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Abstract

Present nomenclature of faults and flanking structures is ambiguous. This paper presents a system for description of flanking structures,

based on geometric parameters and independent of kinematic frame. The description can be made using two levels of accuracy. A qualitative

method is described using four geometric features: tilt, slip, lift and roll. This method is suggested for practical use in the field, since it does

not involve measurements or complicated procedures. In parallel, a quantitative approach is also presented, based on analytical modelling of

Bézier curves. This method requires measurement of geometric features and involves mathematical treatment, but allows comparison

between different flanking structures.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the first applications of geology in underground

mining, people have felt the need to classify geological

structures such as faults according to orientation and

displacement direction (e.g. Playfire, 1802). At first sight,

the geometry of faults cross-cutting layering in rocks seems

simple enough not to warrant further thought. Empirical

data led to a simple scheme of normal faults, which were the

most common in mining areas set in extensional basins, and

reverse (or thrust) faults. Further detail was added by Suess

(1885) and de Margerie and Heim (1888) who introduced

the concept of fault drag, the deflection of layers in the

vicinity of the fault. Later, fault drag was subdivided into

normal and reverse drag by the work of Hamblin (1965).1 In

combination with the terms footwall and hanging wall, the

system seems unambiguous. However, in the sedimentary

basins where this fault nomenclature was mainly defined,
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fault drag usually involves little deflection of layering or

foliation towards the faults. In metamorphic, highly

deformed rocks, or in more complex systems of faults,

geometries produced by fault drag can be more complex. A

simple example can describe the kind of ambiguity that can

arise in certain cases. The structure depicted in Fig. 1 is an

example of a complex structure that deserves careful

description in order to avoid misinterpretations. It can be

originated in one single deformation episode (cf. Exner et

al., 2004) and a natural example is shown in Fig. 8a. The

structure can be described both as a normal fault or a thrust

in the existing classification. An observer on the scale of the

smaller box observes a displacement in the marker typical of

normal faults. If the structure is observed only in the far-

field (bigger box) one might interpret it as a thrust. This

example shows the need of describing accurately the fabric

of fault drag, combined with the far-field displacement, in

order to make correct interpretations.

Passchier (2001) and Grasemann and Stüwe (2001)

expanded the concept of fault drag and defined flanking

structures also known as flanking folds, developed where a

host element (HE) is deflected in the vicinity of a cross-

cutting element (CE) (Fig. 2). The host element is a planar

feature in the fabric of the rock, such as bedding,

metamorphic foliation or compositional layering. The
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Fig. 1. Example of the ambiguity of fault nomenclature. Considering the

arrangement of layering (bigger box) the structure may be classified as a

thrust. However, based on displacement close to the fault (small box) the

structure would be interpreted as a normal fault.

S. Coelho et al. / Journal of Structural Geology 27 (2005) 597–606598
cross-cutting element is the central part of the flanking

structure and can be a fault, a joint, a filled vein, a patch of

melt or even a rigid object in the rock such as a mineral or a

boudin (Passchier, 2001). Flanking structures were initially

envisaged as sub-metre scale structures, but geometrically

they can include features such as fault drag, fault bend folds,

and any fold developed around an object in a matrix, such as

metadolerite dykes (Gayer et al., 1978) and crevasses in ice

(Hudleston, 1989). The concept can also include folds

developed due to rotation of a rigid object in a matrix, such

as the drag folds modelled and described analytically by

Ghosh (1975).

Grasemann and Stüwe (2001) and Grasemann et al.

(2003) investigated the development of flanking structures

adjacent to a cross-cutting element, by simulation of flow

around a slip surface in a viscous medium under general

shear, by means of finite element modelling. Part of this

work was a first attempt to classify flanking structures into

three main categories: a-, s- and n-type flanking structures,

which can be subdivided into 11 sub-types named A–K (cf.

Passchier, 2001; Grasemann et al., 2003). Although this

genetic classification, which presumes a known kinematic

frame, has been used in forward modelling studies (Exner et

al., 2004; Wiesmayr and Grasemann, 2004), field studies

have shown that this classification is imprecise and

ambiguous when describing natural flanking folds.

In this paper we propose a non-genetic uniform

classification system for all types of flanking structures,

based solely on geometric criteria in order to avoid up-
Fig. 2. Schematic representation of a flanking structure. HE—host element,

the external far-field component is unaffected by the flanking structure; the

internal part of the host element is folded and defines the flanking structure.

