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Time    Speaker           Title               
 
9:00 am Annemarie Pickersgill Shatter cones: A diagnostic feature of hypervelocity impact. 
 
9:12 am  Tanya Harrison  Geologic activity on Enceladus. 
 
9:24 am Anna Nuhn  Martian, Lunar, and terrestrial cave entrances: A comparative 
      geological analysis.  
 
9:36 am Eric Pilles  The mantle plume paradigm. 
  
9:48 am Mahadia Ibrahim  Asteroid mining: Possibilities and challenges. 
 
10:00 am Cassandra Marion Volcanism on Io. 
 
10:12 am Patrick Shepherd Common causes of colour in natural diamonds: Dislocations, impurities, 
     and vacancies. 
 
10:24 am Renata Smoke  Formational models of Au-rich volcanogenic massive sulfide deposits. 
 
10:36 am  -------------------------------------  Coffee Break  ---------------------------------------------------- 
 
10:48 am Yonghua Cao  Convergent margin-related orogenic belts and metallogenesis.  
 
11:00 am Randy Campbell Carbonatites: A classification and evolutionary review. 
 
11:12 am Gloria Eboremen Bioremediation of petroleum hydrocarbon-contaminated soils: 
     Land farming approach. 
 
11:24 am David Olutusin  Formation of black shales: Deep versus shallow water interpretation. 

 
11:36 am Colin Terry  Determining igneous structures and geomagnetic field history from 
     induced and remnant magnetic fields. 
 
11:48 am Tola Ogunniyi  Resource potential of the Barnett Shale, Fort Worth Basin, Texas.   
 
12:00 noon Wesley Greig  The precession of the perihelion of Mercury. 
 
12:12 pm  Mansour Al-hashim  Stromatolites: Utility, application, and challenges. 
  
12:24 pm  -------------------------------------  Lunch Break  ----------------------------------------------------- 
 
1:24 pm Roderick Tom-Ying Microfossils and the origins of life on Earth. 
 



1:36 pm Kathryn Lapenskie Affects of Early to Middle Ordovician climate, paleogeography, and 
     environment on faunal radiation.  
      
1:48 pm Elizabeth Hooper Recognition of tsunami deposits within the sedimentary record: Attempts  
     at establishing a tsunami facies. 
 
2:00 pm Filippo Resente  A comparison of two projects for the prevention of high water in Venice,  
     Italy, as a result of land subsidence and climate-induced sea level rise. 
 
2:12 pm Tara Despault  Effects of climate-induced temperature and water table changes on  
     carbon dynamics of northern peatlands. 
 
2:24 am James Goacher  Millennial climate cycles in the Holocene. 
 
2:36 pm Mengmeng Qu  Strength of the continental lithosphere. 
  
2:48 pm Weiyin Chen  Shale gas in Canada: Geological controls and current challenges. 
 
3:00 pm -------------------------------------  Coffee Break  ---------------------------------------------------- 
 
3:12 pm  Alana Crump  Groundwater remediation using zero-valent iron as a reactive medium in  
     permeable reactive barriers. 
 
3:24 pm Sean Fulcher  Mining salt, brine and clay:  A review of lithium and boron evaporite 
      deposits.  
 
3:36 pm  Xiaoming Zhang Self-organized criticality: what can it tell us about natural hazards? 
  
3:48 pm Tararat Lerkwieng   Basin controls on the occurrence of reservoir intervals in the Cardium 
     Formation, Alberta. 
     
4:00 pm Yelena Kropivniskaya Seismic risk in Canada. 
 
4:12 pm Behzad Hassani  Uses and challenges in real-time seismological data applications.  
 
4:24 pm Jonathon Hey  Detachment faulting and it's implications of the mineralization of oceanic 
     core complexes.  
 

4:36 pm Sean Funk  Models and timing of core formation.  
 
4:48 pm --------------------  Thank you to everyone for attending!   ------------------------------------------ 
   
Please join us for four more presentations on Monday November 26, 9:30 am in BGS 1053 
 

Sarah Sweeney Dominant gliding versus pure spreading in passive margins: The effect of differential  
   sedimentation on initiating salt tectonics. 
 

Martin Arce   Weathering-induced metal-enrichment processes. 
 

Wajahat Ali   Geophysical techniques for shallow subsurface Ground Penetrating Radar (GPR), Multi- 
   channel Analysis of Shear Waves (MASW), seismic refraction and reflection. 
 

Hadis Samadi Alinia Database for flooding susceptibility, hazard, and vulnerability assessment. 



9:00 am 
Shatter Cones: A Diagnostic Feature of Hypervelocity Impact 

Annemarie E. Pickersgill 

Shatter cones have been an important tool in the identification and study of impact structures on Earth. 

Most terrestrial impact structures have been heavily eroded, as a result the features which make them readily 

identifiable on other rocky planetary bodies disappear. This, in addition to the propensity of circular structures 

of endogenic origin has made the identification of terrestrial impact structures difficult. It is therefore useful to 

have a unique indicator of shock that is readily identifiable in the field. Shatter cones are the only macroscopic 

feature that is indicative of shock deformation and therefore diagnostic of hypervelocity impact. They form in 

large volumes of target rock, and at depth, so they are widespread and often still visible after erosion of the 

upper part of the structure. An impact origin has been confirmed based on the presence of shatter cones alone, 

but more often the discovery of shatter cones is followed by a search for microscopic shock metamorphic 

effects. Shatter cones are found only at impact structures and nuclear test sites, and until recently, only on Earth. 

Shatter cones are roughly conical, curved, pervasive fractures characterized by multiple sets of striations 

that radiate and branch away from the apex. The acute angle of intersection of the striations tends to point 

toward the apex of the cone. Partial cones are more common than full cones, and the apex of a cone is rarely 

seen. Smaller “parasitic” cones formed on the surface of larger cones are common, creating a composite texture. 

Shatter cones range in size from several millimetres to metres. In situ shatter cones have been found 

individually but are far more common in groups, often with roughly parallel axes and with apices pointing in a 

similar direction. The general direction of orientation is “inward and upward” when beds are restored to pre-

impact position. However, cones with highly variable orientations have also been observed in outcrop and hand 

specimen.  

Shatter cones are best developed in fine-grained lithologies, and poorly developed in coarser grained 

rocks. Crude shatter cones are flatter, and have larger striations that can easily be mistaken for other features 

such as slickensides, cone-in-cone, wind abrasion features, and anthropogenic blast cones. The most obvious 

differentiating feature is the penetrative nature of the fractures – if you break a shatter cone it will tend to 

fracture along other shatter cone surfaces. Microscopic shock metamorphic effects such as planar deformation 

features and diaplectic glass have been documented in shatter cones, though their presence is not ubiquitous. 

Similarly localized melting along shatter cone surfaces has been found in some, but not all, samples.  

The formation of shatter cones is still poorly understood. Target lithology does not seem to have a large 

effect on whether or not shatter cones form, only on their quality. Models, experiments, and field studies 

indicate that shatter cones form immediately as the shock wave passes, at relatively low shock pressures (~2-10 

GPa, rarely up to 30 GPa), and prior to excavation of the cavity. 
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9:12 am 
 

The Geomorphology of Enceladus 
 

Tanya N. Harrison 
 

Saturn’s moon Enceladus, while small enough to fit within the state of Colorado, has garnered the 

attention of the astronomical and planetary science communities even before any images of the body had been 

acquired. Ground-based telescopic observations revealed an unusually bright body orbiting within the brightest 

portion of Saturn’s diffuse E ring, leading to the suggestion that Enceladus was a primary source of E ring 

material. However, the mechanism by which Enceladus could be contributing enough material to account for 

the observed brightness was unknown. The arrival of the Voyager 1 and 2 spacecraft to the Saturnian system 

brought about some new understanding of Enceladus with the return of the first photographs of its surface. 

These photos showed a striking dichotomy, with an older, heavily cratered northern hemisphere and a younger, 

relatively crater-free southern hemisphere cut by multiple tectonic features. The formation of the tectonic 

features was attributed to tidal forcing from Saturn and a 2:1 resonance with Dione leading to compressional 

and extensional stresses. The crater density in the smooth southern region implies that it is nearly the youngest 

of all the icy satellites in the solar system, third only behind Europa and potentially the polar regions of Triton. 

How this region was being resurfaced was still unknown from Voyager data. It was not until the arrival of the 

Cassini mission that the questions of the mechanisms for both resurfacing and E ring contributions would be 

answered. Cassini observed multiple water ice plumes being ejected from high-temperature (180 K or more in 

some cases) regions associated with “tiger stripe” fissures in the south polar region. This paper details the 

progression in our knowledge of the geomorphology Enceladus from the pre-Voyager era to the revolution 

brought about by Cassini. 
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9:24 am 
 

Martian, Lunar, and Terrestrial Cave Entrances: A Comparative Geological Analysis 
 

Anna Nuhn 
 

 
Large-scale igneous provinces are found on both the Martian and Lunar landscapes which make for 

excellent environments for near surface basaltic lava tubes and associated atypical pit crater formations. Models 

of lava tube formation typically involve the outer surface of a lava channel cooling more rapidly consequently 

forming a hardened crust; the remaining lava flows out of the tube, leaving a void space. Models for atypical pit 

crater formation include collapsed lava tubes, dilational faulting, dyke swarms and collapsed magma chambers, 

all acting as subsurface voids for surface collapse. Near surface basaltic lava tubes and associated atypical pit 

craters have recently been known to possess cave-like entrances on the Moon and Mars, called “skylights”.  

Caves on Mars and the Moon have been hypothesized since the late 1960s, but not until recently these 

planetary structures were discovered.  This paper will review newly observed lunar skylights in Marius Hills, 

Mare Tranquillitatis, and Mare Ingenii along with Martian skylights in the flanks of Pavonis, Ascraeus, and 

Arsia Mons, and flows from Hadriaca Patera.  Observations of these entrances have been done using a suite of 

improved orbital high-resolution imagery and thermal infrared detection methods of the subsurface geology.  

For Mars these instruments include, the Mars Odyssey’s Thermal Emission Imaging System (THEMIS), the 

Mars Reconnaissance Orbiter’s Context Camera (CTX) and High Resolution Imaging System (HiRISE). On the 

Moon, KAGUYA SELenological and Engineering Explorers’(SELENE) Terrain Camera (TC) and the Multi- 

band Imager (MI), as well as the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) 

are being utilized.  

