New geological and single-zircon Pb evaporation data from the Central Guyana Domain, southeastern Roraima, Brazil: Tectonic implications for the central region of the Guyana Shield

Marcelo E. Almeida a,b,*, Moacir J.B. Macambira b, Sérgio de C. Valente c

a CPRM – Geological Survey of Brazil, Av. André Araújo 2160, Alexa, CEP 69060-001, Manaus, Amazonas, Brazil
b Isotope Geology Laboratory, Center of Geosciences, Federal University of Pará, Rua Augusto Corrêa s/n, Guamá, CEP 66075-110, Belém, Pará, Brazil
c Geosciences Department, Federal Rural University of Rio de Janeiro, Km 7 – BR-465, Seropédica, CEP 23890-000, Rio de Janeiro, Brazil

ARTICLE INFO

Keywords:
Central Guyana
Roraima
Guyana Shield
Geology
Geochronology

Abstract
Metagranitoid rocks, mylonites, leucogneisses and granulites occur in the Central Guyana Domain (CGD) near the Uatumã-Anauá Domain (UAD) boundary, southeastern Roraima (Brazil). These rocks are oriented along NE–SW and E–W trends and dip to NW and N, respectively. Single-zircon Pb evaporation results yielded 1724 ± 14 Ma and 1889 ± 3 Ma for a syn-kinematic foliated hornblende–biotite monzogranite and a granodioritic mylonite, respectively. These results point to a new tectonic event (Itã Event) in the area in addition to the 1.94–1.93 Ga (late- to post-Transamazonian) and the 1.35–0.98 Ga (K’Mudku) thermal tectonic events. This new event may be related, at least locally, with the evolution of the Columbia Supercontinent. In addition, the Itã Fault System is younger than 1.89 Ga (granodioritic mylonite age), contrasting with the Barauana high-grade lineament and 1.94 Ga polydeformed rocks, pointing to the needs of a major revision of lithostratigraphic column currently proposed for the CGD as well as the CGD and UAD boundary.

© 2008 Elsevier Ltd. All rights reserved.

ARTICLE INFO

Palavras-chave:
Guiana Central
Roraima
Escudo das Guianas
Geologia
Geochronologia

Resumo
Hornblenda e biotita (meta) granitóides, milonitos, leucognaisses e granulitos, com estruturas preferencialmente NE–SW e E–W, ocorrem no Domínio Güiana Central (DGC), próximo do limite com o Domínio Uatumã-Anauá (DUA), região central do Escudo das Guianas, sudeste de Roraima (Brasil). Os resultados fornecidos pelo método evaporação de Pb (zircão) apontam idades de 1.724 ± 14 Ma e 1.889 ± 3 Ma, respectivamente, para hornblenda-biotita monzogranito foliado (granito sincinemático) e granodiorito milonítico (Suíte Água Branca?). Desta forma, sugere-se, além dos eventos tectônicos marcados pelo intervalo de 1.94–1.93 Ga (pós-Transamazônico) e 1.35–0.98 Ga (K’Mudku), a existência de outro evento tectônico em torno de 1.72 Ga (Evento Itã), provavelmente relacionado, nesta região, à evolução do Supercontinente Columbia. Além disso, os dados sugerem que o Sistema de Falhas do Itã pode ter sido gerado ou reativado pós-1.89 Ga e os protólitos ortoderivados estudados nesta porção do DGC não se mostraram correlacionáveis àqueles de áreas vizinhas (cujas idades variam de 1.96 a 1.93 Ga), indicando a necessidade de revisão das propostas litoestratigráficas e dos limites entre os domínios conhecidos.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The Central Guyana Domain (CGD, Reis and Fraga, 2000a; Reis et al., 2003) or K’Mudku Shear Belt (Santos et al., 2000, 2006a,b) has been considered as the most important structural feature in central-western Guyana Shield (Fig. 1). This major NE–SW-trending tectonic domain extends over northernmost Brazil and large areas within Guyana and Surinam. This domain has been interpreted as a collisional orogen (Hasui et al., 1984; Gibbs and Barron, 1993), although no relicts of oceanic crust have been recorded. Nevertheless, some orthogneisses (calc–alkaline crustal sources) that occur within this domain display typical subduction-related geochemical signatures. According to CPRM (1999), this calc–alkaline signature is not directly associated with mantle partial melting processes during the subduction-related, pre-col-
...isional setting but may reflect an origin associated with an ensialic mobile belt (Cordani and Brito Neves, 1982). As such, CPRM (1999) suggested that the CGD was generated during an event in late- to post-Transamazonian times (2.26–2.01 Ga; Santos et al., 2003a) previous to an oblique movement along the limits of two colliding lithospheric plates (i.e., intracontinental orogenic belt). Further tectonic events, such as the K’Mudku (Guyana) or the Nickerie (Surinam) ones, would have erased the records of igneous and metamorphic processes that took place within the present northern and southern limits of the CGD.

