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Abstract 

Timely and accurate information of land surfaces is desirable for land change detection 

and crop condition monitoring. Optical data have been widely used in Land Use and 

Land Cover (LU/LC) mapping and crop condition monitoring. However, due to 

unfavorable weather conditions, optical images of high quality are not always available. 

Synthetic Aperture Radar (SAR) sensors, such as RADARSAT-2, are able to transmit 

microwaves through cloud cover and light rain, and thus offer an alternative data source.     

Chapter 2 investigates the potential of multi-temporal Quadpol RADARSAT-2 data for 

LU/LC classification in the urban rural fringe areas of London, Ontario. Nine LU/LC 

classes were identified at the highest overall accuracy of 91.0%. 

Chapter 3 explores the sensitivity of polarimetric RADARSAT-2 parameters to crop 

growing conditions. Strong correlations are found between the polarimetric parameters 

and Normalized Difference Vegetation Index (NDVI) of corn and soybeans. In addition, 

some polarimetric parameters proved to be sensitive to crop height.  
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Chapter 1  

1 Introduction 

1.1  Research Content 

Canada is one of the largest agricultural producers and exporters in the world. 

Agriculture is an important element of the Canadian economy. However, the proportion 

of the population and GDP devoted to agriculture has fallen dramatically over the past 

few decades.  

In Ontario, due to the rapid urban development, the depression of agricultural economy 

is even more obvious. In the decade from 1981 to 1990, the total net farm income in the 

Ontario was 6,812 million CAD, which was 23% of the total net income in Canada. 

While in the decade of 2001 to 2010 the number decreased to 2,891 million CAD, which 

occupied merely 11% of the total net farm income in the whole country (Statistics 

Canada, 2012). The decrease in number of farms and total farm area from 2006 to 2011 

was also reported by Statistics Canada (Statistics Canada, 2012). During the six years, the 

number of farms decreased by 9.2%, and meanwhile, the total area occupied by farms 

also dropped by 4.8%. 

In Southern Ontario alone , thousands of acres of productive agricultural land are lost 

due to the rapid sprawl and farmland severances each year. Take the Greater Toronto 

Area for example, over 2,000 farms and 130,000 acres of farmland were converted to 

urban purposes in the two decades between 1976 and 1996.  

The rapid loss of agricultural areas to urban land use in the urban/rural fringe, such as the 

case in Southern Ontario, has raised great concern. Increasing research has focused on 

assessing the impacts of urban expansion on agricultural and forest ecosystems (Lombard 

et al. 2003; Pellizzeri 2003; Pellizzeri et al. 2003; Niu and Ban 2010; Zhang et al. 2010; 

Zhu et al.2011).    
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Remote Sensing offers an effective solution to detect changes to land surfaces. With their 

wide area coverage and repetitive characteristics, satellite sensors are able to collect up-to-

date and reliable information about the current state of land surfaces, and further facilitate 

the Land Use and Land Cover (LU/LC) changes detection, as well as monitoring 

agricultural plants.  

The complexity of urban/rural fringe environments, which are composed of a wide variety 

of LU/LC classes, makes LU/LC mapping challenging. However, benefiting from the rich 

informational content of the multispectral data, optical images have been proven to be a 

promising data source. The application of optical remote sensing data in LU/LC mapping 

has a long history, ever since the launch of Landsat optical satellites. Over the last few 

years, with the advent of advanced optical satellite sensors (i.e. Quickbird, Ikonos, SPOT, 

Worldview, and RapidEye), the spectral and spatial resolution of images have been highly 

improved (Corbane et al., 2008). More sophisticated methods, such as object-based 

classification, have been developed to improve the classification accuracy (Geneletti & 

Gorte, 2003; Gaoet al., 2006; Li et al., 2008; Li et al., 2009; Watts et al., 2009).  