CE—cross-cutting element.
stream interpretation errors. This can be done with two

levels of accuracy. A qualitative method is proposed as a

descriptive tool to use in the field, while a quantitative

method, based on analytical modelling, is also introduced

where greater accuracy is needed, such as for comparison of

flanking structures. With this method, the classification of

flanking structures based on a-, s- and n-types and their 11

sub-types A–K becomes obsolete.
2. Qualitative classification

The geometry of faults, objects or veins and associated

flanking structures can be described by a HE and a CE (Fig.

2). The HE can be subdivided into an external unfolded part,

parallel on both sides of the CE (far-field component), and

an internal part where the HE can be folded in a complex

way. Here we restrict ourselves to simple fold geometries,

which are enough to fully describe and classify most

flanking structures.

A flanking structure, on one side of the CE, can be

described using four parameters, defined according to the

geometric relations between the HE and the CE, in a fixed

reference frame (Fig. 3). The origin of a Cartesian

coordinate system is set at the intersection of the CE and

HE. The x-axis is oriented to be parallel with the far-field

HE, with its positive half according to the dip of CE. In the

following text, only hanging wall positions above the CE are

described, although the method equally applies to flanking

structures in the footwall. In strike slip, this corresponds to

the wall away from the observer. This means that the

positive y-axis is always in the same block as the positive x-

axis. Notice that by defining the origin in the HE–CE

intersection, only the geometry of one side of the CE is

described, and that two separate coordinate systems have to

be drawn for each side of the CE. This may seem an

unnecessary complication but is useful, since flanking

structures in the same layer commonly have a different

shape on both sides of the CE.
Fig. 3. Geometric features of an idealised flanking structure. HE—host

element; CE—cross-cutting element; a—angle between CE and the x-axis;

b—angle between the tangent toHE at the intersectionwithCE and the x-axis.
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The four different parameters describing a flanking

structure are defined according to the geometric relation

between the host element HE and the cross-cutting element

CE in a cross-section through the structure, such as shown in

Fig. 2. Ideally this is the section normal to the intersection of

CE and HE. These parameters are tilt, slip, lift and roll,

illustrated in Figs. 4 and 5.

Tilt (angle a) is defined as the trace of dip of the CE (Fig.

4a). The Cartesian coordinate axes are drawn to represent a

positive x-axis in the sense of the dip. Due to this geometry,

tilt is given by an angular value a, measured between the x-

axis and the CE, ranging between 90 and 1808 (Fig. 3). This

convention is advantageous because it does not allow

double geometries of mirror-image structures.

Slip is the displacement (off-set) of the HE observed on

the CE surface (Fig. 4b). Slip is also a completely

independent parameter, since its value does not depend on

the geometry of the flanking structure itself, but on the

relationship with the other half of the structure. This is
Fig. 4. Schematic diagram showing the nature of variation of the three parameters th

resulting orientation of the coordinate axis system; (b) slip—offset of the HE alon

below the x-axis; (d) definition of step as the sum of L1 and L2 (two lifts) and S
fortunate for description purposes because sometimes the

absence of clear markers make it difficult to observe slip in

the field. As an independent parameter, slip can be

conventionally defined as being positive if against the

sense of dip of the CE (tilt), negative if according to dip and

neutral if inexistent. When other independent shear criteria

are present, slip description can be refined using the

nomenclature of Grasemann and Stüwe (2001): co-shear

slip if in the same sense of the regional shear sense and

counter-shear slip if opposite.

Lift is the far field displacement of the external HE

measured with respect to the x-axis (Fig. 4c). It is a

parameter independent of tilt and slip. Lift is considered

positive when the HE is above the x-axis and negative in the

opposite situation. Notice that this definition only includes

one side of the flanking structure. This is useful because

correlation between layers on both sides of the CE is

sometimes difficult. Moreover, it allows definition of lift

when a counterpart is absent, such as in the case of flanking
at define the geometry of flanking structures. (a) Tilt—dip of the CE and the

g the CE surface, shown by arrows; (c) lift—elevation of the HE above or

v, the vertical component of slip. CE and HE as in previous figures.



Fig. 5. Schematic representation of roll, according to lift and b-angle values. Tilt is constant throughout the figure. b-angle is measured between the tangent of

HE at the intersection with CE (dashed line) and the x-axis. Neutral roll: single curvature; under- and over-roll: double curvature facing up or down,

respectively. Notice that the position of neutral roll varies with lift, showing the dependence of roll on this parameter. CE and HE as in previous figures.