This paper presents geological data for granulites, orthogneisses, mylonites and (meta)granitoid rocks and new zircon Pb geochronological data for mylonites and granitoid rocks from the CGD in southeastern Roraima (Brazil). The aim of this study is to put constraints in the southern limits of this domain as well as in chronology of the major igneous, metamorphic and tectonic events that took place in the central portion of the Guyana Shield.

2. Geology of southeastern Roraima

Two main lithostructural domains can be depicted within southern Roraima state in Brazil: the Central Guyana and Uatumá-Anauá (Fig. 1, Reis et al., 2003; CPRM, 2006). These two domains correspond, respectively, to the K’Mudku Shear Belt and the Tapajós-Parima Belt (Santos et al., 2000, 2006a,b). According to CPRM (1999), the CGD is essentially a shear belt composed of orthogneisses, metagranitoid rocks and minor granulites with a strong NE–SW and E–W foliation (Fig. 2) dipping steeply to NW. Although the age and the evolution of this shear belt still remain uncertain, Fraga and Reis (1996) reinforced that its main tectonic feature can be related to oblique thrust structures associated with a NW to SE main stress component. The most common rocks that crop out in southern CGD are orthogneisses, mylonites, metagranitoid rocks and subordinated lenses of granulites and leucogneisses (the Rio Urubu Metamorphic Suite; CPRM, 1999) associated with low- and medium- (Cauarane Group, CPRM, 1999) to high-grade...
(Murupu Suite, Luzardo and Reis, 2001) metavolcanosedimentary sequences and S-type granites (Curuxuim Granite, CPRM, 1999).

The Uatumã-Anauá Domain (UAD) is characterized by E–W to NE–SW-trending lineaments and a metamorphic basement (Fig. 2) comprising TTG-like metagranitoid rocks and orthogneisses, with metamafic to metaultramafic enclaves (Anauá Complex) that have been associated with an island arc environment (Faria et al., 2002). Metavolcano-sedimentary rocks (Cauarane and Murupu related rocks) have also been associated with the basement rocks within this area (CPRM, 2000).

The TTG and the supracrustal basement sequences were intruded by S-type (the Serra Dourada Granite) and I-type calc–alkaline (Martins Pereira) granites (Fig. 2). Altogether, they comprise the 1.96–2.03 Ga Martins Pereira-Anauá granitic terrain (Almeida et al., 2002) or the Northern Uatumã-Anauá Domain (NUAD, Almeida and Macambira, 2007) taken as the “deformed” portion of the UAD.

Fig. 2. Geological map of the southeasternmost Roraima state modified from CPRM (2000) and Almeida et al. (2002).
Younger, unmetamorphosed and undeformed sequences are represented by the Caroebe (Água Branca Suite, Fig. 2) and Igarapé Azul calc–alkaline granitoid rocks. These granitoid rocks were associated with the Iricoumé volcanic rocks (Macambira et al., 2002; Reis et al., 2000) and subordinate charnockitoid plutons (Almeida et al., 2002), and altogether comprise the “undeformed” Igarapé Azul–Água Branca granitic terrain (Almeida et al., 2002) - located on the Southern Uatumã-Anauá Domain (SUAD, Almeida and Macambira, 2007). Several A-type granite plutons (Fig. 2) are represented by the Moderna and Madeira (1.81 Ga), and Mapuera and Abonari (1.87 Ga) granites that occur within the SUAD as well as the NUAD.

