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INTRODUCTION
The Peach Spring Tuff (Arizona, United 

States) of Young and Brennan (1974) was origi-
nally used primarily to interpret geomorphic 
evolution of the Colorado Plateau and Transi-
tion zone (Fig. 1). Interest heightened when it 
became apparent that the ignimbrite also blan-
keted large areas of the Mojave Desert (Glazner 
et al., 1986; Buesch, 1992), indicating that a 
large caldera must have formed during its erup-
tion. Based on studies of the ignimbrite’s dis-
tribution and thickness (Young and Brennan, 
1974; Glazner et al. 1986; Carr, 1991) and fl ow 
directions as inferred from mineral, lithic, pum-
ice, and magnetic fabric (Buesch, 1992; Hill-
house and Wells, 1991), the source caldera was 
widely thought to be located near the junction of 
Nevada, Arizona, and California. Because much 
of this area had been mapped and/or explored, 
it was assumed that the caldera must be com-
pletely buried by basin fi ll.

Based on a strong petrologic similarity with 
Peach Spring Tuff outfl ow, Ferguson (2008) 
reinterpreted the inner part of a caldera com-
plex mapped by Thorson (1971) near Oatman, 
Arizona, as intracaldera Peach Spring Tuff, and 
named the redefi ned, smaller structure Silver 
Creek caldera.

SILVER CREEK CALDERA
Silver Creek caldera is defi ned by a densely 

welded trachyte ignimbrite at least 450 m thick 
that has no preserved top or exposed bottom 
(Fig. 2; Figs. DR2 and DR3 in the GSA Data 
Repository1). In the southern part of the caldera, 

megabreccia and mesobreccia (sensu stricto; 
Lipman, 1976) occur in clast-supported, con-
cordant lenses interpreted as avalanche breccia 
within gently dipping ignimbrite (Thorson, 1971; 
Pearthree et al., 2009). In the north, kilometer-
scale mega blocks are surrounded by folded, 
contorted ignimbrite. Some of the blocks could 
be fl oor to the caldera fi ll, but others are clearly 
enclosed within the ignimbrite. Clasts in the brec-
cias of granite, lacustrine carbonate, and dacite 
(lava, breccia, ignimbrite, and subaqueous ignim-
brite) can be matched to specifi c units exposed in 
the caldera wall (Pearthree et al., 2009).

Correlation of the ignimbrite at Silver Creek 
with outfl ow Peach Spring Tuff is based on posi-

tive petrologic, geochemical, and geochronologic 
tests. Paleomagnetic data (R.Varga, 2010, per-
sonal commun.) indicate that the ignimbrite at 
Silver Creek has the same distinctive northeast-
erly remanence direction as densely welded 
Peach Spring Tuff outfl ow (Wells and Hillhouse, 
1989). Phenocryst modes and heavy minerals in 
outfl ow Peach Spring Tuff and the ignimbrite at 
Silver Creek are nearly identical, dominated by 
blocky K-feldspar up to 6 mm, subordinate pla-
gioclase ≤3 mm, ≤1% biotite, and minor to trace 
quartz, hornblende, pyroxene, sphene, zircon, 
and apatite. Peach Spring Tuff outfl ow is mostly 
rhyolitic (68%–76% SiO2) and normally zoned 
with phenocryst content ranging between 4% 
and 20%, whereas intracaldera ignimbrite at Sil-
ver Creek is mostly trachytic (65%–68% SiO2) 
and contains ~35% phenocrysts (Ransome, 1923; 
Thorson, 1971; Young and Brennan, 1974; Gusa 
et al., 1987; Buesch, 1993; Pamukcu et al., 2009; 
Carley et al., 2009). Lateral and vertical com-
positional zonation is common in large-volume 
silicic ignimbrites (e.g., Bachmann and Bergantz, 
2008a), and has previously been demonstrated 
for Peach Spring Tuff outfl ow (Buesch, 1993). 
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ABSTRACT
Sanidine 40Ar/39Ar geochronology confi rms that Silver Creek caldera, which straddles 

