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Abstract
The North American Cordilleran Orogen is the result of a two-stage
process: (a) Triassic-Jurassic accretion within Panthalassa forming
SAYBIA, a composite ribbon continent, and (b) Late Cretaceous
collision of SAYBIA with North America. This model requires that
a large portion of the continental foreland of the orogen is exotic.
The exotic continental component of SAYBIA, Cassiar Platform,
is distinguished from the autochthon on the basis of its (a) Triassic
Eurasian fauna; (b) involvement in a major Late Triassic-Early
Jurassic orogenic event; and (c) young, in part Grenvillian basement
and mantle. A mid-Cretaceous magmatic arc records west-dipping
subduction beneath the east-margin of SAYBIA. The related accre-
tionary prism consists of imbricated shale, chert, and deep-water
limestones (the Medial Basin) and overlies an isotopically juvenile
mantle domain. Carbonatite complexes delineate the cryptic
suture separating SAYBIA and the autochthon. Paleomagnetic and
paleobotanical data place SAYBIA 2000 km to the south relative to
the autochthon at 80 Ma. Late Cretaceous thrust belt development
records transpression between the north-moving ribbon continent
and the autochthon. Pinning against the Okhotsk-Chukotka arc in
Siberia buckled SAYBIA, giving rise to the Alaskan promontory.
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INTRODUCTION

Between the autochthonous, undeformed strata of the plains to the east and the active
convergent margin to the west lies the north-south trending Cordilleran Orogen of
western North America (Figure 1). Within the confines of the orogen lies a boundary
between deformed crust of North American affinity (para-autochthonous strata) and
accreted, exotic crust. Determining the location, geometry, nature, and evolution
of the boundary between exotic and para-autochthonous North American crust has
been the subject of intense debate (Cook & Erdmer 2005, Johnston 2001), and is the
focus of this paper.

Understanding the boundary between North American and accreted crust is fun-
damental to understanding the processes responsible for orogenesis and the growth
of continents. For example, orogens recording a complete Wilson cycle, including
a terminal continental collision, are commonly interpreted to result in significant
continental growth (e.g. Bird & Dewey 1970, Hoffman 1980). The Cordilleran Oro-
gen of western North American, however, is thought to represent an incomplete
Wilson cycle in that it appears to have developed in the absence of a terminal con-
tinental collision. Instead, the Cordillera is interpreted as an accretionary orogen,
and its evolution is explained as the result of the incremental, thin-skinned addition
of terranes to the continental margin above a landward-dipping subduction zone
(Monger 1997). Continental growth is not a requirement of accretionary orogenesis,
and subduction erosion of the continent may even result in a net loss of continental
mass.

If the Cordillera is, therefore, strictly attributable to accretionary processes, the
bulk of the orogen may consist of little-disturbed North American crust underpinned
by North American mantle (Cook et al. 2004, Snyder et al. 2002). I start by re-
viewing the basic character of the Canadian portion of the orogen, and assess a pri-
mary assumption in Cordilleran studies: that all continental assemblages are of North
American affinity. I demonstrate that a large portion of the continental foreland of the
orogen is exotic with respect to the autochthon and forms part of a composite ribbon
continent, previously referred to as SAYBIA ( Johnston 2001), which extends along
strike to the northwest into Alaska and south into the conterminous United States
of America. I finish by presenting a model of Cordilleran orogenesis as a product of
a two stage process: (a) the accretionary construction of a composite ribbon conti-
nent, SAYBIA, followed by (b) collision of SAYBIA with North America. This model
marks a return to a more Wilson cycle–style interpretation of the Cordillera, as it in-
volves a continental collision and implies that North America has grown significantly
westward during orogenesis. A key requirement of this model is the presence of a cryp-
tic suture within the orogenic foreland, a region that has been extensively mapped

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1
The Cordilleran Orogen of western North America. Yellow striped region in Alaska, shown
here as a portion of the pericratonic belt ( yellow), has recently been reinterpreted as being part
of the Medial shale basin of the Foreland belt (Dusel-Bacon et al. 2006).
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and studied. Determining the nature and location of the cryptic suture constitutes
the primary test of this model.

GENERAL GEOLOGY

In the most general of terms, the Cordilleran Orogen is divisible into an eastern
foreland domain characterized by sedimentary strata of continental affinity, a central
intermontane domain consisting of oceanic assemblages, and a western insular do-
main of mixed oceanic and continental assemblages (Figure 2). The boundary region
between the foreland and intermontane domains is referred to as the Omineca, the
diagnostic component of which is the Omineca magmatic belt (OMB), and is com-
monly considered to consist largely of crust and mantle that extends west from and
is a continuation of foreland domain crust and mantle.

Crust of the insular domain, to the west of the intermontane domain, is ex-
otic (Nokleberg et al. 2005) and was added to the North American margin some-
time between Lower Jurassic and Lower Cretaceous time (McClelland & Mattinson
2000). I therefore focus on the eastern portion of the orogen, that region strad-
dled by the foreland and intermontane domains, for it is within this region that
the boundary between the ancient west margin of North America and accreted
crust is located. Geological relationships limit accretion to having occurred be-
tween the Triassic and Upper Cretaceous. Hence, pre-Triassic tectonism and post-
Cretaceous extension and magmatism in the southern Canadian Cordillera are little
discussed.

Thorough reviews of the geology of the Canadian Cordillera are provided else-
where and as a Supplemental Appendix (follow the Supplemental Material link
from the Annual Reviews home page at http://www.annualreviews.org). The three
salient points for this discussion are as follows:

1. Paleozoic to Middle Jurassic strata of the foreland domain are divisible into an
easterly shallow water continental platform (the Rocky Mountain Platform); a
medial basinal domain of shale, chert, and deep-water limestone (the Medial
Basin); and a westerly shallow water platform (Cassiar Platform).

2. The intermontane domain is characterized by a mid-Paleozoic to mid-Mesozoic
arc (Stikinia-Quesnellia) and a related accretionary complex (Cache Creek
terrane) that includes offscraped seamounts that originated in the Tethyan
domain.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 2
Geological map of the Canadian Cordillera showing divisions of the foreland and
intermontane domains, location shown in inset at upper left. The jagged line indicates a
mapped facies boundary separating shallow water platformal sequences (M, McKenzie
Mountains; R, Rocky Mountains; C, Cassiar; W, Windermere High) from basinal strata (SB,
Selwyn Basin; K, Kechika Trough). The Tintina–Northern Rocky Mountain Trench (NRMT)
fault is the locus of >400 km of Eocene dextral displacement (Gabrielse et al. 2006).
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3. Pericratonic assemblages and structurally interleaved ophiolite separate the
intermontane and foreland domains, and provide a record of Paleozoic Andean-
type arc and related marginal basins.

CASSIAR PLATFORM: EXOTIC?