3. The Central Guyana Domain in southeastern Roraima

Metagranitoid, high-grade metamorphic rocks and other metamorphic and granitoid rocks found within the CGD nearby the UAD were grouped into the Rio Urubu Metamorphic Suite (CPRM, 1999, 2000; Reis and Fraga, 2000b). The hypersthene-bearing gneisses (Barauana granulite), leucogneisses (Igarapé Khalil leucogneiss), epidote-rich biotite mylonites (Itã mylonite) and hornblende–biotite gneisses to foliated granitoid rocks of this suite were mapped along the southern limit of the CGD as part of the present work and will be described in the following sections.

3.1. The Barauana granulite

In the Guyana Shield (Fig. 1; Gibbs and Barron, 1993), high-grade metamorphic domains have been reported in the Imataca Complex (Venezuela), Kanuku (Guyana) and Bakhuiss Mountains and the Coeroeni area (Surinam), as well as in eastern Amapá and central–southern Roraima (Brazil). Among these terrains, the Barauana Mountain represents a major granulite-facies domain (CPRM, 2000) in southern Roraima (Fig. 2).

The Barauana Mountain is constituted of banded, polydeformed, locally migmatized hypersthene-bearing gneisses with charnockite and eiderbite composition. The migmatites show stromatic, agmatic and schollen structures and anatexite mobilizates (Fig. 3). Thin section analyses have shown that igneous textures have not been preserved in these rocks. The gneisses show granolepidoblastic textures and a mineral assemblage composed of plagioclase, alkali feldspar, hypersthene, quartz and brownish red biotite, as well as opaque minerals (mainly magnetite), apatite and zircon (Fig. 4a and b).

On a regional scale, the NE–SW foliation (N60°E/80°N to N35°E/90°E) dips steeply to NW and is generally parallel to the CGD regional trend. Similar trends are observed in the Kanuku Mountains, in Guyana (McConnel, 1962; Gibbs and Barron, 1993), as well as in the Bakhuiss and Coeroeni Mountains, in Surinam (Bosma et al., 1983; De Roever et al., 2003).

Rims of zircon crystals in the Barauana granulite (anatexite sample) were interpreted as having a late metamorphic origin (1818 Ma, U-Pb SHRIMP), while the cores (1942 ± 7 Ma, U-Pb SHRIMP) have been related to an anatexic event (igneous zircons) under granulitic conditions (CPRM, 2002, 2003). Syn-kinematic charnockites within the CGD (the Serra da Prata Suite, as reviewed by Fraga, 2002) yielded ages between 1934 Ma and 1943 Ma (single-zircon Pb evaporation). These ages are in general agreement with those of the Barauana granulite and all these data suggest an important granulite-facies metamorphism and a pyroxene-bearing rocks generation (anhydrous) event. Nevertheless, despite their (Barauana and Serra da Prata) similar ages, a coeval origin is yet debatable. Those ages are also younger than the Amapá (2.06–2.05 Ga; Lafon et al., 2001; Avelar et al., 2003) and Bakhuiss (2.07–2.05 Ga and ~2.15 Ga inherited component; De Roever et al., 2003) ultra high-temperature (UHT) granulites, revealing an elapsed time (140–110 Ma) related to diachronous high-grade metamorphic episodes in the Guyana Shield (Fig. 1).

3.2. The Itã mylonite and the Igarapé Khalil orthogneiss

The Itã mylonite crops out near the RR-170 road, within the Itã Fault System, located on the boundary of the CGD and the UAD (Fig. 2). According to CPRM (2000), older mylonites are observed to the north, in the Lua Mountains (Vila Vilhena region), associated...
with fine-grained biotite gneisses. The Itã mylonite is a medium- to fine-grained augen gneiss with granodioritic to monzogranitic compositions and abundant ovoid feldspar porphyroclasts (Fig. 5). These rocks display a N75°E to N70°E S-C foliation (dextral sense), steep NW dipping, showing mineral lineation (quartz ribbons and locally stretched feldspar) with medium-angle rake (N80°W/60°).

The mineral assemblage is mainly composed of alkali feldspar, plagioclase and biotite (and associated epidote). Epidote, quartz and feldspars are very fine-grained, recrystallized and, locally, quartz and feldspar display a granoblastic texture (Fig. 6a and b). Other accessory minerals are sphene, allanite, opaque minerals (mainly magnetite), apatite and zircon. Secondary minerals are chlorite and subordinate sphene. Relict igneous textures are scarcely observed in these rocks.