Fig. 6. Three examples of flanking structures with neutral roll (that is,

flanking structure without an inflexion point) and variable bulge. At bZ458,

the flanking structure has minimal bulge; with increasing b the bulge

becomes more enhanced.
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structures around rigid objects. If a correlation of layers can

be established across the CE, we can define a parameter step

as the orthogonal distance between the HE of the hanging

wall and footwall in the far field. This means that, if the

layering is horizontal, step is equal to throw, a term that is

frequently used in petroleum geology (Fig. 4d). Step is the

sum of the lift of corresponding parts of a HE on both sides

of a CE, plus the vertical component of slip. This parameter,

although useful for description purposes of symmetric

flanking structures, will not be used in the following

classification.

Lift, slip and tilt cannot describe the geometry of flanking

structures completely since the shape of the curve that

connects the straight, far field part of HE with the cut-off

point on the CE can vary considerably (Fig. 5). Roll

describes the magnitude and sense of this curvature (Fig. 5),

as follows. Roll is best thought of in terms of the direction of

curvature when moving along the HE from the far field

towards the cut-off point. If this is a smooth fold with a

single direction of curvature, roll is neutral; neutral roll is an

open flanking fold structure with two limbs. In the special

case where lift is zero and roll is neutral, the flanking

structure is a straight layer that ends at the CE. Neutral roll

flanking structures can be enhanced with bulge (Fig. 6),

without loosing their single curvature characteristic feature.

A flanking fold with bulge has a stronger curvature than an

envisaged minimum value as shown in Fig. 6.

If there is a change in the direction of curvature from the

far field HE to the cut-off point, roll is not neutral, and the

flanking fold has three limbs. In other words, curvature is

composite and has an inflexion point. In the reference

system as shown in Fig. 5, if the curvature faces down, the

flanking structure has over-roll; if the curvature faces up, the

flanking structure has under-roll (Fig. 5). Due to the nature
of double curvatures, all under- and over-roll flanking

structures have bulge by default.

Roll differs from the other parameters in that it is heavily

dependent on lift, although independent of slip and tilt.

Nevertheless, as shown in Figs. 5 and 6, it cannot be

described in terms of lift only.

The angle b, measured between the x-axis and the

tangent of the flanking structure at the intersection with the

CE (Fig. 3), can be useful to refine the geometric

description. Keeping lift constant, a variation of the angle

b from negative to positive values, produces an evolution of

roll, from under-roll to over-roll structures (Fig. 5). Note

that in this instance, the neutral roll case does not

necessarily correspond to bZ0. In neutral roll flanking

structures, b is mainly responsible for the presence or

absence of bulge (cf. Fig. 6). This angle ranges, in theory,

between K1808 and 1808, but in practise is limited by the

amount of tilt, since a realistic flanking structure never

crosses its own cross-cutting element (b!a).

Excluding tilt, which is not directly related to the

geometry of the flanking structure itself, the combinations
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of slip, lift and roll define a set of 27 theoretically possible

geometries (Fig. 7).
2.1. Example

Fig. 8a gives an example of a flanking structure

developed in marbles from Naxos Island (Greece) around

a quartz vein. Drawing the appropriate coordinate systems

(Fig. 8a, box) and using the parameters outlined above, the

flanking structure can be described as: lift positive; slip

negative and neutral roll with bulge. This classification

applies to both sides of the flanking structure (I and II),

despite the fact that in this natural example they are not

absolutely equal in shape: the curve in I has a more

enhanced bulge than II, although they are both neutral roll

examples. In practice there can be gradients in the

parameters from layer to layer along a CE.

Fig. 8b is an example of flanking structures around a

quartz vein in marbles, this one from a marble unit in

Namibia. The flanking structure in the central layer is

described as lift negative, slip positive and neutral-roll. In

this example, shear sense is sinistral according to indepen-

dent criteria (not shown in the picture) and thus slip may be

further classified as counter-shear slip.
Fig. 7. The 27 theoretical geometries of flanking structures, classified according to

CE) can add additional possibilities but do not affect the basic geometry of the s

structures is represented in full, since each side can have a different geometry.
Qualitative description of flanking structures is suggested

for use as a field tool, since it is based on parameters that are

easy to recognize and does not involve measurements or a

detailed analysis. However, this qualitative description does

not allow an accurate comparison between outcrops, or even

flanking structures within a single occurrence. The quanti-

tative description outlined below is based on analytical

modelling of Bézier curves and quantifiable parameters and

is more adequate for detailed studies.
3. Quantitative description

The use of Bézier curves as a tool to describe

curvatures and surfaces was introduced by French

engineers of the automobile industry, in particular

Bézier (1966, 1967). More recently, the concept was

recognised as useful in geological description (De Paor,

1996) and used as a tool for fold shape analysis

(Srivastava and Lisle, 2004). In this paper we apply the

concept to flanking structures.