Multi-temporal Remote Sensing information is particularly useful agricultural 

applications, such as annual crop inventory and crop condition monitoring (Defries & 

Townshend, 1994; Friedl et al., 2010; Gopal et al.,1999; Guerschman et al., 2003; Hansen 

et al., 2000; Tucker et al.,1985; Wolter et al., 1995). The bio-physical characteristics of 

vegetation, such as pigmentation, internal leaf structure and moisture, vary from crop to 

crop and from time to time. The changes in the biophysical characteristics can be directly 

reflected by the amount of visible and infrared (V-IR) energy recorded on the satellite 

images (Reese et al., 2002; Guerschman et al., 2003; Turker and Arikan, 2005; Fisette et  

al., 2005). A large number of vegetation indices (i.e. the normalized difference vegetation 

index (NDVI), the optimized soil adjusted vegetation index, the enhanced vegetation index, 

and the modified triangular vegetation index) are derived from the multispectral optical 

data to track the temporal changes in biophysical characteristics of different vegetation 

types (Andrés et al., 2011).  
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LU/LC change detection and crop condition monitoring using optical images are 

successful only when images can be acquired frequently over the whole growing period. 

However, due to the existence of haze and cloud, high quality optical data are not always 

available in unfavorable weather conditions. Therefore, when time and area gaps in data 

acquisitions occur, the applications of optical images are often limited (McNairn et. al., 

2009). Microwaves are able to transmit through most cloud and haze, hence, the 

backscattering signals are less influenced by weather conditions. The SAR system, which 

transmits and receives microwave signals, provides complementary information for remote 

sensing. Besides, the backscattering signals are sensitive to the architecture and dielectric 

properties of land surfaces, such as plant canopy, built-ups and soils (McNairn et. al., 

2009).  

The advantages of SAR images over optical data are more obvious in agricultural 

applications because crops change rapidly during their growing seasons. The SAR signals 

are primarily a function of the canopy structures such as the size, shape and orientation of 

leaves, stalks and fruit, the water contents of the crop canopy and soil. However, the 

structure and water content varies from crop to crop and changes among different stages. 

Therefore, SAR images have the potential not only to distinguish different crop types, but 

also to monitor the crops’ growing conditions. For the past few years, many studies have 

proved the capabilities of SAR data for crops’ condition monitoring and biophysical 

parameter retrieval (Blaes et al., 2005; Chakraborty et al., 2005; Moran et al., 1997; Nicolas 

et al., 2009; Shao et al., 2001).  

Studies show that the sensitivities of SAR backscattering to crops’ conditions also depend 

on the SAR sensor parameters (wavelength, incidence angles, and polarization). 

Generally, short SAR wavelengths, such as X-band (~3cm) and C-band (~6cm), are less 

capable to penetrate through the canopy, and therefore mainly interact with the top part of 

the canopy layers, while longer wavelengths such as L-band(~20cm) and P-band (~100cm) 

can penetrate into the vegetation cover and even reach the soil (Ulaby et al., 1987). 

Specifically, the penetration depth depends on the biophysical parameters of the scatters 

within a vegetation layer (e.g., water content, size and geometry of the scatterers), which 

might enhance or attenuate the interaction between microwaves and scatterers.  
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In addition to exploring the frequency dimension of the SAR system, some researchers 

have investigated the polarimetric properties of SAR data in LU/LC classification and 

vegetation monitoring. (Pierce et al., 1994; Du & Lee, 1996; Lee et al., 2001; Freitas et al., 

2008). Results prove that, by utilizing polarimetric SAR instead of single polarization data, 

higher accuracy can be achieved in both LU/LC mapping and crop monitoring. Ever since 

the recent launch of radar satellites, such as ENVISAT ASAR, ALOS PALSAR, 

RADARSAT-2 and TERRASAR-X, more polarimetric SAR data are becoming available. 

In the meantime, some polarimetric decomposition theorems have been developed and 

applied (Cloude & Pottier, 1996; Freeman &Durden, 1998; Yang et al., 1998; Cameron & 

Rais, 2006), which provide additional information for LU/LC classification and crops 

monitoring. The decomposition parameters extracted from the polarimetric SAR data are 

related to the physical properties of land surfaces, and thus are sensitive to the structures 

of different LU/LC types and crops in various stages. However, the potential of 

polarimetric decomposition parameters in LU/LC classification and change detection, 

especially in crops growing conditions monitoring, is not fully explored in the previous 

research.  

1.2 Research Objectives 

The objectives of this research is to evaluate the multi-temporal Quadpol RADARSAT-2 

dataset in LU/LC mapping and crop monitoring in Southwestern Ontario. As mentioned 

above, rapid urban sprawl has greatly influenced the agricultural economy and 

productivity in this area. However, multitemporal polarimetric SAR data have seldom 

been used in this agricultural area before. The newly available RADARSAT-2 data 

provide a great opportunity to study the impacts of urban development on the agriculture 

in Southwestern Ontario. 