The Igarapé Khalil orthogneiss crops out along the BR-174 highway being leucocratic, equigranular, fine-grained and granopeliodoblastic to locally protomylonitic textures with subvertical N80°E to N50°E foliation. The mineral assemblage is composed essentially of quartz, microcline and plagioclase. Biotite and muscovite occur subordinately in this rock (~3 vol.%). Accessory minerals are represented by allanite, primary epidote, zircon, apatite and opaque minerals. Epidote, chlorite and sericite occur as secondary minerals.

3.3. The foliated amphibole–biotite granitoid rocks

Biotite–amphibole gneisses and (meta) granitoid rocks are commonly found between the Barauana Mountain and the Itã Fault System, along RR-170 road (Fig. 2). They comprise an ENE–WSW trending, lens-shaped body with slightly higher radiometric features than other orthogneisses in the CGD (CPRM, 1984). These rocks display a steeply NW dipping, N70°E–N75°E conspicuous foliation (Fig. 7) and a S-C fabric as a result of emplacement under amphibolite-facies conditions and a dextral transpressive regime.

These rocks are grey in color and equigranular although some display a few porphyry surrounded by a fine-grained groundmass. They have monzogranitic to syenogranitic and rarely granodioritic to quartz dioritic compositions. Biotite and amphibole (hastingsite) are the main mafic minerals and sphene, allanite, epidote, opaque minerals, apatite and zircon constitute the main accessory phases. These rocks display a mineral lineation defined by the preferred orientation of amphibole and feldspars (mainly plagioclase), as well as a foliation given by the subparallel orientation of biotite flakes.

With the exception of these structures, these granitoids seem to be strain-free or low strained rocks, suggesting deformation in the presence of a melt phase (i.e., syn-kinematic emplacement). There is no evidence for dynamic and/or static conspicuous recrystallization, and the igneous mineralogy and textures are well preserved (Fig. 8a and b). Only a few quartz grains show local grain reduction (dynamic recrystallization) and undulatory extinction. On the other hand, CPRM (1999, 2000) have pointed out to highly deformed (solid state) rocks of similar compositions in the Barauana River and Lua Mountain, suggesting that the granite had been at least partially crystallized at the time of deformation. According to CPRM (1999), these rocks (Barauana River and Lua Mountain) can be correlated with the Kusad and Corentyne (augen) gneisses in southern Guyana.
In general, the petrographic and field features described for foliated amphibole–biotite granitoid rocks suggest that they were at least partially molten by the time of their emplacement in an active tectonic zone. According to Brown and Solari (1999), sheet-like, concordant to subconcordant granites can be related with magma transport along planar conduits through an AFZ (apparent flattening zone). These authors also state that the S > L fabrics observed in these granites record the apparent flattening-to-plane strain, mainly in the case of “straight” belts.

4. Single-zircon Pb evaporation geochronology

4.1. Analytical procedures

Two to twenty kilograms of each rock sample were crushed (milled to 60–80 mesh), sieved, washed and dried out for at least 12 h. Heavy mineral fractions were obtained by water-mechanical and dense liquid concentrations, and processed under a hand magnet and a Frantz Isodynamic Separator. As much as possible, only alteration-free zircon grains were selected for analysis (zircon descriptions are presented below). In order to remove impurities, the zircon concentrates were washed with HNO₃ at 100 °C (10 min), taken to an ultrasound cube (5 min) and finally washed under twice-distilled H₂O. After drying, the concentrates were observed under the petrographic microscope and the zircon grains were selected by hand-picking.