the eastern edge of the Colorado River extensional corridor near Oatman, Arizona (United 
States), is the source of the Peach Spring Tuff. Eight new dates (fi ve from outfl ow, three from 
caldera fi ll) are analytically indistinguishable, and combined with the most precise previ-
ously published date give a weighted mean average age of 18.78 ± 0.02 Ma. A fragment of 
the caldera identifi ed in the midst of the extensional corridor is structurally juxtaposed with 
mesozonal plutons of identical age. The implied extension direction (182°–225°) is compatible 
with abundant previously published structural data for the region.
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Figure 1. Map showing extent (dark gray and black) of Peach Spring Tuff (Arizona, United 
States) (modifi ed slightly from Wells and Hillhouse [1989]), location and age (white numbers) 
of Miocene plutonic rocks which, in general, postdate the onset age of volcanism by ~2–4 m.y. 
(Faulds et al., 2001), and locations of eight new sanidine 40Ar/39Ar dates of the ignimbrite 
(black numbers). Hypothetical, pre-extension 26-km-diameter caldera is shown (dotted circle). 
Ranges: BM—Black Mountains; CM—Chemehuevi Mountains; DM—Dead Mountains; NM—
Newberry Mountains; SM—Sacramento Mountains; WM—Whipple Mountains. Major tectonic 
provinces: CP—Colorado Plateau; TZ—Transition zone; CRX—Colorado River extensional 
corridor; BR—Basin and Range; CMZ—Central Mojave strike-slip zone.
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Recent studies demonstrate that, although Silver 
Creek intracaldera fi amme are overall less silicic 
than outfl ow pumice and fi amme, there is signifi -
cant compositional overlap (Pamukcu, 2010). A 
140-m-thick Peach Spring Tuff outfl ow sequence 
at Warm Springs (Fig. 1; Fig. DR2) includes 
an upper zone of trachyte vitrophyre with 35% 
phenocrysts, identical in phenocryst abundance, 
composition, and mode to intracaldera ignimbrite 
at Silver Creek.

MEGABRECCIA NEAR EAGLE PEAK
We identify Peach Spring Tuff megabrec-

cia 40 km southwest of Silver Creek caldera in 
the Sacramento Mountains, California (Fig. 1; 
Fig. DR4). Based on the megabreccia (Lipman, 
1976; Wright and Walker, 1977), we interpret 
the ignimbrite as intracaldera. Located 2.25 km 

southwest (230°) of Eagle Peak, the megabrec-
cia occurs as a series of 15–65 m blocks of 
dacite lava, granite, and lacustrine limestone 
clustered along an irregular, gradational contact 
between resistant knobs of welded ignimbrite 
(map unit Txlt interpreted as Peach Spring Tuff 
by McClelland [1984]) and a recessive, poorly 
to nonwelded ignimbrite mesobreccia (map unit 
Tlt of McClelland [1984]). The contact is, in 
our opinion, a cooling facies boundary within 
the same ignimbrite (cooling unit). Thin sec-
tions show that both rocks have the same dis-
tinctive phenocryst abundances, modes, and 
heavy minerals as outfl ow Peach Spring Tuff. 
The mesobreccia has a Peach Spring Tuff–com-
patible paleomagnetic remanence direction (J. 
Hillhouse, 2011, personal commun.). Strata that 
underlie the ignimbrite(s) northwest of Eagle 

Peak (Spencer and Turner, 1983) are propyl-
itically altered dacitic volcanic and lacustrine 
(carbonate and volcaniclastic) rocks that over-
lie granitic basement. The ignimbrite’s top is 
not preserved due either to truncation by a fault 
or an angular unconformity. However, it hosts 
a steeply southwest-dipping (50°–70°) eutax-
itic foliation (over a strike-normal distance of 
1100 m southwest of the megabreccia locality) 
that indicates it could be very thick (>800 m).

GEOCHRONOLOGY
Sanidine phenocrysts were separated from 

eight bulk rock samples: fi ve from rhyolitic out-
fl ow, one from trachytic intracaldera ignimbrite 
at Silver Creek, and one each from the welded 
(megabreccia matrix) and mesobreccia ignim-
brites near Eagle Peak. The samples were irra-
diated together with Fish Canyon Tuff sanidine 
monitors (28.20 Ma; Kuiper et al., 2008). Fif-
teen single sanidine crystals from each sample 
were individually fused by CO2 laser and ana-
lyzed by the 40Ar/39Ar technique using the MAP 
215–50 mass spectrometer at the New Mexico 
Geochronology Research Laboratory. Irradia-
tion procedures, analytical parameters, and data 
are in the Data Repository. Results are sum-
marized in Table 1 and Figure 3. Each sample 
yielded a unimodal, near-Gaussian distribution 
of single-crystal ages (Fig. DR1). Weighted 
mean ages for the eight samples are analytically 
indistinguishable, ranging from 18.75 ± 0.04 to 
18.82 ± 0.05 Ma (2σ error). K/Ca ratios are also 
similar, ranging from 24 ± 12 to 32 ± 6, indicat-
ing consistent sanidine compositions among the 
eight samples. The ages and K/Ca ratios are ana-
lytically indistinguishable from two other pub-
lished laser fusion 40Ar/39Ar analyses of Peach 
Spring Tuff sanidine (18.74 ± 0.07 Ma [Miller 
et al., 1998] and 18.92 ± 0.36 Ma [Nielson et 
al., 1990]; both ages recalculated to calibration 
of Kuiper et al. [2008]). In contrast to Nielson et 
al. (1990), we did not fi nd evidence for anoma-
lously old xenocrystic feldspars; these may have 
been removed during our mineral separation 
process. Because no other major similar-age 
ignimbrites have been reported in the vicin-
ity, our results strongly support correlation of 
the trachyte ignimbrite at Silver Creek and the 
megabreccia-hosting ignimbrites near Eagle 
Peak with outfl ow-facies Peach Spring Tuff. 
Our new age determinations and the age from 
Miller et al. (1998) form a unimodal Gaussian 
distribution with a weighted mean age of 18.78 
± 0.02 Ma (MSWD = 1.14, n = 9).