These extraterrestrial cave entrances pose as ideal spaces for future robotic exploration, mineral and 

astrobiology investigations, as well as potential human bases in planetary missions. Understanding cave 

entrance formation on Earth is critical for understanding the development and exploration possibilities on other 

planetary bodies. Terrestrial analogue sites including the Atacama Desert in northern Chile, Teide National Park 

in Canary Islands Tenerife, Spain, and Kazumura Cave in Kilauea, Hawaii, will continue to serve as locations 

for the development of scientific exploration strategies and new technologies for future Matian and Lunar 

missions. 
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 9:36 am 
 

The Mantle Plume Paradigm 
 

Eric Pilles 
 
 

 Modern mantle plume theory is incomplete. Numerous publications dispute portions of the theory, while 

others have raised the question if mantle plumes exist at all. Alternative theories have been produced which 

directly relate to plate-tectonic mechanisms and completely disregard mantle plume theory. When considering 

the evidence, from both sides of the argument, it is clear that while the current mantle plume model is 

incomplete, it is superior to alternative theories presented by the “Antiplume Lobby”.  

 The current mantle plume model defines mantle plumes as a spatially fixed upwelling of hot light 

material that ascends from the core-mantle boundary. The theory states that the plumes themselves are 

stationary while the plates above them move freely. 

There are several objections to the mantle plume theory. First, geochemical indicators such as 3He/4He 

are often used to indicate origin from the mantle-core interface. However, large-scale mixing of the lithosphere 

and mantle - via subduction and convection - result in chemical heterogeneity of the mantle. Mantle plumes are 

not always associated with an uplift of the Earth’s surface, for example at the Siberian flood basalt province, the 

submarine Ontong Java Plateau, and the Decan traps. The statement that plumes are stationary has been proven 

false. Displacement has been observed in both the head and tails of plumes. Additionally, the anomalously high 

temperatures necessary for melting under dry conditions would be accompanied by increased heat flow above 

the plume, however this is not seen. 

Alternative theories suggest that the ‘plume’ feature is attributed to plate tectonic mechanisms and 

appear as a result of shallow tectonic stress, subsequent decompression, and melting of the mantle enriched in 

basaltic material. However, these theories fail two address two major problems – problems which the mantle 

plume theory can explain. Time-progressive volcanic chains, such as those at Hawaii, a classic example of 

mantle plumes, cannot be explained by alternative theories such as crack propogation – while mantle plume 

theory explains not only the general behaviour of volcanic chains, but also many details related to plate motion 

in these regions. Additionally, alternative theories involve passive plate tectonic mechanisms, which take place 

in the lithosphere and upper asthenosphere, while seismic tomographic data has shown that plumes can extend 

into the mesosphere. Therefore, while many answers remain unanswered, the mantle plume theory still remains 

the most accurate model to date. 
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9:48 am 
Asteroid Mining: Possibilities and Challenges 

 
Mahdia Ibrahim 

 

Asteroids represent the remaining building blocks from the early Solar System formation ~ 4.6 billion 

years ago. Most asteroids have retained a relatively pristine record of nebular and early planet-forming 

processes that provides clues about Solar System dynamics and orbital evolution. Improved remote 

observations, the science of meteoritics, and multiple flyby and rendezvous missions have provided much of our 

knowledge on asteroid regoliths, their mineralogical composition and physical properties. Detailed analysis of a 

number of meteorite samples showed relatively high concentrations of valuable metals by Earth standards; 

including platinum group elements, Rare Earth Elements (REE) and gold. Asteroid mining may lead to 

economic gains and scientific outcomes that will contribute greatly to the state of human civilization on Earth 

and beyond. 

The idea of the possible exploitation of asteroidal resources of minerals and REE is not new (early 

1900’s), but substantial data about the composition and surface properties of asteroids were unavailable at the 

time. Today, science data and technology necessary for asteroid mining are becoming available. Assuming that 

enough knowledge has been acquired on asteroids’ properties, mining remains a challenge for many reasons 

that could be summarized in three areas: 1) economic feasibility and market demand; 2) (NEA) target selection 

and orbital dynamics; and, 3) mission design and operations.  

While successful mining of asteroids have the advantage of obtaining resources without losing energy in 

huge gravity wells such as on the moon, the cost of mining might still outweigh the desired economic outcome. 

This has been addressed by suggestions of the utilization of products in low-Earth-orbit (LEO); on lunar bases 

or future space stations, which could provide an excellent market as contractors and operators in LEO will 

utilize the material and cut down further costs of transportation. From a science and engineering perspective, a 

suitable target would ideally be from the near-Earth Asteroid (NEA) population with low inclination to reduce 

the costs of launch and recovery. Moreover, asteroids are dynamic and extreme environments in terms of 

temperature, radiation, and physical characterization (e.g. rubble pile asteroids), which requires creative and 

unconventional technology different than what is known in terrestrial mining. Mission design will require 

anchoring securely to a “moving object, extracting material depending on lithology (fragmentation on silicate 

lithologies versus vaporization on hydrated lithology), followed by the challenge of material storage and 

transportation. This leads to suggestions of robotic capture and retrieval of asteroids to near-Earth orbit, where 

in-situ utilization can be conducted, thus efficiently cutting down the cost of mining and gaining control of near-

Earth objects (NEOs) for multiple purposes including development of asteroid deflection technology. 
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10:00 am 
Volcanism on Io 

 
Cassandra L. Marion 

 

This manuscript examines the current state of knowledge of volcanism on Io.  Io is Jupiter’s closest 

Galilean satellite and the most volcanically active planetary body in the solar system.  Unlike all other planetary 

bodies in the solar system, it lacks evidence of impact cratering, indicating a young surface.  Remote sensing 

techniques applied through the use of ground-based observations and fly-by missions, such as Voyager and 

Galileo, have recorded spectacular images and spectral data that have led to exciting discoveries.  Io’s global 

heat output is estimated to be 25 times greater than Earth, at 1014W.  It isunique in the solar system in that its 

primary internal heat source is tidal heating.  Due to its Laplace resonance with neighbouring moons, 

Ganymede and Europa, energy is dissipated internally, melting a large amount of the interior.   The extent of 

melting and mechanisms of heat transfer within Io are uncertain, however based on its bulk density studies have 

shown that Io is a differentiated body and likely has an iron or iron sulfide core.   

Eruption styles on Io range from flow-dominated to explosion-dominated to intra-patera volcanism.  

These occur in the form of lava flow fields, lava fountains and lava lakes to explosive, volatile-driven, 

umbrella-shaped plumes of gas and dust ejected several hundred metres high.  Io’s tenuous atmosphere is 

formed primarily by plumes.  They occur either in numerous smaller plumes, which are produced near the 

margins of active lava flows by interactions with near-surface to surface SO2 ice, or as giant plumes that can 

reach >200 km high. The dominant volatiles on Io, driving explosive volcanism, are sulfur and sulfur dioxide.  

There is little evidence of effusive sulfur volcanism, but much of Io is blanketed in SO2 snow from plume 

fallout.  Eruption temperatures indicate Io’s dark lava flows are mafic to ultramafic in composition.  However 

eruption temperatures may not be reflective of liquidus temperatures of the magma, due to either super-heating 

during magma ascent to the surface, rapid-cooling once extruded, or both.  Future missions will further 

investigate the unknown features and processes on Io. 
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Common causes of colour in natural diamonds: dislocations, impurities, and vacancies 
 

Patrick Shepherd 
 
 
Diamonds are crystalline carbon, which are extremely valuable as gemstones due to their hardness, fire and 

brilliance. Diamond gemstones alone generate an annual ~$2x1010 USD, excluding diamonds used for industrial 

purposes. The general public typically thinks of diamonds as colourless, while in fact the most valuable 

diamonds are coloured. Diamonds with desirable colours are referred to as having a “fancy colour”, and are 

typically deep shades of blue, pink, yellow, purple, green, and red. Due to the value of coloured diamonds, 

much research has been put into understanding the source of the colour, especially in light of artificially-

produced diamonds with high-pressure – high-temperature (HTPT) treatments altering colour. Blue diamonds 

are both associated with boron impurities in the crystal structure, whereas yellow is caused by nitrogen (N2 or 

N3) or hydrogen. Purple, pink, and red are all associated with dislocations, or vacancies, associated with plastic 

deformation of the crystal. Green colour can be attributed broadly to two main causes: irradiation by gamma-

rays (GR1), or nickel impurities. Brown diamonds have recently become an area of interest, because it is now 

possible to remove the colouring with HTPT treatments, significantly increasing the value of the gemstones.  

The general consensus is that the brown colouring is caused by plastic deformation, although this remains 

controversial. It is also debated whether the brown colour was formed before deposition in the upper mantle or 

during ascent within the kimberlite pipe. The lack of a consolidated review of the origin of colour in diamonds 

has left hypotheses difficult to compare to one another. 
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Formational models of Au-rich volcanogenic massive sulfide deposits 
 

Renata Smoke 
 

Volcanogenic massive sulfide (VMS) deposits include: volcanic-associated, volcanic-hosted, and 

volcano-sedimentary hosted massive sulfide deposits; and are major sources of Zn, Cu, Pb, Ag, and Au; and 

significant sources of Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga, and Ge.  Gold-rich VMS deposits form a unique 

subset of VMS deposits, and, like typical VMS deposits, are found: in sub-marine volcanic terranes with 

compositions ranging from mafic bi-modal to felsic bi-modal to bi-modal siliciclastic; and in rifted arc, back-arc 

basin, and back-arc rift tectonic settings; and are formed by metal bearing hydrothermal systems. They are 

defined as Au-rich if the average gold content (g/t) is greater than the combined grades of Cu, Pb, and Zn (in wt. 