Despite the foreland position of the Cassiar Platform, a number of lines of evidence
imply an exotic non–North America origin for the shallow-water continental plat-
form. These include faunal and geological data inconsistent with autochthoneity,
and paleomagnetic and paleobotanical data that require significant mobility of the
platform relative to the autochthon into the Late Cretaceous.

FAUNAL PROVINCIALITY OF CASSIAR PLATFORM
AND THE INTERMONTANE DOMAIN

In Yukon, Upper Triassic strata from near the Cassiar Platform–Medial Basin bound-
ary includes Epigondolella and Paragondolella—conodont species that are Eurasian. In
North America, these species are only known from the exotic Wrangellia terrane
of the insular domain (Orchard 2006). Eurasian fauna similarly characterizes the
intermontane domain. Permian strata of Stikinia-Quesnellia are characterized by
schwagerinid fusulinids and additional fauna that are similar to those found in
the McCloud Limestone of northern California and Nevada (Carter et al. 1992)
(Figures 1 and 2). The fauna of the McCloud Belt terranes (Miller 1987) is distinct
from the fauna of coeval North American strata. The degree of separation required
to produce this faunal provincialism is assumed to be >1000 km and probably much
greater (Stevens et al. 1990). A more distal origin for Stikinia-Quesnellia, consistent
with the constraints provided by the Tethyan Cache Creek seamounts ( Johnston
& Borel 2007), is suggested by Devonian and Lower Carboniferous strata that are
characterized by conodonts of exclusively Eurasian derivation (Orchard 2000), and
by Permian and Triassic strata that, although characterized by a mixed faunal assem-
blage, includes corals, conodonts, and radiolarian that are otherwise unknown outside
of Eurasia (Reid & Tempelman-Kluit 1987, Stanley & Senowbari-Daryan 1999). The
slices of ophiolitic crust tectonically interleaved with the pericratonic assemblages
are similarly characterized by Permian McCloud fauna, and Triassic mixed fauna, in
part, of Tethyan affinity (Dusel-Bacon & Harris 2003, Nelson 1993). Hence, Eurasian
fauna characterizes Devonian through Triassic strata of the intermontane domain, as
well as the Cassiar Platform, distinguishing them from coeval North American strata
of the Rocky Mountain Platform.

CONTRASTING TRIASSIC–JURASSIC
GEOLOGICAL EVOLUTION

Stikinia-Quesnellia and the pericratonic assemblages were involved in a major Late
Triassic collisional event that was not recorded on the autochthon. In the southern
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Cordillera, rocks of Quesnellia overthrust the pericratonic assemblages along a major
east-verging thrust fault that is plugged by Early Jurassic intrusions (Murphy et al.
1995). Rapid uplift and exhumation of deeply buried pericratonic strata is recorded
by Early to Middle Jurassic cooling ages on continental margin assemblages that
had been metamorphosed at pressures of greater than 7 kbar (Colpron et al. 1996)
(Figure 3). In Yukon, Stikinia tectonically overlies the pericratonic assemblages
( Johnston & Canil 2007). Early Jurassic posttectonic plutons and shallow-level mi-
arolitic dyke swarms intrude and stitch together Stikinia and pericratonic assem-
blages ( Johnston et al. 1996a) that had been previously metamorphosed at pressures
of 8 to 12 kbars ( Johnston & Erdmer 1995) (Figure 3). Collision is recorded in
Stikinia-Quesnellia by the Late Triassic termination of arc magmatism and Early
Jurassic molasse deposition.

Collisional orogenesis was thick-skinned, involving exhumation of lowermost
mantle lithosphere. Pleinsbachian (∼185 Ma) molasse shed off the collision zone
includes clasts of ultrahigh-pressure garnet peridotite and eclogite unroofed from
depths of 100 to 150 km (MacKenzie et al. 2005) (Figure 3). Micaceaous Triassic
flysch was deposited across the pericratonic assemblages and their tectonically in-
terleaved slices of ophiolite, the Cassiar Platform, and parts of the Medial Basin.
These Triassic strata were derived from the west, are locally conglomeratic, and are
interpreted as syn-orogenic sediments (Colpron et al. 2006; Colpron et al. 2007)
(Figure 3). Detrital zircons of demonstrable pericratonic assemblage origin char-
acterize Triassic strata overlying Medial Basin strata, consistent with interpreta-
tion as an overlap assemblage (Beranek & Mortensen 2006, Beranek & Mortensen
2007).

In contrast, passive margin sedimentation continued to characterize the Rocky
Mountain Platform through at least the Middle Jurassic, in the south, and until
the Cretaceous in the north (Gordey et al. 1992) (see Supplemental Figure 1).
Phosphorite and, in deeper water strata, chert accumulation imply that the passive
margin faced west toward an open ocean basin characterized by upwelling of large-
scale deep water currents (Poulton 1984, Poulton & Aitken 1989). Westerly derived
flysch and molasse did not inundate the southern Rocky Mountain Platform until
the Upper Jurassic (155–152 Ma), and even then, most of the siliciclastic sediment
appears to have been derived from autochthonous source terranes (Ross et al. 2005).
Clastic sediments derived from erosion of isotopically juvenile source terranes, such
as the oceanic arcs and ophiolite of the intermontane domain, do not appear in the
foreland basin until 120 Ma (Ross et al. 2005).

The thick-skinned Late Triassic orogeny that involved the intermontane domain
terranes, the Cassiar Platform, and the Medial Basin did not load and cause isostatic
flexure of the lithosphere on which the Rocky Mountain Platform was located. Even
in the southern Canadian Cordillera, where the orogenic welt is closest to the Rocky
Mountain Platform (only 200 km to the west after palinspastic restoration of younger
thrust faults), there is no evidence of any Triassic–Early Jurassic loading of the North
American lithosphere and no orogenic sediments shed east off of the thickened crustal
welt that characterized the orogen. Neither did the orogen impede or inhibit contin-
ued oceanic upwelling and related phosphatic sediment deposition along the North
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American passive margin. The implication is that the Triassic orogeny involving the
intermontane domain terranes and the Cassiar Platform took place far removed from
the Rocky Mountain Platform and involved plates separate from the North American
plate.

CRUSTAL BASEMENT AND MANTLE PROVINCIALITY

The basement to the Rocky Mountain Platform consists of 1.84 Ga and older crust
and mantle of the Canadian Shield (Ross 2000). This contrasts with the basement
underpinning the Medial Basin, the Cassiar Platform, and the intermontane domains,
which is younger. In the northern Cordillera, the Coates Lake Diatreme intrudes Pro-
terozoic sedimentary rocks near the mapped eastern boundary of the Medial Basin
(Figure 4). Lower crustal granitic xenoliths in the diatreme yield crystallization ages
of 1.1 Ga ( Jefferson & Parrish 1989, Mortensen & Colpron 1998). 1.0 to 1.1 Ga
xenocrystic zircons characterize Paleozoic diatremes that intrude in or near the east
margin of the Medial Basin in the southern Cordillera (Parrish & Reichenbach 1991)
(Figure 4). Metabasite xenoliths in intrusive breccias in the Wernecke Mountains
(Yukon) were recrystallized at 1.15 Ga (Milidragovic et al. 2007). 1.0 to 1.2 Ga crys-
talline rocks are unknown in the cratonic basement to the east and indicate that the
depositional basement to Medial Basin and Cassiar Platform is a distinct, in part,
Grenvillian-aged basement.

