field and in 

exploratory trenches, combined with drill-core data (Anonymous, 1977). Most 

ultramafic blocks crop out in the southern part of the mélange; the long axes of the 

lenses are almost parallel to the fault strike. The southern part is an EW-trending 

imbricated thrust sheet, which consists of meta-sandstone, limestone, chert, schist, 

andesite, rhyolite and ultramafic rocks (Fig. 4). Almost all contacts between the 

different lithologies are thrusts. Foliations generally dip south at 48º-75º and are most 

pervasive in plagioclase-amphibole schist, chlorite-hornblende schist and mica-quartz 

schist. All the imbricate thrust sheets and the strong foliations indicate north-to-south 

directed compression. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 10 

The entire northern part of the mélange is characterized by regional-scale tight to 

isoclinal folds and associated penetrative axial plane cleavage. These folds are 

asymmetric, verge to the N or NE, their axial surfaces dip S or SW, and their 

wavelengths locally attain 1-2 km (Fig. 4). Fold axes and associated bedding- cleavage 

intersection lineations trend NW-SE to W-E, and plunge variably to the NW or E (Fig. 

3). The folds are best preserved in the eastern part of the study area; in the western part 

only fold relics are preserved between the many granitic intrusions. The fold vergence 

and fabrics indicate that the northern and southern parts of the mélange underwent 

north-to-south directed compression. 

 

4. Geochronology  

4.1 Methodology 

Analytical procedures for 
40

Ar/
39

Ar (step heating argon method) and zircon (U-Pb 

laser ablation-multicollector, inductively-coupled, plasma-mass spectrometry 

LA-ICP-MS) analyses are presented in the following sections. Complete data tables are 

listed in the Appendix. Preferred U-Pb ages are based on 
238

U/
206

Pb ages for zircons 

younger than 1000 Ma, and 
207

Pb/
206

Pb ages for zircons older than 1000 Ma. For 

interpretations we considered only ages that have a concordance in the 95%-105% 

interval (
207

Pb/
206

Pb age vs. 
206

Pb/
238

U age). The results of the U-Pb zircon ages and the 

40
Ar/

39
Ar analyses are plotted in Figures 5 and 6, and all data are listed in Tables A and 

B in the Appendix. 
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4.1.1 Analytical Procedures: 
40

Ar/ 
39

Ar dating 

Five whole-rock samples were crushed and sieved between 250 and 400 μm fractions 

and then thoroughly washed with distilled water and acetone. Muscovite, hornblende 

and biotite were carefully handpicked using a binocular microscope to reduce any 

visible impurities after paramagnetic separation, and these minerals were cleaned in 5% 

HF for 10 minutes to reduce melt inclusions and adhering glass. Samples were wrapped 

in aluminum foil and irradiated together with Bern4M Muscovite standards monitored 

for 24 hours in position B4 of the 49-2 reactor, Beijing, China. The reference age for the 

Bern4M is 18.69 ± 0.36 Ma (Baksi et al., 1996; McDougal and Harrison, 1999). 

Total fusion of standards and high-resolution incremental heating analyses of 

samples were performed on a MM5400 mass spectrometer operating in a static mode at 

the 
40

Ar/
39

Ar Geochronology Laboratory, Institute of Geology and Geophysics, 

Chinese Academy of Sciences, Beijing. In order to reveal and mitigate the effects of 

alteration and/or partial Ar loss, high resolution incremental heating (more than 17 

steps for each sample) was the preferred mode of analysis because of the internal 

reliability criteria offered by the age spectrum technique (McDougal and Harrison, 