%) and are grouped according to metallogenic association and style of mineralization. These include: A) Au-Cu 

deposits; B) pyritic Au deposits; and C) Au-Zn-Pb-Ag deposits. In Au-Cu deposits the mineralogical hosts to 

gold include native gold, Au tellurides, and auriferous pyrite; there is also a spatial correlation with advanced 

argillic alteration mineral assemblages (kaolinite and pyrophyllite). In pyritic Au deposits gold occurs as 

inclusions in arsenic-rich pyrite and arsenopyrite, and in massive pyrite zones that are low in base metal 

content. In Au-Zn-Pb-Ag deposits electrum, pyrite, and arsenopyrite commonly host the gold mineralization, 

and there is an association with feldspar alteration or gangue minerals. There are two main formational models 

for this deposit type: 1) syn-deformational overprinting of Au-poor base metal mineralization by metamorphic 

fluids; and 2) syn-volcanic mineralization by anomalously Au-rich fluids. Evidence of syn-deformational 

structural controls on mineralization include the location of deposits in deformed sequences proximal to 

regional-scale faulting and a discordant orientation of sulfide veins to regional foliation. Evidence of syn-

volcanic mineralization by fluids with an anomalous chemistry include relatively un-deformed ore bodies, 

elevated Au concentrations over intervals greater than tens of meters, and observed cross-cutting relationships. 

Deposit groups classified by base metal content, Au-Cu and Au-Zn-Pb-Ag deposits, and their alteration 

assemblages are representative of low and high sulfidation fluids, respectively, which is analogous to 

hydrothermal fluid types which form epithermal type gold deposits. These formational models have been 

derived from studies done on, and can be applied to well-known deposits including the Archean LaRonde Penna 

Au-rich VMS deposit (low sulfidation), the Eskay Creek Au-Pb-Zn-Ag deposit (high-sulfidation), and the 

Horne Au-rich VMS deposit (Au associated with pyrite). The close distribution of Au-rich deposits to typical 

Au-poor base metal VMS deposits highlights the importance of understanding of formational processes to 

predicting the location of potential and yet undiscovered ore deposits of this type.  
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Convergent margin-related orogenic belts and metallogenesis 
 

Y.H. Cao 
 

Orogeny refers to forces and events leading to a severe structural deformation of the Earth's lithosphere due to 

the engagement of tectonic plates. The research of orogenic belts which are characterized by pervasive folding 

belts and active tectonic zones is significant since they have the potential to represent the most favorable 

producing areas for mineralization because of magmatic activity, faults, metamorphism pervasively took place 

there. In general, two genetic types including convergent-related and intraplate-related orogenic belts are 

recognized, in which the former orogenic belts are more essential and will be only involved in this paper. 

Convergent orogenic belts are further classified into continental collison-related, arc-related and accretionary 

orogenic belts. Continental collision occurs at convergent continental boundaries, producing mountains and 

suturing two continents together. Arc related orogenic belt refers to the collision between arc and continent, arc 

and arc, etc, and arc-continent collisional orogenic belts will be emphasized greatly here because of its 

remarkable role in mineralization. Accretionary orogens are the sites of long-lived convergent margin tectonics 

and share some similarities with collision-related orogenic belts, however, accretionary orogenic systems are 

represented by accreted island arc sutures and are formed in the ongoing convergent plate lasting much longer 

without disruption by collision. It is suggested that all these three orogenic belts would experience varied stages 

or geological events when considering their relationships with metallogenesis, i.e., main-collisional period, late-

collisional period and post-collisional period for continental collision-related orogenic belts, constructional 

stage, orogenic stage and late-orogenic to post-orogenic stage for arc related orogenic belts and active 

subduction-related arc magmatism, superimposed rifting, inverted retro-arc pericontinental rifts, superimposed 

hot mantle upwellings for accretionary orogenic belts. Metallogenesis varies among different types and stages 

of orogenic belts is concluded and the reasons may mainly lie on diverse magma systems and fluid systems 

generated within related tectonic movements. In general, some magmatic hydrothermal polymetallic, 

porphyritic deposits and/or MVT deposits and W-Sn deposits are formed in continental collision-related 

orogenic belts as well as arc-related orogenic belts, however, compared with collisional orogenic belts, 

epithermal deposits and orogeny gold deposits are more typical in arc-related orogenic belts. Metallogenesis in 

accretionary orogenic belts is typically associated with gold deposits, mainly are porphyry and associated high-

sulphidation epithermal Au-Cu-Ag deposits, classic low-sulphidation Au-Ag deposits, orogenic gold deposits, 

etc.  

 

Keywords: orogenic belt , metallogenesis, convergence, accretionary 
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Carbonatites: A Classification and Evolutionary Review 
 

Randy Campbell 
 
 

    Carbonatites were first thoroughly investigated in the late 1950’s (Campbell Smith 1956; Precora 1956), 

and ten years later by Tuttle & Gittins (1966) who proposed some of the most problematic concepts 

regarding their origin. With limited advancement in the last fifty years the debate still lingers.  The current 

scientific stalemate is in part due to the lack of extrusive carbonatites representative of their parental 

magmas.  That being said, all carbonatites are not created equal.   Currently, the IUGS classification of 

carbonatites allows for a wide spectrum of mineralogically and petrologically diverse rocks.  This broad 

classification scheme requires further subdivision of carbonatites into categories that relate both their mineral 

chemistry and petrogenesis. This diversity has been noted by Mitchell (2005) who separates carbonatites into 

two groups: primary carbonatites and carbothermal residua.  This review paper looks to develop a thorough 

understanding of their origin(s) and classification; their association with various rock types of different 

tectonic evolutions indicates multiple emplacement mechanisms. Using this evidence it may be possible to 

determine if carbonatites are sourced from a primary carbonated mantle, a result of silicate-carbonate melt 

immiscibility, or both.  Presently there are two prime field locations where effusive carbonatites can be 

studied. Both Shombole (nephelinite-carbonatite) and Oldoinyo Lengai (natrocarbonatite) in East Africa 

indicate evidence of liquid immiscibility.  This evidence is well documented and has been confirmed 

experimentally, others such as Harmer & Gittins (1998) would argue that εSr-εNd isotopes conclude that 

liquid immiscibility is not possible.  It has also been shown experimentally that primary carbonatites can be 

generated from high magnesian melts with a total alkali content of 5-7 wt% (Harmer & Gittins, 1998).  

Realistically it is not possible to generate one model that satisfies the full spectrum of carbonatites.  With 

further research it may be possible to distinguish between models, providing insight into these poorly 

understood magmatic/hydrothermal processes. 
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Bioremediation of petroleum hydrocarbon-contaminated soils:  
Landfarming approach 

 
Gloria Eboremen 

 
Abstract: Bioremediation is a full-scale remediation technology which involves the use of use of micro-

organisms to remove contaminants from the environment. It is broadly applicable to the remediation of 

petroleum hydrocarbons present in soils because hydrocarbons are biodegradable. This paper presents a 

review on In-situ and Ex-situ treatment processes, optimum conditions for biodegradation and effectiveness 

of bioremediation in clean-up of petroleum contaminated soils. Warm climates, abundant oxygen, moderate 

moisture content, and alkaline soil types are the favorable conditions that enhance biodegradation of Total 

Petroleum Hydrocarbon (TPH) present in the soil. The volume and type of contaminants are also primary 

factors limiting the effectiveness of bioremediation technology. Bunker C oils, a heavy fuel with complex 

mixtures of hydrocarbons, are recalcitrant to biodegradation and result in longer clean-up time frames. 

Landfarming, an onsite bioremediation technique, has been conducted on soils with moderate concentrations 

of hydrocarbons (~25,000mg/kg) pollutants. Substantial levels of remediation have been attained via 

landfarming operations within shorter time frames (4–12 week operating period) even in cold climates and 

remote locations. Amendments such as addition of lime to raise soil pH, bulking agents to increase aeration, 

and bioaugmentation significantly increase efficiency in bioremediation of petroleum contaminated soils.  

Enhanced bioremediation via landfarming has decreased TPH concentrations in soils by 90%, even in arctic 

sites with up to 4000 m3 of soils contaminated with diesel-range organics (DRO), gasoline-range organics 

(GRO) and BTEX compounds.  
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11:24 am 
Formation of black shales: Deep versus shallow water interpretation 

 

David B. Olutusin 
 

Mudstones and shales are the most common sedimentary rocks. They accumulate in a variety of 

environments whilst comprising the bulk of recorded earth history. Previous understanding of shale 

formation characterised by vertical pelagic rainout from suspension is being re-evaluated. A new theory, 

backed by flume experimental evidence, suggests that horizontal transports are much more important. 

Sedimentological experimentation of flume studies has shown that mud (shale) can form deposits at flow 

velocities. Black shales show distinct variability in rock properties, microfabric, sub-millimetre sedimentary 

textures, structures, and rock properties. Petrographic evidence including thin sections reveals mud ripples, 

current lamination, mud intraclasts, load structures and biotubation. These indicate the role of advective 

current deposit and processes in the formation of Black shales within shallow marine environments. 

Black shales are organic-rich mudrock composed of silt and clay-size mineral grains. These rocks are 

characterized by minimum of >1% total organic carbon. Traditionally, black shales throughout the rock 

record were thought to have been deposited from suspension under anoxic, low-energy and quiet deep-water 

marine processes. These include pelagic settling, hemipelagic deposition, contourite sedimentation, turbidity 

current and debris flow or slides. However, recent studies have suggested that these rocks can form at any 

depth provided that anoxic conditions exist in water or pore fluids as well as a source of organic matter. 

Shale microfabric such as bedding planes, cross lamination, mud ripples, intraclasts, and biotubation coupled 

with flume experimental evidence supports the idea that horizontal current transport was important. 

Furthermore, wave enhanced sediment flow within fair and storm weather base creates the right condition for 

these processes. Mechanisms of rapid settling within the storm base are responsible for remobilizing shale 

aggregates or sediments further seaward  

This new theory has led to further research focussing on two main areas. First, at what water depth 

were black shales formed and secondly, the factors and processes that influenced their deposition. 

Laboratory investigation including petrographic evidence and thin section analysis provides direct evidence 

of advective current transport of mud-sized material. Clay aggregates show migrating ripples deposit 

sediment under higher current velocities than previously believed. Observation of current-produced particle 

alignment suggest that current flow over the shallow shelf was the norm rather than the exception. Also, 

intermittent as well as continuous current flow and reworking is indicated by sedimentary features in black 

shales. 