Selected grains were then tied in re-filaments and charged into a Finnigan MAT262 mass spectrometer for isotope analysis. The ²⁰⁷Pb/²⁰⁶Pb ratios were corrected for a mass discrimination factor of 0.12% ± 0.03 a.m.u⁻¹, determined by repeated measurements of the NBS-982 Pb-standard. The ²⁰⁷Pb/²⁰⁶Pb ratio was measured during three evaporation steps at temperatures of 1450 °C, 1500 °C, and 1550 °C. The average ²⁰⁷Pb/²⁰⁶Pb ratio obtained in the highest evaporation temperature was taken for age calculations. The data were acquired using the ion-counting system of the instrument. The Pb signal was measured by peak hopping in the 206, 207, 208, 206, 207, 204 mass order along 10 mass scans, defining one block of data with 18 ²⁰⁷Pb/²⁰⁶Pb ratios. Outliers were eliminated using the Dixon’s test. The ²⁰⁷Pb/²⁰⁶Pb ratio average of each step was determined on the basis of five blocks, or until the intensity beam was sufficiently strong for a reliable analysis. The ages were calculated with 2 sigma error and common Pb correction from values derived from the Stacey and Kramers (1975) model in the blocks in which the ²⁰⁴Pb/²⁰⁶Pb ratios were lower than 0.0004. The statistic levels are express by the USD or unified standard deviation (square root of MSWD – mean standard weight deviation). The data were processed using the DOS-based Zircon shareware (Scheller, 1998).

4.2. Samples, results and interpretation

Two fresh rock samples representing the Itã granodioritic mylonite (MA-42: 1°32′50″ N; 60°19′48″ W) and the foliated biotite-amphibole monzogranite (MA-44: 1°36′35″ N; 60°21′36″ W) were collected and analyzed by the single-zircon Pb evaporation method.

Six zircon crystals from sample MA-42 (porphyritic granodioritic mylonite) were analyzed, but only three (crystals #2, #4 and #5) gave results that led to age calculations. The zircon grains were non-magnetic, euhedral, pale yellow to brown, transparent to translucent crystals showing few inclusions and fractures. The crystals showed preserved faces, were 220–360 μm in length and bear a length:width ratio of around 3:1–2:1.

The analyzed crystals yielded a mean age of 1889 ± 4 Ma (Fig. 9a and Table 1) and the ²⁰⁷Pb/²⁰⁶Pb individual ages obtained at higher temperature steps were rather uniform, showing values between 1889 ± 4 Ma (grain #2) and 1892 ± 2 Ma (grain #5). Thus, the 1889 ± 4 Ma was interpreted as the crystallization age and the time of emplacement of the igneous protholith of the MA-42 mylonite. The data obtained at the lower temperature steps were eliminated from the calculation of the mean age for being less consistent, yielding younger ages (1828 ± 10 Ma to 1879 ± 8 Ma) and higher ²⁰⁴Pb/²⁰⁶Pb ratios. The Th/U ratios ranged uniformly from 0.51 to 0.58 (Table 1), similarly to the other migmatic rocks.

The mean age (1889 ± 4 Ma) is, at least, 20–75 Ma younger than that of other igneous protholiths from orthogneisses and mylonites commonly related to the Rio Urubu Metamorphic Suite in the CGD, such as the Vilhena mylonite (1950 ± 9 Ma; magmatism age and 1879 ± 4 Ma; metamorphism age) according to U-Pb zircon SHRIMP analysis (CPRM, 2002, 2003). Locally, younger mylonites were described to the south, in the Aleráu and Jauperi rivers (CPRM, 2000), yielding 1869 ± 9 Ma by the U-Pb zircon SHRIMP method (Santos et al., 2002; CPRM, 2003). On the other hand, igneous ages of around 1.89–1.90 Ga were only observed nearby the Igaraçã Dias (CPRM, 2003) and Caroebe granitoid rocks (Água Branca Suite), both in the southeast of Roraima. Thus, despite the difficulties concerning the protholith identification, the 1.89 Ga age in association with the mineral assemblage (e.g. biotite, epidote and calcite zoned plagioclase), as well as granodioritic to monzogranitic compositions, suggest that the igneous protholith of the Itã mylonite is a granitoid rock related with the Caroebe (Água Branca Suite) magmatism.

Twenty zircon crystals collected from sample MA-44 (foliated hornblende-bearing granite) were analysed, but only five crystals (crystals #6, #8, #12, #14 and #18) gave results that led to age
The zircon grains were euhedral crystals with 180–370 μm in length and length:width ratio of around 2:1. They showed slightly rounded vertices and slightly irregular faces. The grains were pale yellow, transparent to translucent, with several inclusions and fractures, being also weakly magnetic.