1999). Samples were degassed at 650 ºC for 30 minutes before being incrementally 

heated in a double vacuum furnace to reduce air contamination. The gases released 

during each step were purified by 2 SAES NP10 getters (operated at 350 ºC and 100 ºC, 

respectively) before introduction into the mass spectrometer for Ar isotope 

determinations. The 
40

Ar, 
39

Ar, 
38

Ar, 
37

Ar, and 
36

Ar isotopic abundances were 

determined through linear extrapolation at time zero of peak intensities. The data were 
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corrected for system blanks, mass discriminations, interfering Ca, K-derived argon 

isotopes, and the decay of 
37

Ar after the time of irradiation. The decay constant used 

throughout the calculations was λ = (5.543 ± 0.010) × 10
-10

 a
-1

, as recommended by 

Steiger and Jäger (1977). Details of the analysis and data processing procedures are 

given in Wang et al. (2006) and Yang et al. (2008). Plateau ages were defined as three or 

more contiguous steps corresponding to a minimum of 50% of the 
39

Ar released that 

showed no statistically difference in 95% confidence level (McDougal and Harrison, 

1999).  

4.1.2 Analytical Procedures: zircon U-Pb LA -ICP-MS dating 

Zircon crystals were obtained from crushed rocks with a combination of heavy liquid 

and magnetic separation techniques. Individual crystals were handpicked and mounted 

in epoxy resin. Experiments were carried out at the MC-ICP-MS laboratory of the 

Tianjin Institute of Geology and Mineral Resources using an UP193-FX laser-ablation 

system equipped with a 193 nm ArF-excimer laser in connection with a Thermo Fisher 

ICPMS. Helium was used as the carrier gas to enhance the transport efficiency of the 

ablated material. The analyses were conducted with a beam diameter of 50um and a 

typical ablation time of about 30s for 200 cycles for each measurement, as well as a 10 

Hz repetition rate and a laser power of 100mJ/pulse (Wu et al., 2006). Uranium, Th and 

Pb concentrations were calibrated by using 
29

Si as an internal standard and NIST SRM 

610 as an external standard. 
207

Pb/
206

Pb and 
206

Pb/
238

U ratios were calculated using 

GLITTER 4.0 (Jackson et al., 2004), which was then corrected with Harvard zircon 

91500 as an external standard. The 
207

Pb/
235

U ratios were calculated from the values of 
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207
Pb/

206
Pb and 

206
Pb/

238
U. Common Pb was corrected according to the method of 

Andersen (2002). The weighted mean U-Pb ages and Concordia plots were processed 

using ISOPLOT 3.0. More detailed procedures can be found in Xie et al. (2008). 

 

4.2 Results 

Complete 
40

Ar/ 
39

Ar incremental heating data and LA-ICP-MS zircon U-Pb data are 

in Appendix Table A and B, respectively. The sample names, locations and 

petrology/mineral assemblages are described in Appendix C. 

4.2.1 
40

Ar/ 
39

Ar dating  

Complete 
40

Ar/ 
39

Ar incremental heating data are in Appendix Table A, and age 

spectra and isotope correlation (inverse isochron) diagrams are illustrated in Figure 6. 

For each sample the argon releaseser age spectra and inverse isochrones are presented, 

and both of their uncertainties are given at a 2 level. 

Samples 09AB09 and 09AB11 are mica schist and granitic gneiss, respectively. Two 

muscovite samples picked out from 09AB09 and 09AB11 yield concordant age spectra 

(Fig. 6). Nine consecutive steps, which account for 81% of the total 
39

Ar released from 

09AB09, define a plateau age of 455 ± 3 Ma (MSWD = 2.07) (Fig. 6A). An inverse 

isochron age of 458 ± 5 Ma (MSWD = 1.78) (Fig. 6a), calculated from these plateau 

steps, is in agreement with the plateau age. The 
40

Ar/
36

Ar intercept of 181.64 ± 99.94 is 

apparently lower than the atmospheric value (295.5), implying that the background 

contribution in the data should be considered when interpreting the plateau ages. The 

data yield a fine 
40

Ar/
39

Ar age spectrum, suggesting a closed system behavior. We 
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regard the inverse isochron age as being more objective because no assumptions are 

made about the initial 
40

Ar/
36

Ar ratio. Thus 458 ± 5 Ma represents the cooling age of 

muscovite 09AB09. Nine consecutive steps, which account for 88.9% of the total 
39

Ar 

released from 09AB11, define a plateau age of 431 ± 3 Ma (MSWD = 1.31) (Fig. 6B). 