These evidence confirms an interpretation of the formation of black shales within shallow marine 

environments. Thus, it compels a rethink or re-interpretation of existing rock and stratigraphic record with 



regards to mudstones and black shales in particular. Finally, it refocuses a new understanding of black shales 

as a resource and how they could be better developed. 
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Determining igneous structures and geomagnetic field history  
from induced and remnant magnetic fields 

 
Colin Terry 

 

Igneous rocks frequently have magnetic properties due to the presence of certain minerals, primarily iron and 

titanium oxides and iron sulfides. These properties include remnant, induced, and viscous remnant 

magnetization and effect the geomagnetic field of the Earth locally, producing measurable magnetic 

anomalies. Surveys record the magnetic field above geological structures. After correcting for diurnal, 

secular, anthropogenic effects, this data is used to create maps of these magnetic anomalies. Measurement of 

only the intensity of the magnetic field during the survey provides reasonable data for many interpretation 

purposes covered in this paper due to to the approximation that the anomalous magnetic field is equal to the 

change in the local geomagnetic field so long as the International Geomagnetic Reference Field (IGRF) is 

much greater than the intensity of the anomaly. The magnetic field anomalies can be used to determine 

possible igneous structures and variations in mineral composition through a variety of processing methods. 

By converting the data into the frequency domain, analysis of power spectrum can provide an estimated 

depth to magnetic sources. The practices of reduction to pole or reduction to equator provides a means of 

comparing anomalies that may be due to similar geology but exist at different locations on the Earth and so 

appear very different in their effect on the geomagnetic field. To reduce the complexity involved in 

modelling a magnetic field to match surveyed results, combinations of simple structures are used to 

approximate dykes, vertical pipes, faults, ore bodies, and so on as prisms, tabular bodies, plates, and so on. 

These interpretations have significant implications in gold, diamond, and hydrocarbon exploration. Remnant 

magnetization records information on the direction of the geomagnetic field at the time the rock cooled past 

its Curie temperature. While remnant magnetization is often disregarded in favour of induced magnetic 

effects, it provides significant data in certain geological settings and for specific purposes. In the field of 

paleomagnetism these remnant magnetic vectors are to provide information on tectonic plate motion, polar 

reversals and true polar wander, leading to a greater understanding of the geomagnetic field of the Earth and 

its source, the Earth's core. 



References 

Airo, M-L. Application of Aerogeophysical Data for Gold Exploration: Implications for the Central Lapland 
Greenstone Belt. Geological Survey of Finland (2007) Special Paper 44, 187–208 

Åm, K. The arbitrarily magnetized dyke: Interpretation by characteristics, Geoexploration, Volume 10, Issue 
2, May 1972, Pages 63-90, ISSN 0016-7142, 10.1016/0016-7142(72)90014-2. 
(http://www.sciencedirect.com/science/article/pii/0016714272900142) 

Bean, R. J. A rapid graphical solution for the aeromagnetic anomaly of the two-dimensional tabular body. 
Geophysics 31, 963 (1966), DOI:10.1190/1.1439827 

Beckmann, G. E. J. New interpretations on palaeomagnetic data from the Nagssugtoqidian mobile belt in 
Greenland, Precambrian Research, Volume 224, January 2013, Pages 304-315, ISSN 0301-9268, 
10.1016/j.precamres.2012.10.001. (http://www.sciencedirect.com/science/article/pii/S0301926812002513) 

Bruckshaw, J. M. and Kunaratnam, K., The interpretation of magnetic anomalies due to dykes. Geophysical 
Prospecting. July 1963 

Creveling, J. R., Mitrovica, J. X., Chan, N.-H., Latychev, K., and Matsuyama, I., Mechanisms for oscillatory 
true polar wander, Nature 491, 244–248 (08 November 2012) doi:10.1038/nature11571 

Grant, F. S., and Martin, L. Interpretation of aeromagnetic anomalies by the use of characteristic curves. 
Geophysics, February 1966, v. 31, p. 135-148, doi:10.1190/1.1439721 

Hall, D. H. A magnetic interpretation method for calculating body parameters for buried sloping steps and 
thick sheets, Geoexploration, Volume 6, Issue 4, December 1968, Pages 187-206, ISSN 0016-7142, 
10.1016/0016-7142(68)90013-6. (http://www.sciencedirect.com/science/article/pii/0016714268900136) 

Hall, Donald H., Direction of polarization determined from magnetic anomalies. Journal of Geophysical 
Research, Volume 64, Issue 11. November 1959 

Holden E.-J., Wong, J. C., Kovesi P., Wedge, D., Dentith, M., Bagas, L. Identifying structural complexity in 
aeromagnetic data: An image analysis approach to greenfields gold exploration, Ore Geology Reviews, 
Volume 46, August 2012, Pages 47-59, ISSN 0169-1368, 10.1016/j.oregeorev.2011.11.002. 
(http://www.sciencedirect.com/science/article/pii/S0169136811001454)  

Moo, J. K. C., Analytical aeromagnetic interpretation the inclined prism. Geophysical Prospecting Volume 
13. 1965. Pages 203 - 224. http://dx.doi.org/10.1111/j.1365-2478.1965.tb01930.x 

Reeves, C., Aeromagnetic surveys princicles, practice and interpretation, 2005 

Steenland, N.C. Recent developments in aeromagnetic methods, Geoexploration, Volume 8, Issues 3–4, 
December 1970, Pages 185-204, ISSN 0016-7142, 10.1016/0016-7142(70)90032-3. 
(http://www.sciencedirect.com/science/article/pii/0016714270900323) 

Steinberger, B. and Torsvik, T. H., Absolute plate motions and true polar wander in the absence of hotspot 
tracks. Nature Volume 452, Issue 7187. April 2008. Pages 620 - 623 



11:48 am 
 

Resource Potential of the Barnett Shale, Fort Worth Basin, Texas 

 

Tola Ogunniyi 

 

 The Newark east field of the Barnett Shale has the highest reserve of unconventional natural gas. This 

is as a result of temperature values greater than 450 °C, average total organic carbon (TOC) value of 3.5%, 

vitrinite reflectance of 1.3%, and thick accumulation of shale ( > 107 meters) in this area. Shale gas is one of 

the major types of unconventional hydrocarbon, and shale gas plays can be found in fine grained sedimentary 

rocks that are rich in organic carbon. Porosity and permeability is usually low so it is almost impossible to 

produce gas commercially from shale without artificial stimulation or fracturing. Activities in shale gas have 

increased over the past two decades as there is need to look for alternative sources of hydrocarbons due to 

the finite nature of conventional hydrocarbons. 50% of natural gas produced in North America by 2020 will 

be from shale gas, and it is currently an important resource play in the United States for example where it 

accounted for more than 14% of gas produced as at the end 2004. The focus of this paper, which is also a 

world class example of a Shale gas play is the Barnett Shale in Fort Worth basin, Texas, United States. 

Geochemical data is important in determining the gas reserve of the Barnett shale, which has a continuous-

type gas accumulation, with 2.7 trillion cubic feet (tcf) of booked reserves, and 26.22 tcf of  total mean 

undiscovered shale gas resource. The Fort Worth basin deepens northwards and has structures that include 

fracturing, folds, faults (major and minor), as well as karst related collapse structures.  Southern limit of the 

basin is defined by a dome (Llano uplift), and  western boundary of the basin includes the Eastern shelf , 

Bend arch, and Concho platform. Muenster arches and the Red river mark the northern boundary of the 

basin, while the Ouachita structural front, is its margin to the east. The Barnett shale is middle - late 

Mississippian, and also serves as a source rock, seal and reservoir for unconventional natural gas resources. 

Besides, it is the largest field from which unconventional natural gas is produced in Texas. Lithofacies 

present in the Barnett Shale include black shale, phosphatic black shale, dolomite-rich black shale, lime 

grainstone and calcareous black shale. Further expansion of the area of production of the Barnett shale 

beyond the Newark east field have been very difficult to achieve and will require further geological, 

geochemical and engineering studies.  
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12:00 noon 
 
 

The Precession of the Perihelion of Mercury 
 
 

Wesley Greig 
 
 

The orbit of Mercury is examined with particular attention paid to the relativistic correction to Newtonian 

orbital dynamics.  The orbit predicted by Newtonian gravity and the effect of other planets is briefly 

discussed and the unexplained precession of Mercury’s perihelion is investigated using the Schwarzschild 

solution to the Einstein equations.  The geodesic equation, Killing vectors, and normalization constraints are 

used to derive the pertinent equations of motion.  These equations are then combined to obtain an expression 

for the gravitational potential energy.  The distinction between Newtonian gravity and that predicted by 

general relativity is analyzed and both are compared to observed data of Mercury’s orbit.  Particular attention 

is paid to the source of discrepancy with Newtonian gravity.  The magnitude of this effect on the orbits of 

other planets in our Solar system is briefly investigated.  The importance of relativistic corrections in gravity 

with respect to current research in geophysics is outlined. 
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Stromatolites: utility, application, and challenges 
 

Mansour Al-Hashim 
 

Stromatolites are now well-documented and known worldwide with reported occurrences from the Archean 

(e.g., Transvaal Supergroup, South Africa) to Recent (e.g., Shark Bay, Western Australia). They are the most 

well-preserved evidence of organic activities in the Precambrian. Stromatolites are widely defined as 

laminated biosedimentary structures formed by trapping and binding and/or precipitation of sediment 

particles by means of growth and metabolic activities of non-skeletal microorganisms. The main 

microorganisms involved in the construction of stromatolites and their structures include photosynthetic 

bacteria, cyanobacteria, known as blue-green algae, and filamentous, unicellular eukaryotic green algae. The 

morphology of stromatolites is however the product of interaction between various physical, chemical, and 

biological (microbial) factors that exist in the environment during their formation. This complex relationship 

between many different factors and the formation of stromatolites is the main source of their importance. 

Stromatolites are particularly useful in sedimentology, stratigraphy, paleontology, and paleoecology. They 

have been utilized in studying ancient depositional environments, in estimating sedimentation rates, in 

correlating and dating stromatolitic formations, and in regional mapping. They were also used in solving 

problems related to paleocurrent directions, paleolatitudes, and ancient shorelines and water depths. 

Understanding the microbiology and ecosystem of modern stromatolite-building biota and the processes by 

which modern stromatolites are being formed is critical for any sophisticated and plausible interpretation of 

ancient stromatolite forms. A thorough examination and description of old stromatolites is by no means less 

important in understanding the recent ones.  
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Microfossils and the Origins of Life on Earth 
 

Roderick Tom-Ying 
 
 

Much of our understanding of life on Earth is centered on the well-studied Phanerozoic history of life 

where the evolution of species is well preserved in the rock strata. Unlike the Phanerozoic Eon, the basis of 

study for life during the Precambrian is centered on the prokaryotic microbes. Due to the nature of microbes 

and the poorly preserved rock record, the discussion of Precambrian fossils, as merits in inferring the origins 

of life are highly debated. The Apex chert formation, almost 3.5 Gya in age, found in Western Australia is a 

highly debated rock formation as it contains microfossils that appear biotic in origins. Held within the 

Precambrian chert formation is the possibility of Earth’s earliest biotic microfossils. The basis of many early 

life hypotheses hinders on the fact that microfossils found within the rock formation appear organic in origin. 