The research in this thesis will seek to provide the answers to the following questions: 

1. How accurately can LU/LC be classified in this urban/rural fringe area using the 

fine beam multi-temporal polarimetric RADARSAT-2 satellite images? 
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2. What is the suitable classification method for LU/LC classification in urban/rural 

fringe areas using polarimetric RADARSAT-2 satellite images? 

3. What is the suitable multi-date combination of the polarimetric RADARSAT-2 

images in LU/LC classification?  

4. What is the potential of polarimetric RADARSAT-2 data in monitoring crop 

height change? 

5. How sensitive is the RADARSAT-2 polarimetric parameters to the crop 

biophysical parameter NDVI? 

The studies presented in Chapter 2 and Chapter 3 answer these questions by addressing 

these research objectives: 

1.  To assess the potential of polarimetric RADARSAT-2 data in LU/LC 

classification in urban/rural fringe areas.  

2.  To analyze the sensitivity of different RADARSAT-2 polarimetric parameters to 

the temporal changes of crop height and NDVI. 

1.3 Study Area and Study Data 

The study area is located in the urban/rural fringe area of London, Ontario (Figure 1.1). 

This area is in the midst of the Great Lake region. The city London is within the Middlesex 

County right at the forks of the non-navigable Thames River. London is well-known for its 

high coverage of forests, and is named the “forest city” after that. Economically, it is 

situated along the Quebec City-Windsor Corridor, approximately halfway between 

Toronto, Ontario and Detroit, Michigan. In 2011, there were approximately 366,151 

residents in the city with an area of 420.57 km2 (Statistics Canada, 2012). The city’s 

economy is dominated by high education, medical research, insurance, and information 

technology. In addition, London is a center of life science and biotechnology-related 

research; much of this is conducted or supported by the University of Western Ontario. The 

main land use in the city is institutional, commercial and industrial areas, residential areas, 

roads, forests, grasses, and water bodies. In the land use in the rural areas are mainly 
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agricultures. The main crops growing in this area are wheat, corn, soybeans, hay, and field 

peas. 

 

Figure 1.1 Study Area 

The satellite images used in the research include RADARSAT-2 SAR images and 

RapidEye optical images. The boundaries of satellite images and study areas are displayed 

in Figure 1.2 Other ancillary data, such as images from Google earth, and air photo images 

are also used to facilitate the research.    
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Figure 1.2 The boundaries of RapidEye images (Red), RADARSAT-2 images 

(Yellow), and study areas (Green) 

The RADARSAT-2 is a radar observation satellite that was successfully launched on 

December 14th, 2007 by MacDonald Dettwiler & Associates (MDA) and Canadian Space 

Agency. RADARSAT-2 is a follow-up to RADARSAT-1, in order to enhance the SAR 

systems’ applications in sea ice mapping, iceberg detection, marine surveillance for ships 

and pollution detection, geological mapping, wetlands mapping, topographic mapping, 

land use land cover mapping, and agricultural crop monitoring. 

Two sets of wide fine beam Quadpol RADARSAT-2 data were acquired for this research 

(Table 1.1). One set was taken at the steeper incidence angle, between 25° to 28°, while 

the other set of data were taken in a shallower incidence angle, between 40° to 42°. Both 

data sets have similar pixel spacing, around 5 meters, and wide coverage of 50km by 

25km. All the images were taken from early May to September, 2012 over the whole 

study area.  
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Table 1.1 RADARSAT-2 data parameters 

Name Pixel 

spacing 

Pixel×Line 

Coverage 

(km) 

Incidence 

Near 

edge 

Incidence 

Far edge 

Dates 

(mdd2012) 

Wide Fine 

Quadpol7 

4.7m×4.7m 50X50 24.9° 28.3° 504, 528, 

621, 715, 

901 

Wide Fine 

Quadpol21 

4.7m×5.1m 50X50 40.2° 41.6° 507, 624, 

718, 811, 

904, 928 

The RapidEye is a commercial optical satellite developed by TÜV NORD of Germany, 

MDA, and RapidEye AG. The RapidEye system contains five independent satellites, which 

enables observation of Earth’s surface in high-resolution over large areas. The RapidEye 

images can be used to provide valuable information on field areas, crop conditions. 