An inverse isochron age of 432 ± 3 Ma (MSWD = 1.48) (Fig. 6b), calculated from all 

steps that formed the plateau, is indistinguishable from the plateau age. The 
40

Ar/
36

Ar 

intercept of 290.34 ± 34.16 is in agreement with the air 
40

Ar/
36

Ar ratio, indicating that 

there is no resolvable excess argon contamination. Therefore, the inverse isochron age 

is more objective, because no assumptions are made about the initial 
40

Ar/
36

Ar ratio. 

This result represents an age of 432 ± 3 Ma for the muscovite crystallization. 

Both samples 10ASJ03 and 10ASJ10 are granitic diorites. Two hornblende samples 

picked out from 10ASJ03 and 10ASJ10 yield well-defined age spectra, about 99% of 

39
Ar released giving plateau ages of 425 ± 3 Ma (MSWD = 1.64) and 429 ± 3 Ma 

(MSWD = 0.95) respectively (Fig. 6C, E). The inverse isochron ages of 426 ± 3 Ma for 

10ASJ03 and 430 ± 3 Ma for 10ASJ10 are indistinguishable from their respective 

plateau ages. The initial values of 
40

Ar/
36

Ar of these samples are consistent with the 

atmospheric 
40

Ar/
36

Ar ratio (295.5) (Fig. 6c, e). Considering the analytical errors, these 

two 
40

Ar/
39

Ar ages from samples 10ASJ03 and 10ASJ10 are almost identical. The 

results suggest a minimum age of about 426 ± 3 Ma for the hornblende crystallization 

and granitic gneiss formation. 

Biotite picked from granitic gneiss sample (10ASJ08) yields concordant age spectra 

accounting for 72 % of released 
39

Ar (Fig. 6D). The data show a plateau age of 367 ± 2 
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Ma (MSWD = 0.57) (Fig. 6D) and an inverse isochron age of 368 ± 3 Ma (n = 7, 

MSWD = 0.48) (Fig. 6d). The initial 
40

Ar/
36

Ar value of 290.99 ± 8.86 is consistent with 

the atmospheric value of 295.5. We regard the inverse isochron age as being more 

objective, because no assumptions are made about the initial 
40

Ar/
36

Ar ratio. Thus, 368 

± 3 Ma represents the cooling age of biotite from sample 10ASJ08.  

 

4.2.2 Zircon U-Pb LA-ICP-MS dating 

Representative rocks from the Baishan, Baiyunshan, and Baihu Formations were 

sampled for separation of zircon for U–Pb analyses (Fig. 2). 

Granitic Gneisses 

Three samples (10ASJ08, granitic gneiss; 10ASJ10, gneissic diorite; 09AB11, 

granitic gneiss) were collected from the Lower Baishan Formation and the contact with 

the Baiyunshan Formation for analyses (Figure 2). Zircons from all samples are 

semi-transparent, 50-150 um in length, and have aspect ratios of ~1:1 to 2:1.1 In 

cathodoluminescence (CD) images most zircons are characterized by magmatic 

concentric zones. Fourteen zircon spot analyses were analyzed from sample 10ASJ08. 

All the measured Pb/U ratios are concordant within analytical errors, yielding a 

concordia age of 418 ± 5 Ma (1, MSWD = 4.0) (Fig. 5), which is interpreted as the 

time of crystallization of the granitic pluton (sample 10ASJ08). Twenty zircon spot 

analyses were analyzed from sample 10ASJ10. All the measured Pb/U ratios are 

concordant within analytical errors, yielding a concordia age of 424 ± 3 Ma (1, 

MSWD = 1.9) (Fig. 5), which is interpreted as the time of crystallization of the granitic 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 16 

pluton (sample 10ASJ10). Nineteen spot analyses were made of nineteen zircons from 

sample 09AB11, sixteen of which yield a concordia age of 713 ± 6 Ma (1, MSWD = 

2.9) (Fig. 5), which we interpret as the main time of crystallization of the granitic gneiss. 