The analyzed crystals yielded a mean age of 1724 ± 14 Ma (Fig. 9b), but the 207Pb/206Pb individual ages obtained under the 1450–1500 °C evaporation steps were not homogeneous, giving high errors, and values between 1707 ± 16 Ma (grain #8) and 1755 ± 10 Ma (grain #12). Thus, this mean age is interpreted as a minimum crystallization age of the analyzed crystals. Grain #3 gave the oldest age (1827 ± 23 Ma) and has been taken as an inherited crystal. This age is similar to those obtained for the Moderna Granite (Santos et al., 1997). The Th/U ratios ranged from 0.36 to 0.50 (Table 1), resembling those found in magmatic systems.

The mean minimum crystallization age of 1.72 Ga is at least 200 Ma younger than those of the other orthogneisses and metagranitoid rocks correlated to the Rio Urubu Metamorphic Suite, in the CGD (Gaudette et al., 1996; Fraga, 2002). These foliated granitoid rocks yielded Nd model age (TDM) of 2.07 Ga and εNd(i) = −0.91 (Tcrym 1724 Ma), suggesting probably juvenile (depleted) crustal protoliths with late-Transamazonian ages and no appreciable mantle contribution.

Ar–Ar ages on a muscovite crystal from sheared granitoid rocks within the UAD, close to the boundary with GCD, yielded values between 1656 ± 4 Ma and 1710 ± 4 Ma (CPRM, 2002), recording an important cooling event (near 350 °C Ar–Ar blocking temperature;
Hodges, 1991) in southeastern Roraima. These Ar–Ar ages are in good agreement with the foliated amphibole–biotite granite age (1724 ± 14 Ma).

5. Tectonic setting of the Central Guyana Domain in southeastern Roraima: a discussion on the collisional model

The CGD has been taken as a major collisional orogen by many authors in the past years (e.g., Cordani and Brito Neves, 1982; Hasui et al., 1984; Gibbs and Barron, 1993; Fraga and Reis, 1996; Costa and Hasui, 1997; CPRM, 1999; Santos et al., 2000, 2006a,b). In general, granulite terrains in collisional orogens follow a clockwise PT path (e.g., Ellis, 1987; Brown and Dallmeyer, 1996; Brown, 2001) and have exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987).

Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987). Nevertheless, many granulite terranes seem to have been too hot to have formed during continental collision and may represent thickened hot orogens associated with underplating processes within other tectonic settings (Collins, 2002a). For instance, granite generation in the Paleozoic Lachlan Fold Belt and Circum-Pacific regions was assisted by heat advected from the mantle during protracted regional extension under low-to-medium-P granulite-facies conditions (Collins, 2002b). These recent studies have pointed out that some granulites are unlikely to be related with collisional tectonics. Furthermore, collisional orogens develop when an ocean closes and their exposure has been attributed to isostatic rebound as a result of crustal thickening during one or more tectonic events (Ellis, 1987).

6. Crustal amalgamation processes in global-scale: the supercontinent theory and its application in the Central Guyana Domain

The Amazonian Craton evolution has been closely associated with those of the Laurentia and Baltic cratons in the northern hemisphere (e.g., Rogers, 1996). Lateral magmatic arc accretion seems to have taken place in those cratons in Statherian times (Paleoprotrozoic: 1.80–1.60 Ga) as well as taphrogenic events within the pre-Statherian domains (e.g., Atlantica) onto the Columbia supercontinent (Rogers and Santosh, 2002; Brito Neves and Almeida, 2003). These Statherian events are well-recorded in the Yavapai (1.75–1.68 Ga; e.g., Duebendorfer et al., 2001) and Cheyenne (1.78–1.75 Ga; e.g., Sims and Stein, 2003) orogens within Laurentia as well as in the Rio Negro (1.82–1.52 Ga) and...
Rondonian-Juruena (1.82–1.54 Ga) provinces within the Amazonian Craton (Santos et al., 2000, 2006a).