A general cubic Bézier curve (Fig. 9a) is described by the

Cartesian coordinates of a set of four node-points a, b, c, and

d. Each point on the curve is given as a function of these
lift, slip and roll parameters. Notice that variations in tilt (orientation of the

tructures. CE and HE as in previous figures. Only one side of the flanking



Fig. 8. Field examples of qualitative description of flanking structures. (a) Example from marbles on the Island of Naxos (Greece)—slip negative; lift positive

and neutral roll with bulge; (b) example from the “House of the German” limestone (Namibia)—slip positive, lift negative and neutral-roll. See text for

discussion.
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node points and of t, a spatial parameter variable between 0

and 1. The two governing parametric equations are an

expansion of Bernoulli polynomials and, for the case of a

cubic Bézier curve, they can be written as:
xðtÞZ ð1K tÞ3xa C3ð1K tÞ2txb C3ð1K tÞt2xc C t3xd

yðtÞZ ð1K tÞ3ya C3ð1K tÞ2tyb C3ð1K tÞt2yc C t3yd (1)



Fig. 9. (a) General cubic Bézier curve, with node points a, b, c and d. (b)

Cubic Bézier curve, adapted to the concept of flanking structures. See text

for discussion.
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The equation can be adapted to flanking structure

geometry (Fig. 9b) because these can be described as

curves, as De Paor (1996) and Srivastava and Lisle (2004)

already demonstrated for folds. However, some adaptations

are required. Node-point a can be defined as the HE–CE

intersection and d as the first deflection of the host-element

attributed to the flanking structure effect. b and c are Bézier

nodes with no geological equivalent. Thus, a is the origin of

the coordinate system, xd is always positive and ycZyd. The

later assumption prevents curves with sharp bends where a

flanking structure grades into the far-field layer geometry.

Although such sharp bends are possible as abstract

geometries, they are geologically unrealistic.

With these assumptions the general parametric Eq. (1)

can be rewritten as:

xðtÞZ ð3xbÞtC ðK6xb C3xcÞt
2 C ð3xb K3xc CxdÞt

3

yðtÞZ ð3ybÞtC ðK6yb C3ydÞt
2 C ð3yb K2ydÞt

3 (2)

Some of these parameters can be determined by detailed

field analysis of the flanking structures (Fig. 9b). yd is the

mathematical equivalent of the Lift (L) parameter discussed

previously in thiswork. xd can be defined as the Span (S) of the

flanking structure. xb and yb can be described as polar

coordinates using angle b (which can be directly measured

from field examples) and B, the length of the Bézier handle b.
After the appropriate substitutions and simplifications,

Eq. (2) becomes:

xðtÞZ ð3BcosbÞtC ðK6BcosbC3SK3CÞt2 C ð3Bcosb

K2SC3CÞt3

yðtÞZ ð3BsinbÞtC ðK6BsinbC3LÞt2 C ð3BsinbK2LÞt3

(3)

In order to allow comparison between studied examples,

it is useful to normalize these equations and transform its

parameters into dimensionless numbers. The chosen

normalization parameter is the Span, S. Eq. (3) can thus

be rewritten as:

�xðtÞZ ð3 �BcosbÞtC ðK6 �BcosbC3K3 �CÞt2C ð3 �BcosbK2C3 �CÞt3

�yðtÞZ ð3 �BsinbÞtC ðK6 �BsinbC3 �LÞt2 C ð3 �BsinbK2 �LÞt3

(

(4)

where �xZx=S; �yZy=S; �BZB=S; �CZC=S; �LZL=S.

If the shape of a natural flanking structure is fitted to a

Bézier curve defined by Eq. (4), dimensionless numbers �B,
�C, �L and b can be derived to characterize its shape. The

parameters b, S and �L can be obtained from field examples.
�Band �C, the lengths of the Bézier-handles (Fig. 9b), can be

estimated using a simple spreadsheet and a graphic in

conjunction with Eq. (4). In a Bézier curve, these two

handles determine the shape of the geometric curve and it is

important to understand their behaviour before attempting

an estimation of parameters.

The length of the normalised B-handle controls, with

respect to the coordinate system, the vertical shape of the

flanking structure (Fig. 10). Relatively big �B values are

associated with over- or under-roll. On the other hand, the

normalised C-handle is responsible for the horizontal

extension of the structure, again with respect to the

coordinate axis. Large �C values will make the curvature

sharper, whilst open gentle curves are expected when �C is

low.