Here we show that by re-examining the carbonaceous composition of the microbial filaments of said 

microfossils, the filament diameter, and by using Ramen Spectroscopy we infer an abiotic origin. As the 

basis of the Early Life Hypothesis centers upon the fact that the fossils found within the Apex chert at 3.5 

Gya, by re-examining the evidence we conclude that the fossils within the Apex Chert are pseudo fossils. We 

anticipate our results to be a starting point for a comprehensive re-examination of the Early Life Hypothesis. 
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Early to Middle Ordovician Climate, Paleogeography, and Environments:  
Their Affects on Faunal Radiation 

 
Kathryn Lapenskie 

 
 The Early to Middle Ordovician Earth differed greatly from the present-day planet in terms of 

geography, climate, environments, and marine ecosystem composition and structure. The Early to Middle 

Ordovician climate is characterized by greenhouse conditions, with atmospheric CO2 concentrations up to 

ten times higher than modern values. High global temperatures limited or prevented the development of 

continental ice sheets, allowing for sea levels to attain their Phanerozoic maximum by the end of the 

Ordovician. The maximum continental dispersal of the last 540 Ma was achieved as four large continental 

landmasses, as well as microcontinents and island arcs, were widely distributed throughout the southern 

hemisphere. The northern hemisphere was unoccupied by continents and covered by the vast Panthalassic 

Ocean. 

 Extensive epicontinental seas developed in the southern hemisphere due to globally high sea levels. 

Wide temperate and tropical marine belts developed as a result of a greenhouse climate. Sluggish ocean 

circulation limited the upwelling of deeper, nutrient rich waters, causing superoligotrophic conditions. 

Hardgrounds and flat sea beds became common throughout the shallow cratonic seas. Island arcs and ocean 

terranes provided fauna platforms on which to migrate and radiate on.  

 The Great Ordovician Biodiversification Event was a significant faunal radiation, occurring in a 25 

million year interval during the Early to Middle Ordovician. Several climatic, environmental, and tectonic 

factors led to the development of this event. Geographic isolation of organisms, due to fragmented continents 

and intense tectonic activity, drove speciation and diversity. The extensive tropical, shallow epicontinental 

seas created by the greenhouse conditions and high sea levels provided habitats for organisms to thrive in. 

Increased primary productivity in cratonic seas enabled a subsequent diversity of primary producers. 

Organisms with mineralized skeletons became highly diversified during this radiation, including 

brachiopods, bryozoans, cephalopods, conodonts, solitary and colonial corals, echinoderms, graptolites, 

ostracodes, sponges, and trilobites. Reef composition changed from microbially- to metazoan-dominated 

framework builders. New niches were exploited as organisms occupied different tiers above and below the 

sediment-water interface. Planktonic animals expanded their environments to inhabit greater ranges of the 

water column. The poorly organized ecosystems of the Cambrian Period, dominated by epifanual animals, 

were replaced by complex, predictable food webs. The new families, genera, and species arising out of the 

Great Ordovician Biodiversification Event compose the Paleozoic Evolutionary Fauna, which dominated 

marine communities until the end of the Permian Period. 



References 

Algeo, T.J. and Seslavinski, K.B. 1995. The Paleozoic world: continental flooding, hypsometry, and  

sealevel. American Journal of Science, 295: 787-822. 

 

Barnes, C.R. 2004. Ordovician oceans and climate. In The Great Ordovician Biodiversification Event. Edited  

by B.D. Webby, F. Paris, M.L. Droser, and I.G.Percival. Columbia University Press, New York, N.Y. 

pp. 72-76. 

 

Cocks, L.R.M. and Torsvik, T.H. 2004. Major terranes in the Ordovician. In The Great Ordovician  

Biodiversification Event. Edited by B.D. Webby, F. Paris, M.L. Droser, and I.G.Percival. Columbia 

University Press, New York, N.Y. pp. 61-67. 

 

Harper, D.A.T. 2006. The Ordovician biodiversification: Setting an agenda for marine life. Palaeogeography,  

Palaeoclimatology, Palaeoecology, 232: 148-166. 

 

Herrmann, A.D., Patzykowski, M.E., and Pollard, D. 2004a. The impact of paleogeography, ρCO2, poleward  

ocean heat transport and sea level change on global cooling during the Late Ordovician. 

Palaeogeography, Palaeoclimatology, Palaeoecology, 206: 59-74. 

 

Herrmann, A.D., Haupt, B.J., Patzkowski, M.E., Seidov, D., and Slingerland, R.L. 2004b. Response of Late  

Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric ρCO2: 

Potential causes for long-term cooling and glaciations. Palaeogeography, Palaeoclimatology, 

Palaeoecology, 210:385-401. 

 

Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J.,  

Cramer, B.S., Christie-Blick, N., and Pekar, S.F. 2005. The Phanerozoic record of global sea-level 

change. Science, 310: 1293-1298. 

 

Munnecke, A., Calner, M., Harper, D.A.T., and Servais, T. 2010. Ordovician and Silurian sea-water  

chemistry, sea level, and climate: A synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 

296: 389-413. 

 

Servais, T., Owen, A.W., Harper, D.A.T., Kröger, B., and Munnecke, A. 2010. The Great Ordovician  

Biodiverisification Event (GOBE): The palaeoecological dimension. Palaeogeography, 

Palaeoclimatology, Palaeoecology, 294: 99-119. 

 



1:48 pm 
 

Recognition of tsunami deposits within the sedimentary record:  
Attempts at establishing a tsunami facies 

 
Beth Hooper 

 

Tsunami deposit identification within the sedimentary record is difficult due to characteristics such as 

preservation potential, grain size, and depositional environment, causing the appearance of the deposit to 

vary.  To date, tsunami deposits have yet to be identified based on sedimentary criteria alone, requiring 

dating of sediments immediately overlying each deposit followed by a comparison to a record of historical 

tsunami occurrence. The establishment of a sedimentary facies unique to tsunamis has implications for 

further deposit identification and, by extension, risk assessment. 

A review of scientific research on tsunami deposits from different parts of the world, including Japan, 

Australia, and Portugal, have provided a baseline of common sedimentary characteristics, as observed 

through trenching and coring techniques. Deposits are commonly divided into four sub-units, each of which 

is interpreted to correspond to a different phase of the tsunami; the initial, smaller waves of the tsunami 

depositing the lowest most unit, followed by the large, powerful waves, the waning energy waves, and 

finally the post-tsunami fall-out. Sedimentary characteristics of the deposits have included landward thinning 

and fining, rip-up clasts, cross-bedding, grading, and boulders, to name a few. This paper provides an 

overview of features common to tsunami deposits as well as limitations associated with their discovery and 

interpretation. 
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A Comparison of two Projects for the Prevention of High Water in the City of Venice, 
Italy, as a Result of Land Subsidence and Climate-Induced Sea Level Rise 
 

Filippo Resente  

The frequency and intensity of flooding in the city of Venice, Italy, has increased over the past 50 years. This 

phenomenon is governed by a combination of geological, historical and climatological factors. This review 

will aim to summarize the geomorphological evolution of the Venetian Lagoon and of the land subsidence 

phenomenon, meanwhile providing a background of the historical evolution of the area. This will include the 

main anthropogenic causes of flooding in Venice and the recent attempts and future options to save Venice 

from rising water levels. In particular, we will examine the two most discussed projects: the Experimental 

Electromechanical Module (MoSE project), and the Anthropogenic Uplift of Venice City . The MoSE 

project was  approved by the Italian government in 2001 and is currently under construction. It consists of 

movable barriers installed in correspondence with the three lagoonal inlets and is designed to block seawater 

inflow into the lagoonal basin during exceptional tidal events that cause flooding in Venice. With the current 

sea level, the activation of the movable barriers is expected to occur with a frequency of 2-3 times per year 

but may increase as a result of climate-induced sea level rise. This will have a negative impact on harbour 

activities in Venice as maritime traffic will be limited at the inlets. As a result, MoSE project might become 

obsolete in less than 100 years. A complementary project has been proposed: the Anthropogenic Uplift of 

Venice. It consists of 12 vertical wells strategically located within the lagoon, that inject seawater into the 

600-800 deep aquifer. The numerical model described here, predicts an uplift of between 11 and 40 cm over 

a 10 year period. Preliminary results shows that the anthropogenic Uplift of Venice might be a promising 

complementary action to MoSE barriers as it has the potential to reduce the frequency of the closure of the 

inlets by prolonging the operational life of MoSE. 
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Effects of Climate-Induced Temperature and Water Table Changes on  

Carbon-Dynamics of Northern Peatlands  
 

Tara Despault 
 
 Peatlands account for only 3% of the Earth’s land area; however they are an important net carbon 

sink, with northern peatlands storing up to 30% of the world’s carbon stocks. Climate change is expected to 

have a significant impact on the structure and physicochemical characteristics of peatlands, especially those 

at high latitudes. Of the projected consequences, warmer temperatures and water table drawdown are of 

particular concern, each having direct and indirect effects on the carbon-dynamics of peat soils. This review 

will aim to provide a general summary of how changing environmental conditions will impact various 

aspects of the carbon cycle in northern peatlands, specifically soil and gaseous carbon. Increased temperature 

and lower water table levels have been found to enhance decomposition rates of organic matter in soils, 

which would effectively increase carbon dioxide emissions to the atmosphere. Warmer temperatures will 

provide favourable temperatures for methanogenesis, however a lowering of the water table below 10-20 cm 

and change in plant community structure could decrease the amount of methane that is emitted to the 

atmosphere. The drivers of dissolved organic carbon concentrations in peatlands are not yet known, which 

creates uncertainty in the estimation of how dissolved organic carbon responds to climatic disruptions. 