Precambrian crystalline rocks crop out within the pericratonic assemblages in
British Columbia, including, from south to north, the Priest River Complex (Idaho),
the Monahsee Complex, the Malton Complex, and the Sifton Range (Figure 4). The
basement complexes are exposed within structural culminations and have been inter-
preted as para-autochtonous extensions of the cratonic North American basement to
the east (Parrish 1992). However, the Priest River Complex, which lies west of the
3.3 Ga to 2.6 Ga Medicine Hat province of the craton, crystallized at 2.55 to 2.65 Ga,
is intruded by 1.59 Ga felsic plutons and cannot be readily correlated with any cra-
tonic basement to the east (Doughty et al. 1998) (Figure 4). Despite the abundance
of Archean crust and mantle abutting the east margin of the Canadian Cordillera,
no Archean crust has yet been documented within the orogen. Granite and felsic
cobbles in a conglomerate in southern Quesnellia yield crystallization ages of 1.03 to
1.04 Ga, and were likely derived from erosion of exposed basement (Erdmer et al.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3
Map of the Cordillera showing region affected by Triassic orogeny. Only the Rocky Mountain
Platform (not colored here) was unaffected. Examples of constraints on timing of crustal
thickening and subsequent exhumation and cooling include (a) cooling curve from Nisling
pericratonic assemblage showing Early Jurassic cooling and exhumation ( Johnston et al.
1996a), (b) Ar-Ar cooling ages for Yukon-Tanana terrane that peak at 190 Ma (Breitsprecher &
Mortensen 2004); (c) exhumation curve for Kootenay pericratonic assemblage showing
unroofing by 180 Ma (Colpron et al. 1996); and (d ) the stratigraphic record from Stikinia of
unroofing of Ultra High Pressure rocks at 185 Ma (Canil et al. 2006). Also indicated is the
distribution of westerly derived, Triassic, syn-orogenic clastic sequences (Murphy et al. 2006).
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Carbonatite intruding metamorphic sequences

Carbonatite intruding Foreland domain

Conglomerate with 1.038 Ga cobble

Diatreme field with 1.1 Ga ages

W: Wernecke Breccia recrystallized xenoliths
C: Coates Lake granitic xenoliths
I: Columbia Icefields xenocrystic zircon
E: Elk River xenocrystic zircon

SR

PR

S

MA

MO

Cordilleran basement inlier

S: Sifton (1.85 Ga)
MA: Malton (2.1–1.87 Ga)
MO: Monashee (2.2–1.87 Ga)
PR: Priest River (1.64–1.52 Ga)
SR: Salmon River

Archean

2.4–2.0 Ga

Supplemental Figure 2

W
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2.0–1.8 Ga

Cache Creek terrane

Magmatic arc

Pericratonic assemblages

Intermontane domain

Symbols

Geological regions

Foreland domain

Medial basin

Cassiar platform

Rocky Mountain platform

Figure 4
Diatremes (squares) and carbonatites (diamonds) of the Cordillera. Inliers of Precambrian
basement within the Cordillera are indicated (magenta), as are the domains of the
autochthonous Precambrian basement. Box shows location of Supplemental Figure 2.
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2002) (Figure 4) >700 Ma younger than any known basement within the adjacent
autochthon.

North American mantle can similarly be distinguished from the mantle underpin-
ning the Cassiar Platform and intermontane domain. Mantle xenoliths in Cretaceous
and younger kimberlite pipes intruding the authochthon range in age from Archean
to 1.8 Ga (LeCheminant et al. 1996). Alkalic magmatic rocks derived from melting
of the cratonic mantle lithosphere are isotopically radiogenic. For example, phlo-
gopite separated from the Lac de Gras kimberlites of the Slave craton yields initial
Sr values ranging from 0.704 to 0.706 (Creaser et al. 2004). In contrast, Re-Os iso-
topic studies of mantle xenoliths sampled by young alkali basalts erupting through
Stikinia-Quesnellia and the pericratonic assemblages all yield similar Os model ages
of 1.1 Ga, interpreted as the age of melt extraction and lithospheric mantle formation
(Peslier et al. 2000) (Supplemental Figure 1). Isotopic studies of the alkali basalts
indicate that the mantle source region beneath the Medial Basin are less radiogenic
(iSr = 0.7034) than either the cratonic mantle to the east or the mantle underpinning
the Cassiar Platform to the west (Abraham et al. 2001) (Supplemental Figure 1).

MID-CRETACEOUS ARC MAGMATISM OF THE
INTERMONTANE DOMAIN, CASSIAR PLATFORM,
AND THE MEDIAL BASIN

A defining feature of the Canadian Cordillera is the mid-Cretaceous Omineca
Magmatic Belt (OMB). Here I focus on the northern OMB (Figure 5) for which
there is a significant geochemical and geochronological database. The northern OMB
is a belt of I- and S-type plutons (Figure 5) that intrude the intermontane domain,
Cassiar Platform and the Medial Basin. Resulting contact metamorphism is restricted
to narrow aureoles (Gordey & Anderson 1993, Pigage & Anderson 1985, Smith &
Erdmer 1990). The magmatic belt youngs to the northeast (Figure 6) (Breitsprecher
& Mortensen 2004, Hart et al. 2004a, Mortensen et al. 2000). In the west, plutons
intruded from 115 to 100 Ma, with small volume plutons as old as 124 Ma. Succes-
sively younger orogen-parallel intrusive bands to the northeast terminate in a set of
92 +/– 1 Ma plutons. The southwest to northeast age progression is accompanied
by changes in lithology, chemistry, and structure (Hart et al. 2004a, Mortensen et al.
2000). The western plutons are midcrustal, concordant, foliated, metaluminous, calc-
alkaline hornblende-biotite granodiorite sills with titanite and magnetite. Discordant,
shallow-level plugs of granite are minor. The intrusions are spatially associated with
and were syn-kinematic with steep, dextral-transpressive faults ( Johnston 1999). Ini-
tial Sr is ∼0.707 (n = 12) and geochemical data indicate enrichment in large-ion
lithophile elements (LILE) and negative Nb anomalies (Selby et al. 1999).