The nadir resolution for these satellite images are 6.5 meters, and the swath width is 77 

kilometers. To facilitate the agricultural applications, the red edge and near infrared 

spectral bands, which are most sensitive to vegetation conditions, are designed. Many 

Vegetation Indices have been derived from the multispectral bands to capture the 

vegetation characteristics (Andrés et al., 2011).  

Although RapidEye seems to be a perfect data source for agricultural applications, it is 

limited by weather conditions. In this study, five scenes of RapidEye images were acquired 

over the crop growing season (Table 1.2). During that season, however, many days are 

cloudy or rainy. Each complete RapidEye dataset were combined by two scenes, one in the 

west and the other in the east. In order to get a cloud free image in the mid of July of the 

whole study area, we have to subset and combine part of images taken on the July 16th and 

July 24th together. The poor qualities of some images make it difficult to interpret complete 

and useful information from them.  
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Table 1.2 The parameters of RapidEye data 

Spectral Band  Blue  Green Red Red Edge Near 

Infrared 

Wavelength(nm) 440-510  520-590 630-685 690-730 760-850 

Dates(m_dd_yyy) 6_07_2012 7_16_2012 7_24_2012 8_05_2012 8_25_2012 

Scene Location West&East West East West&East West&East 

 

1.4 Thesis Format 

This research is presented in an integrated-article format. Chapter 1 gives a brief review of 

the literature on the research problem, the objectives of the research, and the study area and 

data used in the research.   

The focus of the thesis is to investigate the potential of Quadpol RADARSAT-2 SAR data 

in LU/LC information extraction and crop condition monitoring. To achieve this goal, 

different imagery sources and processing methods were used. Chapter 2 focuses on 

assessing the potential of RADARSAT-2 polarimetric image LU/LC classification. 

Chapter 3 analyzed the sensitivities of polarimetric parameters to the NDVI index and crop 

height. 

 

 

 

 

 



10 

10 

 

1.5 References 

Andrés Viña, Anatoly A. Gitelson, Anthony L. Nguy-Robertson, Yi Peng, Comparison of 

different vegetation indices for the remote assessment of green leaf area index of 

crops, Remote Sensing of Environment, Volume 115, Issue 12, 15 December 

2011, Pages 3468-3478, ISSN 0034-4257, 10.1016/j.rse.2011.08.010. 

Blaes, X., Vanhalle, L., & Defourny, P. (2005). Efficiency of crop identification based on 

optical and SAR image time series. Remote Sensing of Environment, 96, 52−365. 

Cameron, W. L., & Rais, H. (2006). Conservative polarimetric scatterers and their role in 

incorrect extensions of the Cameron decomposition. IEEE Transactions on eosci-

ence and Remote Sensing, 44, 3506–3516. 

Chakraborty, M., Manjunath, K. R., Panigrahy, S., Kundu, N., & Parihar, J. S. (2005). 

Rice crop parameter retrieval using multi-temporal, multi-incidence angle 

RADARSAT SAR data. ISPRS Journal of Photogrammetry & Remote Sensing, 

59, 310−322. 

Cloude, S. R., & Pottier, E. (1996). A review of target decomposition theorems in radar 

polarimetry. IEEE Transactions on Geoscience and Remote Sensing, 34, 498–18. 

Corbane C, Faure J-F, Baghdadi N, Villeneuve N, Petit M. Rapid Urban Mapping Using 

SAR/Optical Imagery Synergy (2008). Sensors. 8(11):7125-7143. 

Defries, R. S., & Townshend, J. R. G. (1994). NDVI-derived land cover classification at 

global scale. International Journal of Remote Sensing, 15(17), 3567–3586. 

Du, L., & Lee, J. S. (1996). Fuzzy classification of earth terrain covers using complex 

polarimetric SAR data. International Journal of Remote Sensing, 17, 809–826. 

Fisette, T., Maloley, M., Chenier, R., White, L., Huffman, T., Ogston, R., Pacheco, A., 

Gasser, P. Y., 2005. Towards a national agricultural land cover classification 

evaluating decision tree approach. In: 26th Canadian Symposium on Remote 

Sensing, Wolfville, Nova Scotia, June 14–16 (on CD-ROM). 