Drought has been found to decrease dissolved organic carbon concentrations owing to increased 

mineralization rates, but greater temperatures have been noted to have both positive and negative effects on 

concentrations. This overview suggests that climate-induced warming and drying of northern peatlands will 

increase carbon dioxide and decrease methane effluxes from soils, however no clear consensus for soil 

carbon components has been established.   
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2:24 pm 
Millennial Climate Cycles in the Holocene 

 
W. James Goacher 

 
 Future climate projections have been constrained to what can be concluded of the mechanisms that 

drove climate change in the past. As climate change becomes a more global public concern, the need for a 

complete understanding of natural climate cycles is critical before the recent anthropogenic impact can be 

interpreted relative to the natural variability.  

Holocene climate, the most recent interglacial period, was thought to be relatively stable until paleo 

records uncovered a common millennial periodicity. Glacial and interglacial cycles driven by Milankovitch 

orbital forcing operate on a scale of > 20,000 years. However, these cycles can be punctuated by shorter 

cycles of lower amplitude such as 11-year Schwabe cycles, 85-year Gleissburg cycles, and 207-year deVries 

cycles. Recently, a new millennial climate cycle of ~1400 years has been evidenced by various paleo records 

and suggest a much larger global impact mechanism. 

Carbon-14 and Beryllium-10, both cosmogenically created proxies for total solar irradiance (TSI), have 

been correlated to these millennial climate cycles. This evidence suggests that solar forcing may contribute 

to a new time scale of climate variability in the natural environment. Based on isotopes, pollen, and 

foraminifera paleo data, it has been hypothesized that solar forcing influences the atmosphere enough to 

change the sea surface temperature, the North Atlantic Oscillation (NAO), and even the thermohaline 

circulation of the ocean. The resulting change in North Atlantic Deep Water (NADW) formation amplifies 

this solar forcing to a global scale and may have implications for our current climate-warming event.  

Other mechanisms have been presented in the literature including volcanism and glacial influence. Thus, 

more research will need to be done in order to conclusively determine the main driving force of this 

millennial oscillation. Linking these mechanisms of climate change is crucial to understanding Earth’s past 

climate regimes and making predictions for Earth’s future climate. 
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2:36 pm 
Strength of the Continental Lithosphere 

 

Mengmeng Qu 
 

The strength of the continental lithosphere, or maximum stress it can support before failing, is crucial 

in geodynamics. Its spatial and temporal variations can help us understand the Earth’s deformation processes 

including rifting, mountain building, sedimentary basin development, seismicity and volcanism. 

In the 1970s, Goetze and Evans firstly introduced the yield stress envelope (YSE), a vertical profile 

predicting the maximum differential stress supported by rock as a function of depth for the oceanic 

lithosphere. This concept works well for the oceanic lithosphere, because it can explain the response of 

observed age and temperature dependence of plate to surface and subsurface loads. But when it comes to the 

continental lithosphere, problems appear. Compared with oceanic lithosphere, continental lithosphere is in a 

much more complicated context. It has a thicker crust and a longer deformation history, and bears the 

modification by surficial process (e.g., erosion, sedimentation and orogenesis). In the 1980s, based on the 

study of the distribution of focal depths for earthquakes, Chen and Molnar stated the classical view on the 

strength of the continental lithosphere: the continental lithosphere generally consisted of a weak lower crust 

sandwiched between a relatively strong upper crust and uppermost mantle. This is known as “jelly 

sandwich”. 

However, at the beginning of the 21st century, after the reassessment of earthquake depth 

distributions and gravity anomalies, Jackson and Maggi found that there was little support in earthquake 

focal depth distributions, for the uppermost mantle was significantly stronger than the lower crust in 

continental regions. Therefore they proposed an opposite view, “crème brulée”, suggesting that the strength 

of the continental lithosphere resided in the crust, and that the upper mantle beneath the continents was 

relatively weak. To analyze which idea is more applicable, in accordance with them, Burov used dynamic 

numerical models to test the stability and structural styles. The results turned out to be compatible with the 

view that the lithospheric mantle was strong (“jelly sandwich”) and in this way, the continental lithosphere 

could support geological loads and stress for long periods of time. Therefore, they concluded that “jelly 

sandwich” was more widely applicable.  

      In the paper, I review the two opinions about the strength of the continental lithosphere and focus on 

recent researches: 1) Jackson and Maggi’s study on the focal depth distribution of earthquakes and the 

association of gravity anomalies with topography; 2) Burov’s dynamic numerical models. Then I analyze 

problems in these researches and general difficulties in studies of the strength of the continental lithosphere. 



In the end, I give my own understanding of the strength of the continental lithosphere and perspectives on 

future studies. 
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Shale gas in Canada: geological controls and current challenges 
 

Weiyin Chen 
 

Abstract: Natural gas accounts for a significant part of the energy consumption around the world. With the 

increasing concerns about unconventional natural gas, the exploration and exploitation of shale gas has 

developed dramatically in recent years, and it result in the increase of natural gas reserves. The term “Shale 

Gas” refers to unconventional, continuous-type, self-sourced resources contained in fine grained (ranging 

from clay to very fine sandstone), organic-rich, low permeability reservoirs in which thermogenic or 

biogenic methane is stored as free gas in the matrix or fracture porosity, or as adsorbed/dissolved gas on the 

organics and/or clays. These are self-enclosed petroleum systems, characterized by inefficient 

“dysfunctional” expulsion and migration, where source, reservoir and trap are all present in the same thick 

shaly succession. The most prospective shale gas targets will be thick, widespread, gas-saturated, fine 

grained, organicrich units. There are three main geological controls for shale gas plays: tectono-stratigraphic 

position, organic matter content and reservoir characteristics. Thickness and distribution area is the key 

conditions which ensure there is enough storage space and organic matter. There is positive correlation 

between the organic matter content and the methane capacity of shale. The features of pore and fracture 

determine it whether we can get access to the economic flow and how we design the project for hydraulic 

fracturing. Besides, challenges for the development of shale gas in Canada are analyzed in the end. The 

intrinsic characteristics of the shale gas and the fundamental controls on its productivity need to be well 

understood. Currently there are few production wells in Canada with a history of well performance that can 

be used to extrapolate recoverable potential. The assessment methodology for continuous resource must be 

flexible enough to adapt to situations ranging from little or no well data to thousands of production wells. 

Modern geological information, beginning with maps, is needed for evaluation of shale gas targets. 

 

Keywords: Shale gas; Geological controls; Canada; Challenges 
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Groundwater remediation using zero-valent iron as a reactive medium in  
permeable reactive barriers 

 
Alana Crump 

 
Conventional methods of groundwater remediation involve pumping water to the surface where 

subsequent treatment occurs, followed by the release of this treated water back into an aquifer. However, 

these pump-and-treat systems are energy and maintenance intensive, invoking the need to replace traditional 

technologies. Permeable reactive barriers (PRBs) have recently emerged as a viable method for passive 

remediation of contaminated groundwater. These barriers are installed in the path of a contaminated 

groundwater plume and contain reactive materials that promote various geochemical reactions. PRBs 

therefore transform contaminants into innocuous components as groundwater flows through a subsurface 

diaphragm under the natural hydraulic gradient. Adsorption or redox reactions followed by the precipitation 

of sparingly-soluble compounds are examples of processes occurring in PRBs, however the ability to predict 

long-term performance of PRBs in different hydrogeochemical environments is difficult.  

The use of Zero-Valent Iron as a reactive medium is of particular interest for the treatment of 

numerous contaminants. This material is the most-widely used medium for permeable reactive barriers, and 

laboratory and field experiments have proven its effectiveness. Meanwhile, several experiments have 

demonstrated that the formation of secondary precipitates often reduces the permeability of PRBs over time. 

Although current studies advocate the use of this method as a replacement for groundwater remediation, 

additional research must be conducted regarding the long-term effects of these precipitates on porosity and 

hydraulic conductivity. This review therefore outlines PRB technology, provides a list of contaminants that 

are treatable using Zero-Valent Iron, and summarizes problematic aspects of this method that have been 

determined in laboratory and field research. 
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Mining salt, brine and clay:  A review of lithium and boron evaporite deposits 
 

Sean Fulcher 
 

Hydrogen fuel cells and battery powered electric vehicles are at the cusp of focus for electrical power 

storage as their need for portable power and energy is directly relative to their success.  Elements such as 

lithium and now boron have been targeted as candidates to solving chemical-electrical storage problems. 

Lithium and boron are extracted from continental nonmarine evaporite deposits that comprise 82.7% and 

90% of the world supply respectively (Dundee Capital Markets, 2009) (Smith & Medrano, 1996) and are 

extracted principally as salts, brines and clays (Warren, 1999). 

The following paper is a review of lithium and boron evaporite deposits focusing on their origins, 

hydrogeochemical controls, extraction and economics.   Deposits are segregated based on lithium-boron 

bearing mineralogy or brine chemistry.  Depositional facies, stratigraphy and diagenesis are overviewed and 

illustrate a complex hydrogeological system dependent on water-rock interactions.   

Economic parameters of deposit types efficiency, sustainability and economic potential are defined.  

Findings converge that lithium brines are the most economical source of lithium carbonate still but offer 

significant setbacks to product to market timing because of solar dependence for concentrating brines and the 

variability of brine in aquifers.  In contrast, boron production is strongly concentrated in Turkey and the 

U.S.A with 72% of total reserves located in Turkey (Kar, et al. 2006) and offers a stable supply platform.  

Conversely, economic potentials of evaporite deposits are solely dependent on demand and emerging 

technologies.  Boron is viewed as having a higher economic potential because of emerging uses of 

borohydrides in hydrogen fuel cells. 
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Self-organized criticality:  What can it tell us about natural hazards? 

Xiaoming Zhang 

Self-organized criticality is a phenomenon that describes a system evolves to a critical state spontaneously 

rather than by external fine tuning of a parameter as in phase transition. A system described by self-

organized criticality exhibits power-law behaviour and fractal size distribution of events. The concept of self-

organized criticality evolved from the study of three major types of models: the sand-pile model, describing 

the evolution of a sandpile by consistently adding sands; the forest fire model, which involves the dynamics 

of burning trees and the avalanches in the system are forest fires; and the slider-block model, which is a 

simple analogue for the behaviour of faults in the Earth’s crust through blocks motion driven by the friction 

force of a plate. Self-organized criticality has been successful in describing complexity, together with chaos 

and fractals. It has been proven to be a new approach to study a wide range of complex systems from large 

scale natural phenomena to human social behaviour, e.g. landslides, earthquakes, forest fires, brain activity, 

stock markets, epidemics. 