One spot analysis shows a concordia age of 1132 ± 7 Ma, which we interpret as an 

inherited age. Two zircon spot analyses show a weight mean age of 515 ± 7 Ma, which 

possibly indicates the time of dike intrusion. 

Meta-sedimentary rocks 

Four sedimentary samples were collected from the Lower Baishan Formation and 

Baiyunshan Formation for detrital zircon analyses (Fig. 2). 

Sample 09AB10 is a greenschist-facies, quartz-rich schist from the Baiyunshan 

Formation (Fig. 2). 85 individual zircon grains were analyzed, of which 85 were <5% 

discordant. The age distribution shows prominent Phanerozoic peaks at 462 Ma and 

429 Ma, with three small Proterozoic peaks at 647 Ma, 718 Ma and 794 Ma (Fig. 7). 

The sample yields an Early Silurian maximum depositional age of 432 ± 5 Ma defined 

by a cluster of 13 ages that overlap within uncertainty. Sample 10ASJ14 is a low-grade 

meta-sandstone from the Baiyunshan Formation (Fig. 2). 60 individual zircon grains 

were analyzed, of which 57 were <5% discordant. The age distribution shows 

prominent Proterozoic peaks at 919 Ma and 2430 Ma, with a small peak at 1520 Ma 

(Fig. 7). One concordant age yields a date of 509 ± 5 Ma, which indicates that the 

maximum time of deposition was in the Middle Cambrian. Sample 10ASJ24 is a 

sandstone from the Shuangyingshan Formation (Fig. 2), which provided 49 individual 

zircon grains for analysis, of which 47 were < 5% discordant. The age distribution 
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shows prominent Proterozoic peaks at 927 Ma and 2475 Ma, with small peaks at 575 

Ma and 3142 Ma (Fig. 7). One concordant age yields a date of 516 ± 5 Ma, which 

indicates the maximum time of deposition was in the Middle Cambrian. Sample 

10ASJ27 is low-grade meta-siltstone from the Baihu Group (Fig. 2); 100 individual 

zircon grains were analyzed, of which 73 were <5% discordant. The age distribution 

shows prominent Proterozoic peaks at 1828 Ma and 1673 Ma (Fig. 7) and a maximum 

depositional age of 1329 ± 18 Ma defined by a cluster of five peaks that overlap within 

uncertainty. 

 

5. Discussion 

5.1 The affinity of the Shuangyingshan terrane 

The tectonic evolution of the Beishan orogen has so far been not well understood, 

largely due to lack of consensus about different ideas about the tectonic affinity of the 

main terranes. The samples 10ASJ14, 10ASJ24 and 10ASJ27 are components of the 

Shuangyingshan terrane (Fig. 2). The U-Pb cumulative age probability plots of detrital 

zircons of the three samples are comparable with those from the western 

Shuangyingshan (WS), as shown in Fig. 7b; the detrital age distribution shows 

prominent peaks at 927 Ma, 798 Ma and 2500 Ma with small peaks in the period 490 

Ma to 741 Ma (Fig. 7b). The detrital age distributions of sedimentary rocks from 

northeastern Tarim show prominent peaks at 800 Ma, 1800 Ma, 2000 Ma and 2500 Ma, 

with no small peaks in the period 490 Ma to 741 Ma (Zhang et al., 2011, 2012) (Fig. 7c). 