In the central portion of Guyana Shield in southern Roraima (Fig. 1), granitic magmatism is unknown at Statherian times but could be represented by the syn-kinematic biotite–amphibole granite emplaced around 1.72 Ga. In the western region of the Guyana Shield (Rio Negro Province), Statherian rocks are represented by arc-related meta-quartz diorites with ~1.70 Ga (Tassinari et al., 1996, zircon U-Pb ID TIMS), ~1.75 Ga A-type granites (Almeida et al., 2006, single-zircon Pb evaporation) and ~1.79 Ga basement rocks (CPRM, 2003, zircon U-Pb SHRIMP). In the Central Brazil Shield, the Rondonian-Juruena (1.82–1.54 Ga) province has also tonalities, granites and coeval volcanic rocks with 1.79–1.75 Ga, all formed in an arc-related tectonic setting (Alto Auru orogen, Pinho et al., 1997; Geraldés et al., 2001).

This apparent scarcity of Statherian magmatism in Roraima contrasts with that of Laurentia and Baltic cratons. For instance, in Laurentia zircon geochronology studies (U-Pb SHRIMP and ID TIMS) gave ages of 1721 ± 15 Ma for the Boulder Creek Batholith (Preme and Fanning, 2000) as well as 1737 ± 4.3 Ma, 1719 ± 1.2 Ma and 1721 ± 2.4 Ma for the Big Wash, Diana and Chloride granites, respectively (Duebendorfer et al., 2001). Similarly, ~1.70 Ga syntectonic plutons (Wet Mountains; Siddoway et al., 2000) and muscovite and biotite Ar–Ar plateau ages (~1.74–1.70 Ga) obtained for samples from the western Trans-Hudson Orogeny (Heizler et al., 2000) closely resemble those in southeastern Roraima obtained for foliated hornblende–biotite granites (1.72 Ga, this paper) and muscovite in shear zones (1.71–1.66 Ga, CPRM, 2002). These data suggest the involvement of the southeastern Roraima lithosphere in the Columbia supercontinent evolution at least on a local scale.

Accretionary and collisional orogenes have also affected the Amazonian, Laurentia and Baltic cratons in late Mesoproterozoic times. Geochronological Rb–Sr and K–Ar data (e.g. Amaral, 1974; Santos et al., 2000; Fraga, 2002), K–Ar (e.g., Amaral, 1974) and a few Ar–Ar (Santos et al., 2003b) ages. These ages are normally related with low to medium temperatures shear zones, locally associated with pseudotachylytes (CPRM, 1999).

The 1.89 Ga Itã granodioritic mylonite is similar in composition with the Caroebi granitoids (Água Branca Suite), located in the Uatumâ-Anauá Domain. The mylonite is probably the result of green-schist to epidote–amphibolite metamorphism of the Caroebi granite within wide shear zones. Thus, the E–W Itã Fault System post-dates these 1.89 Ga granitoids (K’Mudku or Itã related events?), and the location of the Central Guyana Domain boundaries also need to be reviewed. This boundary probably would be displaced to the north and placed along the older NE–SW Bararua lineament trends, but detailed mapping and new geophysical airborne data are still needed to test for this hypothesis.

In conclusion, the data presented in this paper indicate that the structural pattern observed in the Central Guyana Domain in southeastern Roraima can be related with a main 1.94–1.93 Ga tectonic event affected by decoupled younger events (reactivation processes), namely the Itã (1.72–1.66 Ga) and the K’Mudku (1.35–0.98 Ga) events. This implies that the studied area has been subjected to major, recurrent tectonics in the Central Guyana Domain, possibly related with continental-scale processes in the central portion of the Guyana Shield.

Acknowledgements

Special thanks to E. Klein (CPRM – Geological Survey of Brazil), P.A. Rolando and M.A. Galarza (Pará-Iso/UFPA) for help during Pb analytical procedures, and N.J. Reis (CPRM – Geological Survey of Brazil) and Cláudio de M. Valeriano (Rio de Janeiro State University) for relevant discussions. The authors are also grateful to CPRM – Geological Survey of Brazil, FINEP (CT-Mineral 01/2001 Project) and the Isotope Geology Laboratory of UFPA (Federal University of Pará) for support during the field and laboratory work. Thanks also to C. Cingolani (La Plata University) and M. Remus (Federal University of Rio Grande do Sul) for the critical analysis of the manuscript.

References

Almeida, M.E., Macambira, M.J.B., 2007. Geology and petrography of Paleoproterozoic granitoids from Uatumâ-Anauá Domain, central region of