The analytical modelling presented above considers

cubic Bézier curves, based on third degree Bernstein

polynomials. It is possible to increase accuracy in the

definition of the flanking structures by increasing the degree

of the Bézier curve itself. This procedure, however, leads to

equations of the fourth or fifth degree. We felt that the extra

detail accomplished does not warrant the unpractical

increasing complexity of classification.

3.1. Example

To illustrate the usefulness of the quantitative method

here presented, we chose a set of flanking structures

developed around a fault in a marble unit in Namibia (Fig.

11a). Here flanking structures are highly variable in shape

from layer to layer along the CE (Table 1; qualitative

description line), although parameter slip is positive along



Fig. 10. Effect of length of the B- and C-handles on the shape of the flanking structures.
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the entire fault. The first step to compare the flanking

structures in different layers is to sketch the whole structure.

Then, the parameters S, L and angle b are measured in all

selected points (Table 1). Since the equations consider

normalized non-dimensional parameters, the measuring unit

is not relevant. Also, due to the normalization of the span, it

is possible and more practical to choose a common span

value for all structures since, in most natural examples, it is

difficult to determine with precision the first inflexion of the

flanking structure (Fig. 9b). Using a spreadsheet program

and Eq. (4), parameters �B and �C can be estimated through

the construction of a best fit graphic (Fig. 11c). To test the

validity of this estimation, we measured the actual length of

the B and C handles for each flanking structure, using the

Bézier function of a drawing program. The estimated

parameters, as well as the read values, are listed in the table

of Fig. 11. Despite some local differences, the values show

that the estimated �B and �C values are very close to the actual

values (Table 1). Moreover, applying the correct values to
Table 1

Quantitative parameters of the set of flanking structures shown in Fig. 11a and dra

and C; estim, estimated with parametric equations; read, real value of the normaliz

roll; Oroll, over-roll; Cb, with bulge

Parameters Point 1 Point 2 Point 3

Beta 858 818 K138

L 0.14 0.02 K0.10
�B (estim.) 0.21 0.19 0.22
�C (estim.) 0.26 0.73 0.67
�B (read) 0.21 0.20 0.13
�C (read) 0.53 0.79 0.72

Qualitative LC LC LK

description Nroll Oroll Nroll
Eq. (4) returns a graphic very similar to that obtained with

estimated parameters. Although we understand that esti-

mation introduces error, we are confident that this error will

have only a minor implication in the overall results.

The quantitative parameters �B and �C, both estimated and

exact, as well as �B and �L were projected in the graphic shown

on Fig. 11d. This allows visualization of the gradient of the

referred parameters across layers along the fault. In this

particular example, the quantifying method permits the

following conclusions:
(1)
wn in

ed le
Lift steadily decreases from the top to the bottom of the

structure;
(2)
 B (Fig. 9b) remains fairly constant throughout the set;
(3)
 C is variable and, together with lift and angle b, is mainly

responsible for the variable geometries observed;
(4)
 The flanking structures, although geometrically different,

reflect a consistent evolution of parameters along the

cross-cutting element.
Fig. 11b. �L, normalized lift; �B and �C, normalized length of handles B

ngth of handles B and C; LC/LK, positive/negative lift; Nroll, neutral

Point 4 Point 5 Point 6

K298 K328 K318

K0.29 K0.29 K0.32

0.16 0.20 0.16

0.61 0.64 0.63

0.14 0.14 0.14

0.39 0.62 0.57

LK LK LK

Nroll NrollCb NrollKb



Fig. 11. Example of quantitative description of flanking structures. (a) Natural example of a set of flanking structures in limestones. (b) Sketch of the flanking

structures developed around the fault. (c) Example graphic for point 2, obtained using the listed parameters and Eq. (4), discussed in text (notice that y-axis is

inverted). (d) Graphic of the parameters, showing their evolution along the flanking structure; angle b is not to scale. See text for further discussion.
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4. Conclusions

Present nomenclature of faults and flanking structures is

ambiguous. We present a method that allows accurate

description of flanking structure geometries observed in

nature using a relatively simple set of parameters. This

can be done with two levels of accuracy. A qualitative

method uses the geometric features tilt, lift, slip and roll,
which result in 27 different theoretical combinations that

reflect virtually all possible cases observable in nature.

This qualitative approach is recommended for use in field

description of isolated flanking structures. A quantitative

method, based on analytical modelling of Bézier curves,

requires measurement of geometric features and math-

ematical treatment, but allows quantitative comparison

between flanking structures.
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