Some natural hazards such as landslides, forest fires and earthquakes are characterized by unpredictable 

events, or avalanches, as well as a power-law scaling of frequency-size distribution. For example, the 

Gutenberg-Richter law, which describes the size distribution of earthquakes, exhibits characteristics of self-

organized criticality. Simple self-organized criticality models have been proven to display strong descriptive 

power and can be directly applied to natural systems. The aim of this paper is to introduce the framework of 

self-organized criticality and review the applications of models to natural hazards. The sand-pile models 

have been applied to landslides and rockfalls, the forest fire models to forest fires and wild fires, the slider-

block models to earthquakes. In addition, potential self-organized criticality models for volcanic eruption are 

discussed. The model behaviour yields to a good analogue of the actual observations, the estimates of the 

size and frequency of possible events can be drawn. Moreover, acquiring more insight into the mechanism of 

natural hazards through investigating the model behaviour could further foster constructing hazard and risk 

assessment systems. 

Self-organized criticality is still at an early stage of development and not a well-defined concept. It is 

controversial in the sense that the process of self-organizing into the critical state and the mathematical proof 

of the power-law behaviour is not quite clear. Nonetheless, self-organized criticality serves as an approach to 

an in-depth understanding of the dynamics of dissipative non-equilibrium systems. Questions remain as to 

whether or not it is really a ’universal’ behaviour and truly captures the essence of the phenomenon. 
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Basin Controls on the occurrence of Reservoir Intervals in the Cardium Formation, AB 

Tararat Lerkwieng 
 

 Mudstone and sandstone are the major rocks that can be found in Cardium formation where outcrops 

the Rockies foothills and lies beneath the Alberta plain. Conglomerate fractions could also be found in this 

formation not a lot but important. Sediments were accumulated in the area of muddy and sandy marine 

environment. The process of autocyclic and allocyclic controlled depositional basin. Cardium sediments are 

contained by a large bow- shaped basin, which follows an elongate compound arc that trends northwest.  

 The tectonic system as the Tintina-Northern Rocky Mountain Trench (TT-NRMT) fault system 

transformed from right-lateral strike- slip to compressional deformation basement subsidence increased in 

the southern Canadian Rockies. As orogenesis occurred large amounts of sediment were delivered to the 

subsiding basin contributing to overall subsidence. High-frequency fluctuations in sea level due to eustatic 

and tectonic controls resulted in the complex depositional patterns of the Cardium formation. . 

 The Cardium formation is a prolific hydrocarbon deposit producing both conventional and 

unconventional resources. Basin controls on reservoir units are mainly tectonic and also eustatic. Orogenesis 

caused subsidence in the Alberta Basin creating a large sediment source and accommodation space to deposit 

‘the prograding clastic wedge of the Cardium formation. Relative changes in sea level caused an erosional 

unconformity and back stepping, which combined with gravel input and wave reworking created some of the 

best reservoirs in the Cardium formation. Conglomerate and high quality sand reservoirs were originally 

conventional targets. Presently low permeability ‘fringe’ or ‘halo’ deposits around high quality reservoirs are 

popular unconventional horizontal fracturing targets. 

 

Keywords: basin; subsidence; eustatic; prograding clastic; conventional; unconventional 
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4:00 pm 
Seismic risk in Canada 

 
Yelena Kropivnitskaya 

 
The seismic hazard exists almost anywhere in the world, and Canada is no exception. Every day 

there are about 3-4 earthquakes in this country, and in spite of the fact that most of them can only be detected 

by sensitive equipment, a few times a year, Canadians really feel the movement of the earth. The urgency of 

this issue highlights by the fact that a strong earthquake near large cities in Canada can produce damage in 

the billions of dollars and lead to the deaths of thousands of people. Most seismically hazardous territory of 

Canada is Western Canada, particularly British Columbia. Seismic activity in this region caused earthquakes 

with magnitudes greater than 8 Richter. Also in eastern Canada there is a risk of seismic hazard. The 

evidence is devastating earthquakes up to magnitude 7 Richter, occurred near the St. Lawrence and Ottawa 

rivers and earthquakes near North Bay, Ontario, in January 2000 and the earthquake in Georgian Bay in 

October 2005. In central Canada there is no significant risk of earthquakes. That is why in this paper will be 

considered a historical aspect of seismic and seismic risk in Western and Eastern Canada.  

The analysis of seismic risk is determined as the consequences and the likelihood of hazardous 

events that can happen in that period of time, which is one of the most important tasks of management and is 

used to analyze the economic, social and environmental consequences of hazardous events. In the context of 

this paper will discuss the main theoretical approaches to the analysis and evaluation of seismic risk, and 

methods to reduce it. Determination of seismic risk in Canada plays an important role in the upcoming 

events, which can greatly help in the assessment of risk and response planning, mitigate losses and tragedies 

associated with these extremes, and reduce the effects of seismic hazard on the Canadian citizens and 

infrastructure of Canadian cities. 
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Uses and Challenges in Real-Time seismological data applications 
 

Behzad Hassani 
 

Real-time seismological data applications refer to the applications in which seismic data are received and 

analyzed quickly after a significant seismic event, so that the results can be effectively used for post-

earthquake emergency response and early warning. In general, real-time applications are based on two 

distinct procedures. In first one, the rapid (3-5 minutes) generation of maps of instrumental ground-motion 

(acceleration, velocity, and spectral response) and shaking intensity accomplished thorough near real-time 

seismographic data acquisition combined with developed relationships between recorded ground-motion 

parameters and expected shaking intensity values. These automatic maps which are triggered by any 

significant earthquake can provide a rapid depiction of the extent of potentially damaging area following an 

earthquake and can be used for emergency response, loss estimation and for public information through the 

media. As the technology of seismic instrumentation, telemetry, computers, and data storage facility 

advances, the real-time seismology for rapid post-earthquake notification is essentially established. 

The second procedure which is called Earthquake Early Warning (EEW) is based on the idea that seismic 

waves radiate at a lower speed than electromagnetic waves that are used to transmit possible warnings in 

case of strong events. This leading time can be implemented to reduce likely damages that might be caused 

by the later arriving seismic waves. Research for EEW is currently in progress and two methods are widely 

used: (1) regional warning and (2) on-site warning methods. In regional warning method, the traditional 

seismological techniques are used to locate an earthquake, determine the magnitude and estimate the ground 

motion at other sites. In on-site warning method, the beginning of the ground motion (P wave) observed at a 

site is used to predict the following ground motion (S wave) at the same site and no attempt is necessarily 

made to locate an earthquake and estimate the magnitude. The first approach is more reliable, but it takes a 

longer time and cannot be used for the sites at short epicentral distances. However, the second approach is 

less accurate, but it is very fast and can provide useful early warning to sites even at very short distances 

where an early warning is most vital. To benefit from the advantages of both methods some integrated 

approaches have been proposed to not only use the accuracy of the first approach but also benefit from the 

fast responses of the second approach. The uses of EEW can be considered both at personal and institutional 

levels. For instance, Personal protective measures can be undertaken at home and in the workplace include 

getting under desks and moving away from dangerous chemicals and machinery. At institutional level, 

protective measures can be exploited at mass-transportation systems that can use a few seconds to slow and 

stop trains, terminate airplane landings, and prevent additional cars from entering the freeway. 
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Detachment faulting and it's implications for the mineralization of  

Oceanic Core Complexes 
 

Jon Hey 

Scientific interest in oceanic core complexes (OCC) has greatly increased since the initial mapping 

expedition to the Atlantis Massif is 1996. Ongoing research has focused on mantle structure, marine 

magnetic anomalies, OCC fromation formation and their relation to detachment faults. OCCs form on 

the inside corner of ridge transform-fault intersections along slow spreading to ultra-slow spreading 

ridges. Current models support long-lived, large-scale detachment faults, creating axial asymmetry. 

Reduced magma supply and the exposure of lower crustal and mantle rocks suggest extension involving 

predominantly tectonic instead of magmatic processes. The hanging wall of these faults are typically 

metamorphosed ultramafic schists, with a serpentinized peridotite in the footwall, intruded by discrete 

gabbroic bodies. The fault comprises a network of smaller anastomosing fault zones, generally dipping 

at ≤20°. The fault gouge is typically 1 – >200 m thick. Recent studies have shown that hydrothermal 

mineralization has been occurring at temperatures of 300-400°C up to 12 km off-axis along the Mid- 

Atlantic Ridge. New oxygen and strontium isotopic evidence has shown that active oceanic detachment 

faults can focus large volumes of hydrothermal fluids, and are the primary conduits for these fluids and 

slow spreading ridges. Geophysical studies of the Trans-Atlantic Geotraverse (TAG) have shown that 

the detachment fault dips at roughly 20° towards the ridge axis until a depth of 1 km, at which point it 

plunges at 70° to a depth of >7 km. There is also no geophysical evidence for any crustal melt reservoirs 

at shallower depths to provide heat to the fluids. The evolution of detachment fault mineralization can be 

broken down into three stages: 1) early, intense hydrothermal circulation, driven by hot gabbroic 

intrusions into serpentinized ultramafic footwall rocks. TAG-type vents occur here during final 

discharge with a preference from Fe-Cu-Zn-Si mineralization in basalt; 2) fluid flow through the mature 

detachment has fluids interacting with both gabbroic intrusions and serpentinized peridotite, discharging 

through ultramafic rich footwall rocks at ~370°C in Rainbow-type vents, showing high temperature Cu- 

Zn-Fe-Co-Au-(Ni) sulfide mineralization in ultramafics; and 3) low temperature circulation in cooled 

peridotites distal to the ridge axis generates low-temperature Si-(Zn-Cu) and Ca-Mg deposits in Lost 

City-type venting. The Cu-Zn-Co-Au deposits are more common in OCCs than in ophiolites, suggesting 

that ultramafic hosted volcanogenic massive sulfide deposits on slow spreading ridges fail to accrete 

during obduction and are thus a type of mineralization specific to the marine environment. Based on the 

extensional nature of OCC formation, it may be possible to find obducted complexes in failed rift zones 

accreted to continents. 
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Models and Timing of Core Formation 

 

Sean P. Funk 
 

 Over the past one hundred years, important discovers about the core have come from seismology, 

magnetics, and geodesy. However, the exact mechanisms involved in the formation of the core are still a 

mystery. Important constraints on core formation can be placed from Hf-W isotopes [1] and looking at 

siderophile (metal-loving) elements in the mantle [2]. Hostetler and Drake[3] proposed that a "magma ocean", a 

consequence of accretion, formed on Earth. The "homogeneous magma ocean hypothesis" envisions that shock-

induced melting caused metal and silicate to segregate, with the metal sinking toward the center of the proto-

Earth.  