Younger plutons to the northeast are peraluminous and felsic, foliated to massive
hornblende-biotite granodiorite and muscovite-biotite granite (Figure 5). Accessory
ilmenite and monazite indicate reduced magmas (Hart et al. 2004a). Magmatism was
syn- to postkinematic; different magmatic phases are juxtaposed along brittle-ductile
high-strain zones (Gordey & Anderson 1993), with predominantly shallow-level plu-
tons lying elongate parallel to and spatially associated with northeast-verging dextral
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Figure 6
(a) Northern OMB plutons contoured (long dash lines) by age (Breitsprecher & Mortensen
2004). After Mortensen et al. (2000) and Hart et al. (2004b). n, number of age determinations.
(b) Schematic cross section showing tectonic setting of OMB arc (plutons in red ) at ∼95 Ma
(Oldow et al. 1990). Oblique subduction is resolved into dextral strike-slip and NE-verging
thrust faults that displace trenchward crust south (toward reader). The addition of orogenic
float along thrusts results in younging of arc plutons to the NE (large arrow indicates motion
of subducting slab). Arrows at top indicate southward displacements and clockwise rotations
attributable to dextral strike-slip fault.

transpressive thrust faults (Murphy 1997) (Figure 5). The thrust faults root west
beneath and are interpreted to share a common basal detachment with coeval dextral
strike-slip faults. Hornblende and biotite-bearing intrusions have initial Sr of 0.706 to
0.710, LILE enrichment, and negative Nb anomalies; two mica granites have initial
Sr of 0.709 to >0.730 (n = 15) (Driver et al. 2000). The most northeasterly plutons
intruded from 94 to 90 Ma, have circular map-patterns and are bimodal metalumi-
nous to alkaline, quartz monzonite to syenite, with rare gabbro and lamprophyre
(Anderson 1987).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 5
(a) The northern Omineca magmatic belt (OMB) showing distribution of S- ( pink), I-type and
undifferentiated (red ), and (stipple) transitional plutons that are intermediate between I- and
S-types (Gordey & Anderson 1993, Hart et al. 2004a, Mortensen et al. 2000). Four-hundred
and twenty-five kilometers of Eocene displacement along the Tintina–Northern Rocky
Mountain Trench (TNRMT) fault has been restored. Teeth on mid-Cretaceous thrust faults,
including the Dawson Thrust (dt), point into the hangingwalls, opposite their sense of
vergence; strike-slip faults are dextral. (b) Inset location map shows Cordilleran distribution of
mid-Cretaceous OMB (red ) and Coast belt ( gray) intrusions. (c) Cross section at lower right
(line a–b in panel a) shows palinspastically restored stratigraphic section across hangingwall
(left, intruded by OMB) and footwall (right) sequences of Dawson Thrust (Abbott 1997).
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Hornblende-biotite granodiorites characterized by LILE enrichment and nega-
tive Nb anomalies, like those of the OMB, are commonly explained as arc magmas
(Hamilton 1995). An arc-interpretation has, however, been previously ruled out be-
cause of the broad width and lack of a nearby, temporally associated subduction com-
plex. Previous explanations of OMB magmatism have included back-arc magmatism
behind the coastal arc developed on the Insular Belt Wrangellia-Alexander terranes
(Hart et al. 2004a, Kidwell et al. 2005, Mair et al. 2006) and melting of a thick-
ened crustal welt (Armstrong 1988, Driver et al. 2000, Monger et al. 1982). These
models have difficulty explaining the volume, lithology, and structural setting of the
northern OMB. Continental back-arcs are typically characterized by small volumes
of alkalic magmatism intruded during extension, modern flat slabs are amagmatic
(Gutscher et al. 2000), and thermal modeling indicates that slab flattening yields no
significant magmatism (English et al. 2003). Crustal welts yield irregularly developed,
amphibolite-grade crystalline terranes with spatially associated plutons that postdate
crustal thickening and lack a mantle component. Although Late Triassic orogeny
thickened the crust in the OMB region, this crustal welt was unroofed by 180 Ma
(Colpron et al. 1996, Johnston et al. 1996a). Neither back-arc magmatism nor melt-
ing of a crustal welt explains the systematic southwest- to northeast-younging and
related geochemical changes of the OMB. I suggest a model involving the structural
addition of orogenic float to the upper plate of a convergent margin (Oldow et al.
1990).

Orogenic float (Oldow et al. 1990), when added to the upper plate at a convergent
margin, is bound by landward-dipping thrust faults that young oceanward and root
into a basal decollement. Oblique subduction is resolved into margin-normal thrusts
and coeval margin-parallel strike-slip faults. Assuming a fixed trench, the addition
of orogenic float to the upper plate is accommodated by the displacement of upper
plate crust, including previously intruded arc plutons, away from the trench (Oldow
et al. 1990). Because arcs are produced at a relatively fixed distance from the trench
(Hamilton 1995), the addition of orogenic float gives rise to a magmatic arc that
youngs oceanward (Figure 6).

In an orogenic float model, the northern OMB is an arc that was constructed across
an upper plate consisting of the intermontane domain and the Cassiar Platform;
abyssal strata of the Medial Basin are inferred to be orogenic float derived from a
subducting lower plate. The transfer of the orogenic float from a subducting slab
displaced upper plate crust away from the trench. The younging direction of the arc
plutons and coeval thrust faults implies that upper plate crust was displaced to the
southwest, indicating that the trench lay northeast of the Cassiar Platform. Because
the abyssal strata of the Medial Basin are allochthonous orogenic float, eastward
salients of the basin (Figure 5) are probably structural artifacts of the accretionary
process (discussed below). Entry of continental crust of North American into the
trench at 92 Ma terminated subduction.

The eastward transition from I-type, oxidized magnetite-bearing plutons to re-
duced ilmenite-bearing, I- and S-type plutons reflects arc migration onto the ac-
creting orogenic float (Figure 6). Underplating of argillaceous float by gabbro
would melt the float, explaining the radiogenic S-type plutons. The radiogenic
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character of some I-type plutons has been used to argue that all of the intrusions
are the result of crustal melting. Subduction of transitional lithosphere and fluxing
of the mantle wedge by continental components derived from the heavily sediment-
laden downgoing plate may, however, explain the evolved, radiogenic mantle-derived
magmatism.

Interpretation of the northern OMB as an east-facing arc implies that the Medial
Basin is host to a cryptic suture. The imbricated, cleaved, disrupted and deformed
chert, argillite, and deep-water limestones of the Medial Basin are an “accretionary
prism,” limiting the cryptic suture to being beneath or along its east margin. It remains
unclear if any of the voluminous suite of ophiolitic rocks mapped in Alaska (Patton
et al. 1994) originated within the forearc of the OMB arc. Along strike to the south,
the OMB in northern Idaho is characterized by the Salmon River suture in which
ophiolitic rocks were obducted, sheared, and overprinted by OMB intrusions, all
between 130 and 80 Ma (McClelland et al. 2000). These relationships are consistent
with the Salmon River ophiolite being a preserved remnant of the suture separating
the OMB arc from North America.