This indicates that Shuangyingshan was a micro-continent distant from the northeastern 
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Tarim block after about 741 Ma, and thus could not have been a viable sedimentary 

source. In other words, before 741 Ma detrital zircons in the Shuangyingshan 

micro-continent and northeastern Tarim had the same sedimentary provenance, because 

the two blocks were probably co-joined. The detrital zircon age distributions of 

Neoproterozoic sediments from the Shuangyingshan micro-continent yield a maximum 

depositional age at 1170-1129 Ma with prominent peaks at about 1800 Ma and small 

peaks at 2000 Ma and 2500 Ma (Fig. 7b). This detrital zircon age distribution is similar 

to that of the Alxa block to the east (Zhang et al., 2012) suggesting that the 

Shuangyingshan micro-continent was probably linked with the Tarim and Alxa blocks 

before 741 Ma. 

Accordingly, we consider that the Shuangyingshan terrane rifted from the Tarim-Alxa 

block at about 741 Ma and became an independent micro-continent in the Paleo-Asian 

Ocean after that time. 

5.2 Formation of the Hanshan accretionary prism 

The Hanshan terrane is composed of granitic gneiss, felsic volcanic rocks, 

carbonates and terrestrial clastic rocks that are intercalated with cherts, limestones and 

volcanic rocks. Because whole-rock Rb-Sr ages and/or Sm-Nd model ages (Zuo et al., 

1990a; He et al., 2005) were Precambrian, some of the rocks were interpreted as a 

Neoarchean-Paleoproterozoic “Beishan complex”, rifted from the Tarim-Dunhuang 

block (Zuo et al., 1990a; Xu et al., 2009). These rocks were grouped under the term 

„Baishan Formation‟ by regional stratigraphic correlations and from available 

geochemical and isotopic data were considered to belong to a Paleozoic arc and its 
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associated accreted rocks (Anonymous, 1979; Liu and Wang, 1995; Xiao et al., 2010).  

In order to constrain the affinity of the Hanshan terrane and its relationship with the 

Hanshan terrane and Xiaohuanghan ophiolite, we collected six samples from south to 

north across the Xiaohuangshan ophiolitic belt for zircon U/Pb and Ar/Ar dating; 

09AB09, 09AB10, 09AB11, 10ASJ10, 10ASJ03 and 10ASJ08 (Fig. 2), and the 

implications of their isotopic ages are discussed below. 

The Ar-Ar date on muscovite from 09AB09 defines an inverse isochron age of 458 ± 

5 Ma. Thin-sections show that the muscovite was oriented during the deformation (Fig. 

8b), suggesting it is a regional metamorphic mineral associated with the deformation. 

Therefore, this age is interpreted as the cooling formation age of the muscovite, which 

is close to the peak temperatures of the blueschist facies metamorphism of the mica 

schist (320-450°C). However, this sample has an Ar loss problem, and the real 

metamorphism age should be before 458 Ma. 

Sample 09AB10 is a mica-quartz schist that forms the matrix of the Xiaohuangshan 

ophiolitic mélange. Analyses of detrital zircons from 09AB10 yield an Early Silurian 

maximum depositional age of 432 ± 5 Ma, which points to a main Phanerozoic peak at 

462 Ma and three small Proterozoic peaks at 647 Ma, 718 Ma and 794 Ma (Figs. 5 and 

7a). These peaks are totally different from those of samples from the Shuangyingshan 

micro-continent that have prominent peaks at 927 Ma (Fig. 7b). This is explicable if the 

Mazongshan arc was located between the Shuangyingshan micro-continent and the 

Xiaohuangshan mélange, and thus the sedimentary source was probably from the 

Mazongshan arc (Figs. 9a, and b). 
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The banded gneiss sample 09AB11 yields a zircon U-Pb concordia age of 713 ± 6 Ma 

(n = 16) and a young weighted mean age of 515 ± 7 Ma (n = 2). Ar-Ar dating of 

muscovite from the same sample 09AB11 yields an inverse isochron age of 432 ± 3 Ma 

(MSWD = 1.48) (Fig. 6b), which is interpreted as a muscovite cooling age that was 

affected by intrusions in the Hanshan terrane. 