11 

11 

 

Freeman, A., & Durden, S. L. (1998). A three-component scattering model for 

polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 

36, 963–973. 

Freitas, C. D., Soler, L. D., Anna, S. J. S. S., Dutra, L. V., dos Santos, J. R., Mura, J. C., 

& Correia, A. H. (2008). Land use and land cover mapping in the Brazilian 

Amazon using polarimetric airborne p-band SAR data. IEEE Transactions on 

Geoscience and Remote Sensing, 46, 2956–2970. 

Friedl, M. A., Menashe, D. S., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., et al. 

(2010).  MODIS collection 5 global land cover: Algorithm refinements and 

characterization of new datasets. Remote Sensing of Environment, 114, 168–182. 

Gao, Y., Mas, J. F., Maathuis, B. H. P., Zhang, X. M., & Van Dijk, P. M. (2006). 

Comparison of pixel-based and object-oriented image classification approaches — 

A case study in a coal fire area, Wuda, Inner Mongolia, China. International 

Journal of Remote Sensing, 27, 4039–4055. 

Geneletti, D., & Gorte, B. G. H. (2003). A method for object-oriented land cover classifi-

cation combining Landsat TM data and aerial photographs. International Journal 

of Remote Sensing, 24, 1273–1286. 

Gopal, S., Woodcock, C. E., & Strahler, A. (1999). Fuzzy neural classification of global 

land cover from a 1 degree AVHRR Data Set. Remote Sensing of Environment, 7, 

230–243. 

Guerschman, J. P., Paruelo, J. M., Bella, C. D. I., Giallorenzi, M. C., & Pacin, F. (2003). 

Land cover classification in the Argentine Pampas using multi-temporal Landsat 

TM data. International Journal of Remote Sensing, 24(17), 3381–3402. 

Guerschman, J.P., Paruelo, J.M., Di Bella, C., Giallorenzi, M.C., Pacin, F., 2003. Land 

cover classification in the Argentine Pampas using multi-temporal Landsat TM 

data. International Journal of Remote Sensing 24 (17), 3381–3402. 

Hansen, M. C., Defries, R. S., Townshend, J. R. G., & Sohlberg, R. (2000). Global land 

cover classification  at  1 km  spatial  resolution  using  a  classification  tree  

approach. International Journal of Remote Sensing, 21(6 & 7), 1331–1364. 



12 

12 

 

Lee, J. S., Grunes, M. R., & Pottier, E. (2001). Quantitative comparison of classification 

capability: Fully polarimetric versus dual and single-polarization SAR. IEEE 

Transactions on Geoscience and Remote Sensing, 39, 2343–2351. 

Li, H. T., Gu, H. Y., Han, Y. S., & Yang, J. H. (2008). Object-oriented classification of 

polarimetric SAR imagery based on statistical region merging and support vector 

machine. Proceedings of the 2008 International Workshop on Earth Observation 

and Remote Sensing Applications (pp. 147–152). Beijing, China. 

Li, X., Yeh, A. G. O., Qian, J. P., Ai, B., & Qi, Z. X. (2009). A matching algorithm for 

detecting land use changes using case-based reasoning. Photogrammetric 

Engineering and Remote Sensing, 75, 1319–1332. 

Lombardo, P., M. Sciotti, T.M. Pellizzeri, and M. Meloni. (2003). “Optimum Model-

Based Segmentation Techniques for Multifrequency Polarimetric SAR Images of 

Urban Areas.” IEEE Transactions on Geoscience and Remote Sensing 41: 1959–

75. 

McNairn, H., Champagne, C., Shang, J., Holmstrom, D.A., and Reichert, G. (2009). 

Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering 

operational annual crop inventories.” ISPRS Journal of Photogrammetry and 

Remote Sensing, 64(5), pp. 434-449. doi : 10.1016/j.isprsjprs.2008.07.006. 

Moran, M. S., Vidal, A., Troufleau, D., Qi, J., Clarke, T. R., Pinter, P. J., et al. (1997). 

Combining multifrequency microwave and optical data for crop management. 

Remote Sensing of Environment, 61, 96−109. 

Nicolas B., Nathalie B., Pierre T., Mahmoud E. Agnès B., (2009), Potential of SAR 

sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring 

sugarcane crops on Reunion Island, Remote Sensing of Environment, Volume 

113, Issue 8, Pages 1724-1738, ISSN 0034-4257, 10.1016/j.rse.2009.04.005. 