PALEOMAGNETIC AND PALEOBOTANICAL DATA

Cretaceous bedded sedimentary and volcanic rocks that unconformably overlie the
intermontane domain consistently yield anomalously shallow paleomagnetic incli-
nations relative to cratonic North America (Enkin et al. 2003, 2006; Irving et al.
1996, Wynne et al. 1998) (Figure 7). These paleomagnetic data imply that the inter-
montane domain crust lay >2000 km to the south relative to the autochthon between
90 Ma and 70 Ma (Enkin 2006). Paleomagnetic studies of plutons provide less consis-
tent results, probably owing to the difficulty in constraining paleohorizontal and the
age of magnetic remanance. Although some studies of plutons have been interpreted
as showing little evidence for a southerly origin (McCausland et al. 2006, Symons
et al. 2005), the bulk of pluton studies yield results consistent with results obtained
from layered supracrustal rocks (Enkin 2006, Irving & Wynne 1992).

In Yukon, 70 Ma volcanic flows and interlayered sedimentary rocks of
the Carmacks Group unconformably overlie the pericratonic assemblages and
Stikinia-Quesnellia (Figure 7). Paleomagnetic studies of the Carmacks Group
indicate deposition 1950 ± 600 km to the south relative to cratonic North
America (Enkin et al. 2006, Johnston et al. 1996b, Marquis & Globerman 1988,
Wynne et al. 1998) (Figure 7). The most easterly exposure of the Carmacks Group,
at Solitary Mountain, lies just 5 km west of the fault zone along which the pericra-
tonic assemblages and the Cassiar Platform are juxtaposed (Colpron et al. 2005). A
105 Ma batholith, one of the mid-Cretaceous OMB plutons, plugs the fault zone.
The contact aureole for the batholith extends unbroken across the fault zone into the
pericratonic assemblages, limiting fault juxtaposition of the intermontane domain
and the adjacent Cassiar Platform to having occurred prior to 105 Ma, long before
deposition of the Carmacks Group.

Intrusions of the mid-Cretaceous OMB are, as indicated above, widespread in
Yukon, pinning together Stikinia-Quesnellia, the pericratonic assemblages, Cassiar
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Figure 7
(a) Paleolatitudes relative to the expected North American paleolatitude ( green line) for
Cretaceous and Paleogene bedded rocks based on paleomagnetic data (red diamonds; see Enkin
2006 for primary data and locations) and on paleobotanical data (Miller et al. 2006) from
Winthrop Basin ( green triangle, the Methow Basin). Global polarity record (black: normal;
white: reversed) shown at bottom. (b) Geology map, with 425 km dextral motion along Tintina
fault restored, showing distribution of Carmacks Group (maroon) at left (Gladwin & Johnston
2006, Wynne et al. 1998). Black box indicates location of Solitary Mountain. (c) Paleomagnetic
results for the Carmacks Group at right, showing far-sided poles relative to the cratonic North
American pole location. Carmacks Group at Solitary Mountain yields a different azimuth
indicating rotation relative to Carmacks Group to the west (Enkin et al. 2006).
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Platform, and much of the Medial Basin (Figure 5) (Woodsworth et al. 1992). The
plutons extend east almost to the eastern margin of the Medial Basin (Gordey &
Anderson 1993). Hence, the paleomagnetic results for the Carmacks Group apply
to the Cassiar Platform and much of the Medial Basin (Gladwin & Johnston 2006).
The implications of these findings are that (a) the Cassiar Platform did not become
fixed to autochthonous North America until the Eocene; (b) that it, together with
Medial Basin strata to the east and intermontane domain strata to the west, resided
∼2000 km to the south relative to cratonic North America at 70 Ma; and (c) that the
structures along which Late Cretaceous northward motion were accommodated lie
in the easternmost Medial Basin, along the eastern boundary of the Medial Basin, or
in the Rocky Mountain Platform to the east.

Layered sedimentary rocks overlying the intermontane domain locally contain
fossil leaves that can be used to estimate mean annual temperature (MAT). Because
the MAT is primarily a function of latitude (Miller et al. 2006), paleobiographic MAT
analyses can be used to constrain paleolatitude. The mid-Cretaceous (110 to 100 Ma)
Winthrop Formation, part of the Methow Basin of the southwestern intermontane
domain (Figure 2), contains fossil angiosperm leaves. Leaf-margin analysis of the
angiosperm fossils indicates a subtropical to tropical growth environment, consistent
with a latitude of 38.4◦ and implying deposition 2200 km to the south (Miller et al.
2006) (Figure 7), consistent with the paleomagnetic data. Because the intermontane
domain can be tightly tied to the pericratonic assemblages and the Cassiar Platform
by the Early Jurassic, the southerly latitude indicated by the paleobiographic analysis
provides further confirmation of the mobility of the Cassiar Platform and western
Medial Basin into the Late Cretaceous.

Paleomagnetic studies of older rocks in the Cordillera similarly imply significant
mobility of the intermontane domain relative to cratonic North America. Ophiolitic
sequences interleaved with the pericratonic assemblages include Permian abyssal
seafloor sedimentary rocks. A primary paleomagnetic remanance in the sedimentary
rocks yields anomalously shallow inclinations relative to cratonic North America, im-
plying deposition >2000 km to the south (Richards et al. 1993). Triassic and Jurassic
paleomagnetic results from Stikinia-Quesnellia yield paleolatitudes that are broadly
similar to cratonic values but that require large and variable rotations, and for which
the hemisphere of origin is ambiguous (Irving & Wynne 1992).

BENDS OF FAULTS AND FACIES BOUNDARIES

The east margin of the Medial Basin is characterized by numerous eastward salients,
including the Meilleur River and Misty Creek embayments (Figure 2). The distribu-
tion of shallow- and deep-water facies is commonly interpreted as primary features
reflecting the geometry of the original rifted west margin of the continent (Cecile
et al. 1997). However, two structural observations are inconsistent with the distri-
bution of shallow- and deep-water facies being a primary feature: Cretaceous faults
commonly parallel and mimic the older facies boundary and interpreted Paleozoic rift
structures are continuous around bends of 180◦. I provide two examples, the Ogilvie
deflection and the Misty Creek embayment.
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Figure 8
(a) Structural map of the Ogilvie Mountains (location on Figure 2) showing distribution of
shallow and deep water facies and of Cretaceous thrust faults (McMechan et al. 1992, Norris
1985). (b) Simplified palinspastic restoration of facies boundary, assuming 75 km shortening
along the south and west limbs of the mountain belt.

The Ogilvie Mountains are a foreland-verging fold and thrust belt of mid-
Cretaceous age that is spatially coincident with the boundary between basinal shales
to the south and the more northerly Ogilvie or Yukon Platform (Figures 3 and 8). To
the west, the south margin of the platform describes a 90◦ deflection from an east-west
trending feature to a north-south orientation. The change in the orientation of the
facies boundary is paralleled by a change in the orientation of the fold and thrust belt,
a feature referred to as the Ogilvie deflection (Norris 1972). The east-west trending
fold and thrust belt verges north, and is continuous through the Ogilvie deflection
into east-verging faults of the north-south trending portion of the belt.