The gneissic diorite samples (10ASJ10 and 10ASJ03) are components of the 

Hanshan terrane. The U-Pb zircon dates from sample 10ASJ10 yield a concordia age of 

424 ± 3 Ma (Fig. 5c) and the Ar-Ar date of hornblende from 10ASJ10 defines an 

inverse isochron age of 430 ± 3 Ma (Fig. 6e), and an Ar-Ar hornblende date from 

10ASJ03 gives an inverse isochron age of 426 ± 3 Ma (Fig. 6c). The Ar-Ar ages are 

consistent with the U-Pb zircon ages within the error range; the former are interpreted 

as the time of formation of the diorite intrusions. In thin sections the hornblendes define 

a weak foliation suggesting they are syn-tectonic (Fig. 8a).  

Sample 10ASJ08 is a gneissic granite from which zircons yield a U-Pb concordia age 

of 418 ± 5 Ma (1, MSWD = 4.0) (Fig. 5), which we interpret as the time of 

crystallization of the granitic pluton. The Ar-Ar date of biotite from sample 10ASJ08 

defines an inverse isochron age of 368 ± 3 Ma (Fig. 6d), which we interpret as the 

metamorphic crystallization age of the biotite. In thin sections aligned biotites mark a 

weak foliation, thus it is likely this is a syn-tectonic metamorphic phase (Fig. 8c). The 

closure temperature of biotite is low (300-350 ºC), and thus is able to record a 

low-grade metamorphic event caused by accretion. 

A summary plot of all the geochronological data across the Mazongshan arc axis 
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with its extensive andesite outcrops clearly shows that the ages become younger from 

south to north (Figs. 2 and 9c). A combination of all the geology, petrology and 

geochronology of the Hanshan terrane (Anonymous, 1979; Zuo et al., 1991; Liu and 

Wang, 1995; Xiao et al., 2010) indicates that it is an accretionary prism, which formed 

from the Silurian to the Devonian (457-367 Ma) on the northern margin of the 

Shuangyingshan-Mazhongshan composite arc (Fig. 9c). 

5.3 Formation of the Xiaoshaoshan ophiolite 

The original setting, formation age, and the time and mechanism of emplacement are 

keys to understand the origin of ophiolites. The Xiaohuangshan ophiolite either formed 

in a mid-ocean-ridge of the Paleo-Ocean between the Tarim craton to the south and the 

Kazakhstan craton to the north (Zuo et al., 1990b), or in a suprasubduction zone below 

an arc similar to many in the current Southwest Pacific Ocean (Xiao et al., 2010; Wakita 

et al., 2013). The Xiaohuangshan ophiolite is a typical mélange characterized by a 

block-in-matrix structure (Fig. 3). The blocks are mainly harzburgites, andesites, 

rhyolites and limestones, the geochemistry of which indicates an arc setting (Zheng et 

al., 2013). The formation age of this ophiolite ranges from 485 ± 75 Ma (Sm-Nd 

isochron age of gabbro) (Song et al., 2008) to 334.6 ± 4 Ma on basalt, and 345 ± 14 Ma 

on gabbro (SHRIMP U-Pb age) (Zheng et al., 2013). The Xiaohuangshan Ocean 

probably formed in the Carboniferous (Zheng et al., 2013). However, our zircon U-Pb 

and Ar/Ar ages of deformed granitic gneiss and metasedimentry rocks located on both 

sides of the Xiaohuangshan ophiolitic belt are not younger than Early Carboniferous. 