DISCUSSION
Based on a minimum original caldera depth 

of 1.2 km (Fig. 2) and a minimum Peach Spring 
Tuff outfl ow dense rock–equivalent volume of 
640 km3 (Buesch, 1992) we estimate, by assum-
ing outfl ow volume is roughly equivalent to 
intracaldera volume (Lipman, 1984), a 26 km 
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Figure 2. Simplifi ed geology and cross section of Silver Creek caldera (Arizona, United 
States) showing our 18.80 Ma intracaldera date, recalculated 40Ar/39Ar dates (Ma) near Thumb 
Butte from Lang et al. (2008), and a K-Ar age (average of two dates) near Sitgreaves Pass 
from DeWitt et al. (1986). Geology from Ransome (1923), Thorson (1971), Lang et al. (2008), 
Pearthree et al. (2009), and new mapping. Moss—Moss Porphyry; Times—Times Porphyry.
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diameter for the original caldera (Fig. 1). Assum-
ing that the intracaldera Peach Spring Tuff out-
crops near Eagle Peak could restore to any-
where within our hypothetical original caldera, 
the magnitude of structural extension is likely 
between 26 and 48 km in a direction ranging 
between 182° and 225° (Fig. 1). A deeper cal-
dera fi ll would decrease the caldera diameter and 
the range of extension magnitude and direction, 
whereas an unusually large or odd shape might 
increase them, but because the eastern margin 
is well-defi ned, the range of extension direction 
cannot adjust to more westerly than ~225°. This 
is compatible with Gray et al.’s (1990) extension 
direction of 190°–230° from normal faults in the 
southern Black Mountains, the 223° slip direc-
tion on detachment faults in the Chemehuevi 
Mountains (John and Foster, 1993), and 210°–

220° kinematics on the Sacramento Mountains 
detachment fault near Eagle Peak (Simpson 
et al., 1991). Ductile fabrics in the footwall of 
the detachment fault at Eagle Peak, however, 
give a composite direction of 240° (Campbell-
Stone et al., 2000). Decoupling between foot-
wall and hanging wall should be expected in 
highly extended belts, and may account for the 
discrepancy. An early phase of minor (~5% of 
the total), ~190°-oriented, dike-accommodated 
extension in the footwall (John and Foster, 1993; 
Campbell-Stone et al., 2000) might have been 
associated with higher magnitudes of similarly 
oriented extension in the hanging wall.

The petrologic uniqueness of the Peach 
Spring Tuff, and the fact that it represents the 
region’s only supereruption (sensu stricto; 
Miller and Wark, 2008) might make it pos-

sible to identify Silver Creek caldera’s match-
ing, structurally subjacent plutonic complex 
(e.g., Bachmann and Bergantz, 2008b) and add 
a third dimension (depth) to our restoration. In 
the Sacramento Mountains, which were tilted 
and rapidly uplifted between ca. 20 Ma and 
15 Ma, two appropriately aged mesozonal (10–
15 km) intrusive suites have been identifi ed: the 
ca. 19–18 Ma Sacram diorite-granite (Campbell 
and John, 1996); and the ca. 19 Ma Eagle Wash 
diorite-granodiorite-leucogranite, the granodio-
rite yielding U-Pb sphene and zircon ages of 18.7 
± 0.4 Ma and 18.8 ± 1.6 Ma (Pease et al., 1999). 
The suites are part of a northward-younging 
belt (Fig. 1) of west-tilted Miocene mesozonal 
plutons that is coincident with a gravity high 
(Mickus and James, 1991) and whose apex is in 
the southern Sacramento Mountains. Plutonic 
complexes in the Dead Mountains might also 
be related to Peach Spring Tuff magmatism. A 
granite–quartz diorite pluton at the north end 
(House et al., 2004) has yielded preliminary 
18.5 Ma U-Pb zircon ages (Howard et al., 1996), 
and foliated granitoid in the middle of the range 
has yielded Early Miocene zircons (K.A. How-
ard, 2010, personal commun.). Plutons in the 
Newberry Mountains and farther north, likely 
too young to be related to the Peach Spring Tuff, 
have been matched successfully to specifi c erup-
tive sequences in supra-adjacent ca. 19–15 Ma 
volcanics (Bachl et al., 2001; Miller and Miller, 
2002; Lang et al., 2008).

CONCLUSIONS
Petrologic, geochemical, paleomagnetic, 

and geochronologic tests all indicate that Silver 
Creek caldera is the source of the 18.8 Ma Peach 
Spring Tuff. A fragment of the caldera extended 
40 km to the southwest is a displacement marker 
structurally juxtaposed with a belt of similarly 
aged mesozonal plutons that might represent 
residue of the Peach Spring Tuff supereruption.
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