Palinspastic restoration of the thrust sheets results in a significant room problem;
the restored east-west trending southern and north-south trending western portions
thrust belts are restored a considerable distance away from one another around the
hinge region, implying that what is now the hinge region lacked crust prior to the
development of the fold and thrust belt (Figure 8). This room problem is significant—
the “hole” in the palinspastic restoration covers an area of almost 10,000 km2. The
problem can also be thought of as a line-length problem: Propagation of thrust sheets
continuous around a preexisting bend toward the foreland should have resulted in
enormous strike-parallel contraction within the hinge region, for which there is no
evidence (Figure 8). Bending of an originally linear fold and thrust belt removes the
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Figure 9
(a) Simplified geology map of Misty Creek embayment (location indicated on Figure 5).
(b) Cross section 1–2 showing symmetric “steer’s head” geometry of lithofacies across basin
(Cecile et al. 1997). (c, d ) Simplified models showing how steer’s head rift (black dots with stems
on down-dropped blocks) has to end either in a pole of rotation (red dot) or a transform fault,
respectively.

room/line length problem and implies that the facies boundary geometry is the result
of strain and is not primary.

Cross sections drawn perpendicular to the long axis of the north-northwest-
trending Misty Creek embayment show that it is symmetric, with a “steer’s head”
profile (White & McKenzie 1988) consisting of a central “head” of shale and deep-
water limestone with fringing “horns” of shallow-water carbonates (Cecile 1982)
(Figure 9). Based on the observed steer’s head symmetry, a model of symmetrical
rifting was employed to explain the origin and geometry of the embayment (Cecile
et al. 1997). A prediction of a model of parallel, symmetrical opposing rifts is that they
must terminate along strike in either an Euler pole of rotation, or (given a distant
Euler pole) a transform fault (Figure 9). Instead, the sedimentary facies and bound-
ing structures are continuous through 180◦ around the entire embayment; sections
drawn perpendicular to the facies boundary are everywhere identical, a geometry that
cannot be produced through any simple rift model. Bending of an originally linear
rift margin best explains the geometry of the Misty Creek embayment.

Parallelism of Cretaceous thrust faults around major bends in facies boundaries,
and continuity rift margins around bends of 180◦, indicate that the geometry of the
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platform to basin facies boundary is not a primary feature of the orogen, but is the
result of Cretaceous bending, about vertical axes of rotation, of originally more linear
rift margins and fold and thrust belts.

Rift-Related Carbonatites and Alkaline Igneous Complexes

The margins of the Medial Basin are characterized by Lower to Middle Paleozoic
alkaline igneous and carbonatite complexes along the length of the orogen (Pell
1994) (Figure 4). The intrusive complexes are locally spatially associated with coeval
alkaline and potassic basalts (Goodfellow et al. 1995). Deformation of the complexes
is indicated by the presence of a weak to moderately well-developed foliation, local
mylonitization, folding, boudinage, and truncation by thrust faults ( Johnston & Pyle
2005, Pell 1994). The presence of syn-magmatic extensional structures ( Johnston &
Pyle 2005) and proximity to the margins of the Medial Basin imply that the complexes
lie along and mark ancient rift zones.

Global study of deformed alkaline igneous and carbonatite complexes indicate
that they commonly lie along and characterize suture zones; >90% of deformed
African nepheline syenite and carbonatite complexes lie along and mark known and
inferred sutures (Burke et al. 2003). Because alkaline igneous complexes and car-
bonatite intrusions characterize intracontinental rifts (Bailey 1977), their location
within collisional orogens can be explained in terms of a Wilson cycle model, with
magmatism occurring along and marking the rifted margin of a continent, and defor-
mation occurring during ocean closure and subsequent collision (Burke et al. 2003).
The distribution of Cordilleran carbonatites, alkaline igneous complexes, and coeval
alkaline basalts within the Medial Basin is, therefore, consistent with the Medial Basin
being a cryptic suture separating a west-facing autochthonous continental margin
(the Rocky Mountain Platform) from a more westerly, east-facing exotic continental
margin represented by the Cassiar Platform.

Late Cretaceous Fold and Thrust Belt Formation

The Canadian Cordillera is characterized along its entire length by a Late Cretaceous,
foreland-verging fold and thrust belt (Figures 1 and 2), of which the Rocky Moun-
tains of southwest Alberta are the most spectacular and well-known manifestation.
Shortening accommodated by the thrust belt decreases northward from a maximum
of >250 km in southern Alberta (Price & Sears 2000) to less than 50 km in the north
(McMechan et al. 1992). Cooling ages, paleomagnetic studies, direct dating of fault
rocks, and the age of deformed and overlapping undeformed strata limit deforma-
tion to having occurred between the Campanian (∼80 Ma) and the Early Eocene
(∼50 Ma) (Enkin et al. 2000, McMechan et al. 1992, Price 1981, van der Pluijm et al.
2006).

Explaining the origin of the fold and thrust belt is problematic. Most workers as-
sume fold and thrust belt formation postdates previous accretion of the intermontane
and insular domains (Monger et al. 1982). Hence the fold and thrust belt is assumed
to have formed 1000 to 1500 km inboard from the active Late Cretaceous west
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margin of the continent and in the absence of any collisional event (English &
Johnston 2004). Noncollisional explanations of the fold and thrust belt appeal to
interaction with the slab subducting beneath the west margin of the continent. A
compressive stress regime is inferred to have resulted from rapid relative conver-
gence between the North American and the oceanic plate to the west (Hyndman
1972), possibly coupled with the presence of a thermally weakened back-arc region
(Hyndman et al. 2005). Alternative explanations of compression involve flat slab sub-
duction of the oceanic plate (Dickinson 2004), possibly due to the presence of an
oceanic plateau on the subducting plate (Murphy et al. 2003) or because of subduc-
tion of a spreading ridge (Bird 1988). A model of transcurrent deformation links fold
and thrust belt formation to 430 km of dextral strike-slip motion along the Northern
Rocky Mountain–Tintina trench fault (Figure 2) via an inboard transfer of displace-
ment (Price & Carmichael 1986).

Flat slab models, no matter what the cause, do not explain shortening along the
entire length of the orogen. The Late Cretaceous fold and thrust belt runs the length
of the continent (Figure 1); hence, appeals to subducted oceanic plateau and spread-
ing ridges, although possibly explaining some local variation in structural style, do not
provide a framework for explaining the entire thrust belt. Linking fold and thrust belt
formation to the dextral strike-slip Northern Rocky Mountain–Tintina trench fault
suffers the same dilemma in that it provides a local explanation for a continent-scale
problem. In addition, displacement on the strike-slip fault occurred in the Eocene
(Gabrielse et al. 2006) and would, therefore, have been coeval with only the final in-
crements of thrust belt shortening recorded along the McConnell and related thrust
faults (van der Pluijm et al. 2006). Appeals to high relative convergence are incon-
sistent with there having been at least two and possible three different oceanic plates
west of North America, each moving in different directions. Neither does it explain
why fold and thrust belt formation occurred within the continent, well removed from
the margin.