 Despite the initial success of the model in predicting the large-scale general distribution of metals and 

silicates, it fails to explain certain aspects of trace element geochemistry and isotope systematics. For example, 

the "excess siderophile element anomaly" (ESEA) in particular has been very troublesome to explain[4]. The 

ESEA demonstrates that the mantle, although depleted in siderophile elements relative to chondrites, is greater 

than predicted with known high-pressure equilibrium metal-silicate partitioning coefficients[5].  

 In this review, I will discuss three alternative hypotheses on core formation, and evaluate and critique 

each model with respect to the chemistry and physics involved. The first is core-core disequilibrium mixing, 

whereby the cores of differentiated bodies merge together quickly[6]. Here, the physics of emulsification 

become important to evaluate. Descending metal droplets are subject to Rayleigh-Taylor and Kelvin-Helmholtz 

instabilities, which act to tear the droplets apart. Only the largest descending cores may survive hybridization. 

Another is "inefficient core formation", where metallic material gets trapped within the mantle, later to be re-

oxidized and redistributed[7]. The mode of metal transport, percolation versus dyking or diapirism, become 

important. Based on the dihedral angle (θ) of Earth materials at high-pressure, it seems unlikely that this is a 

viable model. The last is known as the heterogeneous accretion (or late veneer) model, where the composition 

of the accreting material changes with time[8]. During the late stages of core formation, a "late veneer" of 

material added siderophile elements into the mantle[8]. At present, this is the most widely accepted hypothesis 

that best explains core formation.  
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Dominant gliding versus pure spreading in passive margins: the effect of differential 
sedimentation on initiating salt tectonics 

 
Sarah N. Sweeney 

 
 Dominant gliding and pure spreading are both gravity driven salt tectonics models, but they form in two 

different ways. Dominant gliding is primarily gravity driven via marginal tilt with a minor implication for the 

impact of sedimentation. Conversely, pure spreading is driven only by differential sediment loading in a 

horizontal environment. When discussing the application of the dominant glide model as opposed to the pure 

spreading model in passive margins, determining the effect of differential sediment loading on initiating salt 

tectonics is a major point of contention. 

In “Salt tectonics at passive margins: Geology versus models” by Brun and Fort, 2011, the application of 

numerical and experimental models concludes that in order for differential sedimentary loading to initiate salt 

tectonics, abnormally thick and/or dense sediments, in conjunction with anomalously low sediment friction 

would be required. According to Brun and Fort, 2011, dominant gliding is more efficient and significantly 

easier to initiate than pure spreading. These findings, specifically 1) the equations used, 2) the laboratory 

experiments, and 3) the geological analogies, were hotly contested by Rowan in a discussion article published in 

2012. Rowan advocated that pure spreading has a much larger impact than implied by Brun and Fort, 2011. 

However, the majority of the concerns by Rowan, 2012, are based on 1) numerical models that don’t account 

for the same variables, 2) laboratory experiments done by other authors working with Rowan, and 3) an overall 

misunderstanding and misrepresentation of what was published by Brun and Fort, 2011. Despite the opposing 

views, both authors agree that the effectiveness of models in a geologic setting cannot be guaranteed and that 

both dominant gliding and pure spreading are normally occurring processes. 
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Weathering-induced metal-enrichment processes, the aluminium and nickel cases 
 

Martin Arce 
 
This paper reviews the processes responsible for the enrichment of metals through intense weathering of rocks. 

It provides a basis for understanding the general weathering phenomena and its relationship with tectonic and 

climate. It also describes the main characteristics of the two major weathering-related deposits in terms of mine 

production, aluminium and nickel laterites, as well as their basic concentration mechanisms. Weathering results 

of the interaction between the hydrosphere, biosphere and lithosphere under determined tectonic, climatic and 

topographic conditions, where some elements of primary minerals are lixiviated and secondary minerals are 

produced as residua. Laterite is the most generally accepted denomination for the product of intense weathering 

in humid, cold to warm climates and sub-artic to tropical regions during sufficient time under conditions of 

tectonic stability. The final product of weathering is a mineral assemblage of the least soluble minerals and the 

most resistant primary minerals. The evolution of laterites on parent rocks with pre-concentration of certain 

metals cause rock destruction and reorganisation of these elements in new supergene associations which either 

stay within the profile or migrate in solution.  

Bauxite is the only source used for production of alumina on industrial scale, world production during 2011 

reached 211000 thousand metric dry tons. Bauxite is a lateritic rock characterized by the extreme enrichment of 

aluminum hydroxide minerals, such as gibbsite, boehmite and diaspore, together with iron oxides, kaolinite and 

less anatase. Laterites and bauxites are generated in tropical environments by intense weathering with the 

consequent enrichment in iron (laterites) and in alumina (bauxites) to ore grades. If compared to laterites, 

bauxites are generated by stronger leaching. Dissolved silica concentration is lowered by the intense leaching, 

enhancing formation of gibbsite instead of kaolinite. A classification based on the tectonic frame includes 

bauxites in uplift areas, in subsiding platforms, and in carbonate platforms.  

Nickeliferous laterites currently represent the major nickel reserves, approximately 48,000,000 metric tons of 

nickel content. Even though 60% of world nickel reserves are composed by lateritic nickel, only 40% of world 

nickel production is generated from this source. It is due to the difficulties and the higher energy consume in 

metallurgical processing of nickel oxides compared to nickel sulfides. Progressive and intensive weathering of 

ultramafic rocks generally under tropical conditions (it also occurs in wet cold regions at much lower rates) 

generates economic concentrations of nickel, platinum group elements and chromium. Cobalt and copper are 

usual by-products but also can constitute deposits by themselves. Based on its mineralogy, lateritic nickel 

deposits are classified in hydrous silicate deposits, clay silicate deposits and oxide deposits. The importance of 

weathering-forming deposits processes and the convenience and/or need of mining them are highlighted and 

demonstrated in this contribution through the examples of the two major commodities mined from them. 
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Shallow subsurface is an important geological zone which is directly related to human life in terms of water 

supply, agriculture and ecosystems. Several geophysical techniques are available for the investigation and 

characterization of shallow subsurface. Most commonly used are the electrical methods, seismic refraction and 

reflection methods, multichannel analysis of surface waves, gravity, magnetic, electromagnetic induction and 

ground penetrating radar. Each of the techniques is based on a specific physical law. An attempt has been made in 

this paper to describe the seismic and ground penetrating radar techniques with their advantages and limitations. 

Seismic reflection and refraction methods involves the study of body waves (P and S waves) travelling through 

the earth interior, reflecting and refracting on the interfaces and discontinuities having different acoustic 

impedances. Multichannel analysis of surface waves involves the study of surface waves travelling along the air 

and earth interface suffering dispersion, whereas ground penetrating radar involves the analysis of reflected 

electromagnetic signals from the objects having different dielectric constants. Reflection method describes the 

subsurface stratigraphy and discontinuities (such as faults and erosional surfaces) efficiently. Refraction method 

is mostly to estimate the depth to the bedrock. Analysis of dispersive surface waves identifies the zones having 

voids, weathered and fractured bedrock. Ground penetrating radar uses the principle of reflection of 

electromagnetic energy which identifies subsurface utilities, fractures, void and archeological sites. 

Each technique has its own limitations and drawbacks. The depth range of ground penetrating radar depends upon 

the electrical conductivity of the subsurface. In ground having high salt content, the depth of penetration may not 

reach few centimeters where as in ice it may reach several hundred meters.  On the other hand a dipping layer in 

shallow subsurface significantly affects the shear wave inversion results apart from the maximum resolvable 

wavelength of the fundamental mode with respect to the spread length. Reflection and refraction methods will 

depend upon the spread length, offsets and kind and frequency contents of the source used. 
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Disasters are natural and human-caused events that have an adverse impact on a community, region, or 

nation. Events associated with a disaster can overwhelm response resources and have damaging economic, 

social, or environmental impacts. Floods are some of the most common and costly natural disasters around the 

world. These events occur in most countries, and cause the most deaths and it is expected that the extent of 

flooding increase under the influence of climate change and economic development.  

There is a need to clarify the nature and impacts of the flood hazards in a hazard analysis process. The 

assumption is that negative effects of disasters can be reduced through preparation. Much effort has gone into 

preparing people of disaster prone areas to withstand the effects of disasters. A number of approaches have been 

applied for disaster preparedness. They focused on prior information regarding impending disasters, frequency 

and severity of disasters, causes, effects of disasters and their reduction or mitigation, perception of risk, 

removing people from disaster prone areas, disaster preparedness, coping and adjustment, post-disaster 

rebuilding and return to normalcy. 

 Among these, Geo-information and remote sensing are proper tools to enhance functional strategies for 

increasing awareness on natural hazard prevention and for supporting research and operational activities 

devoted to disaster reduction. GIS along with remote sensing has become the key tool to delineate of flood 

prone areas and development of flood hazard maps indicating the risk areas likely to be inundated by significant 

flooding along with the damageable objects maps for the flood susceptible areas. Producing rescue and flood 

vulnerability map and updating it using satellite images would help for evacuation and dispatching resources 

and aid scared people to the safe regions in a short time.   

As producing susceptibility, hazard, and vulnerability maps is composed of various criteria involved in 

the flood disaster, reliable, up-to-date, and accurate geospatial and non-spatial data is significant. With respect 

to the environmental factors used in Flooding hazard assessment, there is a tendency to utilize those data that 

are easily obtainable from Digital Elevation Models and satellite imagery, whereas less emphasis is on those 

that require detailed field investigations. 

This paper is the review on the types of spatial and non-spatial data needed in this hazard case and the 

approaches for obtaining them and also mapping the infected zones. This paper is a review in collecting spatial 

and non-spatial information on environmental factors with a focus on Digital Elevation Models, geology and 

soils, geomorphology, land use and elements at risk. 
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