So we prefer to interpret the Xiaohuangshan Ocean as a small, short-lived oceanic basin 
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formed on the Hanshan accretionary prism, possibly caused by slab rollback in the 

north (Fig. 9d). As a result of our investigations we consider in principle that a thin 

ophiolite is a relict fragment of oceanic crust scraped off during subduction erosion in a 

trench before it was thrust into an accretionary prism (Kimura and Ludden, 1995; Stern, 

2011). Locally, it was closure of the Xiaohuangshan Ocean that was responsible for the 

emplacement of the Xiaohuangshan ophiolite into the Hanshan accretionary prism in 

the Late Carboniferous (Fig. 9e). 

5.4 Tectonic evolution of the Beishan orogen 

The Beishan orogenic collage is a typical accretionary orogen composed of 

magmatic arcs and ophiolitic mélanges; the accretionary orogenesis lasted perhaps 

from the Late Cambrian to the Late Permian (Xiao et al., 2010; Ao et al., 2012; Guo et 

al., 2012; Mao et al., 2012; Tian et al., 2013b). An appropriate evolutionary tectonic 

model of the Beishan orogen by Xiao et al. (2010) is updated here to include the latest 

data, which better constrain the nature and timing of the main terranes in the eastern 

Beishan. Consequently, we are able to construct a new model for the tectonic evolution 

of the eastern Beishan (Fig. 9), in which the main orogenic process was accretion of an 

arc/accretionary prism to a composite arc. Our model of tectonic evolution, illustrated 

in Fig. 9, is as follows: 

In the Cambrian-Ordovician subduction of the Yueyashan ocean created the 

Mazongshan volcanic arc and accretionary complex to the north of the Shuangyingshan 

micro-continent. In the Late Ordovician-Early Silurian (Fig. 9b), the Yueyashan Ocean 

closed, causing the Yueyashan ophiolite to be emplaced onto the Mazongshan arc (Ao 
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et al., 2012). Then the Shuangyingshan micro-continent and Mazhongshan arc were 

welded together into a composite arc. The Paleo-Asian Ocean began to subduct to the 

south beneath the composite arc at this time (Fig. 9c). In the Late Silurian-Devonian, all 

the geochronological data indicate that the accretion become younger towards the north 

away from the northern margin of the Shuangyingshan micro-continent; this 

continuous accretionary process created the Hanshan accretionary prism. In the Early 

Carboniferous (Fig. 9d) extension took place within the Hanshan accretionary prism 

forming a small Xiaohuangshan intra-arc oceanic basin in which basalts and gabbros 

were emplaced at 336 Ma and 345 Ma, respectively (Zheng et al., 2013). We suspect 

that this extension was caused by rollback of the subducted oceanic plate to the north. 

In the Late Carboniferous (Fig. 9e) closure of the Xiaohuangshan oceanic basin caused 

the Xiaohuangshan ophiolite to be thrusted into the Hanshan accretionary prism.  

In conclusion, we propose that the accretionary processes and continental growth in 

the southern (present coordinates) Central Asian Orogenic Belt were characterized by 

semi-continuous episodes of subduction-accretion with different subduction polarities. 

The currently available evidence negates the inappropriate old idea of just long-lasting 

evolution of one subduction zone (Şengör et al., 1993). Some small oceans probably 

existed within the overall Paleo-Asian Ocean, but nevertheless the major process of 

crustal growth was long-lived, uni-directional forearc accretion that gave rise to many 

arcs and their associated accretionary prisms. We conclude that the main accretionary 

mechanism and continental growth in Central Asia was multiple stages of consecutive 

accretion and collision. 
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6. Conclusions 

Our field work combined with new detrital zircon analyses, Ar-Ar dating and 

structural studies in eastern Beishan, integrated with results from previous 

investigations, demonstrate the following relationships:  

 (1) Before the Neoproterozoic the Shuangyingshan terrane was a micro-continent, 

which shared distinctive age peaks with, and was a contiguous part of, the northeastern 

Tarim block, but at ~741 Ma it rifted from the Tarim block, and thus became an 

independant different provenance for detrital sediment.  