As discussed above, paleomagnetic and paleobiographic data from Cretaceous lay-
ered sedimentary and volcanic rocks imply >2000 km of northward motion of the
intermontane domain, Cassiar Platform, and much of the Medial Basin. The Late
Cretaceous fold and thrust belt is, therefore, coeval with the timing of northward
motion, and is located along the eastern boundary of the region that moved north.
The simplest explanation of the fold and thrust belt is, therefore, that it lies along and
marks the boundary between the crust that moved north and the autochthon, and
that it is a product of transpression during northward motion ( Johnston 2001). In
this model, the Northern Rocky Mountain–Tintina trench fault records the last com-
ponent of northward motion and the McConnell thrust system the last component
of convergence between the Cassiar Platform–Medial Basin and the autochthon.

THE CORDILLERAN COMPOSITE RIBBON CONTINENT

The Cassiar Platform is exotic with respect to autochthonous North America and has
the following characteristics: (a) It has Triassic Eurasian fauna; (b) it was involved in a
major Late Triassic orogenic event, whereas the coeval ancient west margin of North
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America remained a passive margin facing west toward a broad open ocean; (c) it is
underlain by a basement and lithospheric mantle that, having formed at least in part at
1.1 Ga, is 700 Ma younger than the youngest portions of the basement and lithospheric
mantle underpinning the autochthon; (d ) it is separated from autochthonous mantle
by isotopically juvenile and oceanic-like mantle beneath the Medial Basin; (e) it is
bound to the east by a belt of carbonatites, which likely delineate a cryptic suture;
(f ) it is characterized by an east-facing mid-Cretaceous magmatic arc that records
west-dipping subduction beneath its eastern margin; and (g) it lay 2000 km to the
south relative to the autochthon as recently as 80 Ma as indicated by paleomagnetic
and paleobotanical data. The geometry of the boundaries separating platformal and
basinal facies within the foreland domain is the product of Cretaceous tectonism and
is not a reflection of the shape of the ancient rifted margin of the continent.

If the Cassiar Platform is not North American, from where does it hail? As dis-
cussed by Johnston & Borel ( Johnston & Borel 2007; see Supplemental Appendix),
the Cache Creek terrane places tight constraints on the location of the Cassiar Plat-
form from the Permian through the Jurassic. Tethyan fauna and DUPAL-anomaly
basalts characterize off-scraped Cache Creek seamounts, constraining the seamounts
to having originated in the Tethyan Sea sensu stricto. The seamounts, Stikinia-
Quesnellia, the pericratonic terranes, and the Cassiar Platform are pinned together
by the end of the Triassic. Hence, the Cache Creek seamounts constrain the pa-
leogeographic location of the Cassiar Platform, placing it in central Panthalassa,
>4000 km west of the autochthon at 180 Ma (the most easterly possible point that
could have been reached by the seamounts assuming that they migrated eastward
out of the Tethys Sea at 11 cm year−1) (Figure 10). Continental crust within the
Cordilleran Orogen is, therefore, divisible into an eastern autochthonous platform
and a western allochthonous platform, separated by a cryptic suture located within
or along the margins of the Medial Basin (Figures 1 and 2).

The Cassiar Platform and intermontane domain terranes constitute a composite
ribbon continent that can be followed northwest into Alaska ( Johnston 2001), where
it is continuous through two major oroclines, the Kulkbuk Hills orocline in the south-
west (Bradley et al. 2003) and the Northeast Alaskan orocline in the northeast (Patton
& Tailleur 1977) (Figure 1). The Farewell terrane is continuous around the hinge of
the Kulukbuk Hills orocline, consists of an east-facing carbonate platform and a more
easterly basinal facies of shale and chert, which are correlative with the Cassiar Plat-
form and Medial Basin, respectively. Precambrian basement to the Farewell terrane
carbonate platform consists of metasedimentary rocks and metabasite intruded by
rhyolites that yield zircon crystallization ages as old as 979 Ma (Bradley et al. 2003),
consistent with the evidence for a Grenvillian basement beneath the ribbon continent
in the Canadian Cordillera. Lower Paleozoic Farewell terrane strata are characterized
by distinct Siberian fauna, including trilobites, conodonts, and brachiopds (Blodgett
et al. 2002, Dumoulin et al. 2002). Silurian aphrosalpingid sponges are only known
elsewhere from the Alexander terrane of the insular domain and the Urals (Soja &
Antoshkina 1997). Based on the faunal provinciality, Bradley et al. (2003) con-
cluded that the Farewell terrane lay far removed from autochthonous North
America, probably throughout the Paleozoic, consistent with an exotic origin for the
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P aleo tethys
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Figure 10
Paleogeographic map of Earth at 280 Ma (Stampfli & Borel 2002). The Tethys Sea (blue)
separates the Laurasian (north) and Gondwanan (south) components of the supercontinent
Pangea ( green). The tropical belt is indicated through the uncolored superocean, Panthalassa,
and the Tethyan Sea. Two velocity nets, one constructed for the period 280 Ma to 230 Ma and
a second for the period 230 Ma to 150 Ma are shown. The velocity nets define the potential
translation paths for the Cache Creek seamounts (assumptions outlined in text). Bold lines
indicate the limits for the location of (a) seamount accretion to Quesnellia-Stikinia at 230 Ma
(a point on this curve in the northernmost tropics is then used as the point of origin for the
230–150 Ma velocity net); (b) the intermontane domain terranes and Cassiar Platform at
180 Ma upon cessation of exhumation subsequent to orogenesis at 180 Ma; and (c) these same
terranes at 150 Ma, the time of drowning of the passive margin of western North America, and
the first influx of westerly derived orogenic sediments onto the autochthon ( Johnston & Borel
2007).

Cassiar Platform. Correlative strata in the western Brooks Range yield a paleomag-
netic remanance acquired during mineralization at 330 Ma that places the Cassiar
Platform >3000 km to the south and having since rotated 50◦ to 70◦ counterclockwise
(Lewchuk et al. 2004).

In northernmost Alaska, the autochthon is largely buried beneath a thick Cre-
taceous foreland basin siliciclastic sequence, but is recognizable from aeromagnetic
images (Figure 11). The boundary between autochthonous and exotic platform mar-
gins lies within the Brooks Range, but does not appear to be separated by a basinal
facies equivalent to the Medial Basin (Figures 1 and 12). It may be that the excess
of basinal facies rocks forming the Selwyn Basin were derived from this portion of
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Figure 11
Magnetic anomaly map of northwestern North America (Saltus & Hudson 2007). The black
line shows the eastern margin of the Cordilleran Orogen. Blue lines outline major deep
magnetic highs that characterize the autochthon and include the NSDMH (north slope deep
magnetic high).

the margin during mid-Cretaceous margin parallel motion in response to oblique
subduction beneath the east-margin of the ribbon continent.