Niu, X., and Y. Ban. (2010). “Multitemporal RADARSAT-2 Polarimetric SAR Data for 

Urban Land Cover Classification Using Support Vector Machine.” In 30th 

EARSeL Symposium, 581–8, Paris, 31 May–3 June 2010, edited by R. Reuter. 

Hannover: EARSeL. 

http://www4.agr.gc.ca/AAFC-AAC/display-afficher.do?id=1181851201889&lang=eng
http://www4.agr.gc.ca/AAFC-AAC/display-afficher.do?id=1306414792106&lang=eng


13 

13 

 

OMAFRA, 2011 Census of Agriculture and Strategic Policy Branch, 2012. Ontario, 

Canada. Middlesex County at a Glance. 

Pellizzeri, T.  M. (2003). “Classification of Polarimetric SAR Images of Suburban Areas 

Using Joint Annealed Segmentation and ‘H / A /α’ Polarimetric Decomposition.” 

ISPRS Journal of Photogrammetry and Remote Sensing 58: 55–70. 

Pellizzeri, T. M., P. Gamba, P. Lombardo, and F. Dell’acqua.( 2003). “Multitemporal / 

Multiband SAR Classification of Urban Areas Using Spatial Analysis: Statistical 

Versus Neural Kernel-Based Approach.” IEEE Transactions on Geoscience and 

Remote Sensing 41: 2338–53. 

Pierce, L. E., Ulaby, F. T., Sarabandi, K., & Dobson, M. C. (1994). Knowledge-based 

classification of polarimetric SAR images. IEEE Transactions on Geoscience and 

Remote Sensing, 32, 1081–1086. 

Qi, Z., Yeh, A. G. O., Li, X., & Lin, Z. (2012). A novel algorithm for land use and land 

cover classification using RADARSAT-2 polarimetric SAR data. Remote Sensing 

of Environment, 118, 21-39  

Reese,  H.M.,  Lillesand,  T.,  Nagel,  D.E.,  Stewart,  J.S.,  Goldman,  R.A.,  Simmons, 

T.E., Chipmand, J.W., Tessar, P.A., 2002. Statewide land cover derived from 

multiseasonal Landsat TM data-A retrospective of the ISCLAND project. Remote 

Sensing of Environment 82 (2), 224–237. 

Remote Sensing and Geospatial Analysis, Agriculture Division, Statistics Canada. 2012. 

Canada Change in number of farms reporting cattle between 2006 and 2011.  

Shao, Y., Fan, X., Liu, H., Xiao, J., Ross, S., Brisco, B., et al. (2001). Rice monitoring 

and production estimation using multitemporal RADARSAT. Remote Sensing of 

Environment, 76, 310−325. 

Statistics Canada. 2012. 2011 Census: Population and dwelling counts. Statistics Canada 

. Ottawa. 

Statistics Canada. 2012. Net Farm Income Agriculture Economic Statistics. Ottawa. 



14 

14 

 

Tucker, C. J., Townshend, J. R. G., & Goff, T. E. (1985). African land-cover 

classification using satellite data. Science, 227(4685), 369–375. 

Turker, M., Arikan, M., 2005. Sequential masking classification of multi-temporal 

Landsat7 ETM+ images for field-based crop mapping in Karacabey, Turkey. 

International Journal of Remote Sensing 26 (17), 3813–3830. 

Ulaby, F. T., A. Tavakoli, and T. B. A. Senior (1987), Microwave propagation constant 

for a vegetation canopy with vertical stalks, IEEE Trans. Geosci. Remote Sens., 

25(6), 714–725. 

Watts, J. D., Lawrence, R. L., Miller, P. R., & Montagne, C. (2009). Monitoring of 

cropland practices for carbon sequestration purposes in north central Montana by 

Landsat remote sensing. Remote Sensing of Environment, 113, 1843–1852. 

Wolter, P. I., Mladenoft, D. S., & Crow, T. R. (1995). Improved forest classification in 

the northern lake states using multi-temporal Landsat imagery. Photogrammetry 

Engineering & Remote Sensing, 61(9), 1129–1143. 