(2) The Hanshan terrane is an accretionary prism, which accreted continuously from 

the Silurian to the Devonian (457-367 Ma) on the northern margin of the 

Shuangyingshan-Mazhongshan composite arc. The younging direction of accretion 

was from south to north, and it continued to grow until the Late Carboniferous. 

(3) The Xiaohuangshan Ocean started as an intra-arc basin withinin a forearc 

accretionary prism in the Early Carboniferous, probably caused by slab rollback. The 

Xiaohuangshan Ocean probably closed in the Late Carboniferous when the 

Xiaohuangshan ophiolite was emplaced into the Hanshan accretionary prism. The 

accretion-emplacement process may have been caused by oceanic subduction below 

the accretionary prism to the south. 

(4) The processes of accretionary continental growth in Central Asia were dominated 

by semi-continuous, multiple episodes of accretion and collision. We are confident that 

this conclusion is viable, because in the last two decades it has been tested by a huge 

body of fieldwork (which is necessary if speculative models are to be tested) by 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 25 

international researchers from far and wide, which has led to considerable quantitative 

laboratory data, which have evaluated and tested competing models, concluding that 

accretion can only have taken place by multiple and successive episodes of subduction. 
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Captions 

Fig. 1. (a) Map showing the location of the Beishan area in the south of the Central 

Asian Orogenic Belt. (b) Schematic geological map of the Beishan collage 

showing the main, named tectonic Units (modified after (Zuo et al., 1990b; Xu et 

al., 2009; Xiao et al., 2010). Box shows the location of Figure 2. 

 

Fig. 2. Geological map of the Xiaohuangshan-Yueyashan area, which marks the 

positions of dated samples, the Xiaohuangshan ophiolite, and location of Figure 3. 

All the geochronological data from this study demonstrate that the accretionary 

belts young progressively from south to north. 

 

Fig. 3. Geological map of the Xiaohuangshan ophiolite-bearing mélange (modified 

after Anonymous (1979). The boxes show the location of Figure 4. 

 

Fig. 4. Schematic section across the Xiaohuangshan ophiolite mélange. 

Bedding/foliation and fold cleavage largely dip to the south consistent with 

accretion to the north (Fig. 2), and in consequence the subduction zone dipped to 

the south.  

 

Fig. 5. U-Pb Concordia age diagrams of zircons in samples from Eastern Beishan.  

 

Fig. 6. Age spectra (A-E), and isotope correlation (a-e) diagrams of samples from the 
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Xiaohuangshan area. The plateau ages are indicated by dark lines. Solid rectangles 

denote the steps used in fitting the inverse isochrons. 2 sigma errors are quoted for 

the points plotted in isotope correlation diagrams (a-e). 

 

Fig. 7. U-Pb cumulative age probability plots of detrital zircons. (a) from the Hanshan 

accretionary prism, (b) from the Shuangyingshan micro-continent, (3) from NE 

Tarim. MDA = maximum depositional age, WS = Western Beishan. � data of this 

study, other data after [1](Song et al., 2013b), [2](Zhang et al., 2012), [3](Zhang et 

al., 2011) 

 

Fig. 8. Micrographs of gneissic diorite (a, 10ASJ03), mica quartz schist (b, 09AB09) 

and gneissic granite (c, 10ASJ 08) under cross-polarized light demonstrating a 

weak preferred orientation of hornblende in (a), preferred orientation of muscovite 

in (b), and a weak preferred orientation of biotite in (c). 

 

Fig. 9. Schematic model to explain the tectonic evolution of the eastern Beishan orogen 

in four stages from the Cambro-Ordovician to the Late Carboniferous. * data from 

this study. For details see the discussion in the text.   
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Highlights 

Shuangyingshan is a micro-continent, which shares age peaks with Tarim 

block before 741 Ma. 

Hanshan is an accretionary prism, which accreted continuously from south 

to north. 

Xiaohuangshan Ocean formed as an intra-arc basin within the forearc 

accretionary prism. 