The ribbon continent is continuous to the south into the coterminous United
States (Figures 1 and 12). Accretionary assemblages characterized by Tethyan

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 12
Palinspastic restoration of the Cordilleran composite ribbon continent to its geometry prior to
buckling giving rise to the Kulukbuk Hills and Northeast Alaskan oroclines. There has been
no attempt to restore bending and faulting of the southern coterminous U.S.A. portion of the
ribbon continent. The ribbon continent is shown as being separated from the autochthon, but
it may have been in close proximity to at least parts of the autochthon.
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fauna are correlative with the Cache Creek terrane and can be followed south into
California (Figure 1). Volcanic and sedimentary sequences that bound the accre-
tionary assemblages to the east are characterized by McCloud fauna and are cor-
relative with Stikinia-Quesnellia. East of the McCloud fauna terranes are ophio-
lite (e.g., the Golcanda allochthon) and pericratonic assemblages (e.g., the Roberts
Mountains allochthon), that together are correlative with the pericratonic assem-
blages of the eastern intermontane domain. Identifying strata correlative with the
Cassiar Platform and Medial Basin remains, however, controversial. Nonetheless,
the Tethyan and McCloud faunal belts provide a template for identifying the south-
ern continuation of the Ribbon continent as far south as Mexico.

The geometry of the ribbon continent in Alaska is the result of oroclinal bend-
ing of the originally more linear ribbon continent ( Johnston 2001). Bending post-
dates mid-Cretaceous magmatism, as parallel belts of 120 to 100 Ma magnetite- and
ilmenite-bearing plutons are continuous around the Alaskan oroclines (Hart et al.
2004a). Post-Eocene strata unconformably overlie the oroclines, providing a min-
imum age constraint for oroclinal buckling. Northward subduction of the largely
oceanic plate that bore the ribbon continent into a subduction zone marginal to and
dipping beneath the Okhotsk-Chukotka arc of eastern Siberia resulted in northward
motion of the continental ribbon (Figure 13). Buckling resulted from pinning of the
leading edge of the ribbon continent into the Siberian upper plate, while the trailing
portions of the ribbon remained within and moving north as part of the subducting
lower plate. As the buckling ribbon continent was transferred from the lower to up-
per plate it became progressively overprinted by upper plate arc magmatism of the
Okhotsk-Chukotka arc in Siberia and the Late Cretaceous to Eocene Kluane arc
in Alaska. Buckling of the smaller Bowers-Shirshov-Kamchatka ribbon was coeval
with buckling of the Cordillera ribbon continent and indicates that the two rib-
bons lay within and were translated north within the same plate (Figure 13). It
seems likely that the combined buoyancy of the buckling Cordilleran and Bowers-
Shirshov-Kamchatka ribbons eventually resulted in the failure of the Okhotsk-
Chukotka subduction zone, at which point the oceanic plate bearing the ribbon
continents broke behind the two “terrane wrecks” initiating the Aleutian subduc-
tion zone (Figure 13), and giving rise to the major change in motion of the oceanic
plates of the Pacific basin at 45 Ma. Palinspastic restoration of the Alaskan oro-
clines restores the southern U.S. portion of the ribbon continent well to the south
(Figure 12).

The nature of the boundary between the ribbon continent and the autochthon
in the Late Cretaceous immediately prior to northward displacement and oro-
cline formation remains poorly constrained. The ribbon continent has previously
been depicted as being separated from the autochthon by a basin ( Johnston 2001)
(Figure 12). There is, however, little evidence to support the presence of a broad
open oceanic basin separating the ribbon continent from the autochthon in the Late
Cretaceous. A more likely scenario is that the ribbon continent adjoined the au-
tochthon along a major transcurrent fault boundary (Figure 13). Minor transpres-
sion, together with the buckling of the ribbon continent in the north, would have
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Ocean
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Okhotsk-Chukotka magmatic arc 

Bowers-Shirshov-Kamchatka ridge 

Composite ribbon continent

North AmericaSiberia

Figure 13
Schematic maps at 80 and 50 Ma showing buckling of the composite ribbon continent (brown)
and the Bowers-Shirshov-Kamchatka ridge ( pink) in response to subduction of oceanic
lithosphere to the north giving rise to the Okhotsk-Chukotka magmatic arc ( green).
Northward motion is accommodated by a dextral transform fault that is gradually overprinted
by foreland-verging thrust belts owing to a component of transpression. As the composite
ribbon continent buckles and is transferred from the lower to upper plate, it becomes
progressively overprinted by arc magmatism (Kluane arc in Alaska). Eventual failure of the
Okhotsk-Chukotka subduction zone leads to the initiation of the Aleutian subduction zone
(dashed line) oceanward of the buckled ribbon continent.

resulted in the original transcurrent boundary faults being carried inboard onto the
autochthon where they were reactivated as thrust faults ( Johnston 2001).

Two distinct phases of Cordilleran orogenesis can be distinguished ( Johnston &
Borel 2007). A Triassic to Early Jurassic accretionary phase involved the amalgama-
tion of seamounts (Cache Creek), oceanic arcs (Stikinia-Quesnellia), pericratonic as-
semblages, and continental lithosphere (Cassiar Platform) (Figure 10). Accretionary
orogenesis spanned at least 50 Ma (230 to 180 Ma) and produced a composite ribbon
continent previously referred to as SAYBIA ( Johnston 2001). The Upper Jurassic
(150–155 Ma) drowning of the North American passive margin and the coeval depo-
sition of the first orogenic clastic sediments on the autochthon records the initiation of
the collisional second phase of Cordilleran orogenesis. The Late Cretaceous–Eocene
Rocky Mountain fold and thrust belt records the terminal phase of collision, and in-
volved transpression between the northward-translating composite ribbon continent
and the autochthon (Figure 13). Cordilleran orogenesis was, therefore, far more
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akin to a complete Wilson cycle than has been previously recognized. Proterozoic
and younger rifting of the west margin of Laurentia established a passive margin and
led to the formation of an adjacent ocean basin. Closure of that basin in the Upper
Jurassic led to collision and tectonic burial of the passive margin beneath a colliding
continent. What distinguishes the Cordillera Wilson cycle from the classic Wilson
cycle is that (a) the colliding continent was a composite ribbon continent constructed
through an earlier accretionary orogenic phase, (b) collision was prolonged (150 to
50 Ma) and involved a final stage (80 to 50 Ma) in which the major motion was margin
parallel (>2000 km of margin parallel displacement versus only hundreds of kilome-
ters of margin normal convergence), (c) final collision involved oroclinal buckling of
the accreting ribbon continent, and (d ) the high aspect ratio of the colliding ribbon
continent (long and narrow) prevented collision from being terminal—subduction
continued beneath the new west margin of the continent.
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