Xin Niu & Yifang Ban (2013): Multi-temporal RADARSAT-2 polarimetric SAR data for 

urban land-cover classification using an object-based support vector machine and 

a rule-based approach, International Journal of Remote Sensing, 34:1, 1-26 

Yang, J., Yamaguchi, Y., Yamada, H., Sengoku, M., & Lin, S. M. (1998). Stable 

decomposition of Mueller matrix. IEICE Transactions on Communications, 1261–

1268 E81b. 

Zhang, L., B. Zou, J. Zhang, and Y. Zhang. (2010). “Classification of Polarimetric SAR 

Image Based on Support Vector Machine Using Multiple-Component Scattering 

Model and Texture Features.” EURASIP Journal on Advances in Signal 

Processing 2010: 1–9. 

Zhu, Z., C. Woodcock, J. Rogan, and J. Kellndorfer. (2011). “Assessment of Spectral, 

Polarimetric, Temporal, and Spatial Dimensions for Urban and Peri-Urban Land 

Cover Classification Using Landsat and SAR Data.” Remote Sensing of 

Environment 117: 72–82. 



15 

15 

 

Chapter 2  

2  Assessment of Multi-temporal Polarimetric 
RADARSAT-2 data for Land Use and Land Cover 
classification in an Urban/Rural Fringe Area  

2.1 Introduction  

2.1.1 Background 

LU/LC information is the basis for many studies, such as carbon modeling, land use 

change detection, forest management, and crop yield estimation (Jung et al., 2006; Lark 

& Stafford, 1997; Wolter et al., 1995; Woodcock et al., 2001). In the recent decades, 

LU/LC changes caused by rapid urban expansion have been occurring all over the world.  

The emergence of urban/rural fringe zone caused by urban expansion has led to serious 

land use problems, such as loss of agricultural land, unauthorized urban sprawl, high land 

values (Qi et al., 2012). The fringe zone, which was neglected in either rural or urban 

studies, has become a topic of great importance (Zhu et al., 2011). The complete and 

timely land surface information of the fringe areas is highly required to deal with the land 

use problems.  

Remote sensing has the characteristics of broad coverage and repetitive visit, and thus 

provides a practical and economical source for LU/LC information detection. High 

spatial resolution Remote Sensing data have been commonly used in urban areas, such as 

boundaries detection, impervious surface extraction. In rural areas, high temporal 

resolution Remote Sensing are useful for delivering crop type inventory, and crop 

condition monitoring (McNairn et al., 2009; Henning, 2012). However, few research has 

focused on the application of Remote Sensing in the rural/urban fringe areas. The 

dynamic land use and complex LU/LC classes in this fringe zones has created 

challenging for either urban sprawl detection, or crop inventory (Zhu et al., 2011). 

wrchurch
Sticky Note
no reference



16 

16 

 

2.1.2 Previous Studies 

Remotely sensed data have been widely used in LU/LC classification. Most LU/LC types 

in the urban areas remain unchanged in a short period, and therefore multi-temporal 

datasets are not necessary in distinguishing urban LU/LC classes. For example, using two 

images acquired at very close dates, Qi successfully distinguished several LU/LC classes 

in urban/sub-urban areas at a high overall accuracy of 86.64 %( Qi, et al., 2012). 

However, in Qi’s study, all the croplands were considered as one LU/LC type.  

Multi-temporal images are essential to identify different crop types. During the growing 

seasons, crops evolve through a series of phenological growing stages. Meanwhile, the 

structure and water content of crops varies from type to type or even field to field. 

Capturing the differences in temporal changes of crops is a key to their identification. For 

example, in Southwestern Ontario, the growing season of most winter wheat is from 

April to July. However, most of the soybeans and corn are not planted until late May. 

Therefore, without multi-temporal datasets, satisfactory classification results are unlikely 

to be obtained. In the classification of crops, the selection of multi-temporal sequences of 

SAR images is critical to the classification results. McNairn and Skriver reported that 

higher accuracy in crop identification could be achieved by adding more multi-temporal 

SAR images (McNairn et al., 2009; Henning, 2012).   

Multi-temporal optical images are ideal data sources for LU/LC classification in 

urban/rural fringe areas. Remotely sensed images obtained from various optical sensors 

have been widely used in LU/LC mapping (Saatchi et al., 1997; Roberts et al., 2003; 

Thenkabail et al., 2005). However, high-quality optical images are not always available 

due to the frequent cloudy and rainy weather during the growing season. Take London, 

Ontario as an example, during the whole growing season in 2012 (May to September), 

merely three scenes of cloud free RapidEye optical images were obtained. The 

applications of optical remote sensing data in wide areas LU/LC classification are limited 

by weather conditions. 

Synthetic Aperture Radar (SAR) sensors play an increasingly important role in LU/LC 

classification because of their ability to obtain images day and night through cloud cover 
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and haze. SAR data are able to capture the dielectric properties and structure of the 

Earth’s surface materials, and thus provide complementary information for optical data.  

Early studies have used multitemporal SAR data to investigate LU/LC information, but 

mainly focused on single polarization (Desons et al., 199; Weber et al., 2003; Li et al., 

2007). In the past few decades, most of the orbital radar systems, such as the ERS-1and 

ERS-2, JERS-1, and RADARSAT-1, only provided single or duple polarization data. The 

information contained in the single or duple polarization data is limited and may create 

confusion in distinguishing some LU/LC types (Ulaby et al., 1986; Li & Yeh, 2004).  

In order to reduce the deficiency of single polarization SAR data, many researchers have 

utilized polarimetric SAR data in LU/LC classification (McNairn et al., 2009; Niu and 

Ban, 2013; Qi et al., 2012). Recently, high spatial and temporal resolution polarimetric 

data have been available through radar systems, such as C-band RADARSAT-2, X-band 

TerraSAR-X, and Phased Array type L-band SAR (PALSAR) sensors. With access to 

those multitemporal sequences of high-resolution and polarimetric SAR data, a SAR-only 

solution for surveying rapid urban sprawl in the urban/rural fringe areas becomes 

increasingly viable (Palubinskas, et al. 2011).  

Polarimetric SAR data provide the description of land features from the observations of 

various polarizations. Therefore, more information can be explored from the polarimetric 

SAR data than single or duple polarization images (Lee et al., 2009; McNairn et al., 

2009; Niu and Ban, 2013; Qi et al., 2012). Some researchers proved that by integrating 

polarimetric data in the classification, not only were the accuracies of vegetation 

enhanced, but also the separability between vegetation and built-ups was increased 

(McNairn et al., 2009; Henning Skriver, 2012; Qi et al., 2012). Using polarimetric 

decomposition methods, a complex radar signal can be decomposed as a combination of 

scattering responses from simpler objects with easier physical interpretation. 

Decomposed parameters provide information about corresponding target types in the 

image, and thus are able to facilitate the classification of various LU/LC classes.  
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2.1.3 Objectives 

The objective of this study is to assess the potential of polarimetric RADARSAT-2 data 

for LU/LC classification in urban/rural fringe areas. More specific objectives are: (1) to 

exam the effectiveness of various polarimetric decomposition parameters in LU/LC 

classification; (2) to find the best combination of multi-date data for accurate and 

economic LU/LC classification; (3) to provide a suitable procedure for LU/LC 

classification. 

2.2 Study Area and Data Description  

2.2.1 Study Area 

Study area is in the northwest of the urban and rural fringe areas of London, which is a city 

in the Southwestern Ontario, Canada. The whole area is generally flat, and surrounded by 

productive agricultural areas. In recent decades, the city London has been experiencing 

rapid urban expansion. Therefore, the study of LC/LU in this area is critical for urban 

sprawl detection as well as for monitoring the areas lost to urban development. There are 

a wide range of LU/LC classes, such as commercial areas, industrial areas, residential 

areas, construction sites, forests, grass and agricultural areas. The main crop types in this 

area including corn, soybeans, wheat, and field peas. The complex nature of LU/LC types 

in the urban/rural fringe area is both a challenge and an opportunity to test the potential of 

multi-temporal RADARSAT-2 data in mapping.  
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Figure 2.1 The location of London, Ontario, and the RapidEye image of the study 

area  

2.2.2 The Optical Data 

Five dates of RADARSAT-2 wide fine beam Quadpol images were acquired in ascending 

orbits over the study area from May 4th to Sept.1st. Polarimetric information is recorded 

in HH, VV, HV, VH bands, with a nominal pixel spacing of 4.7m and 4.7m in the range 

and azimuth directions. The incidence angles for the five images are very close, varying 

from 24.9° to 28.3°. The center frequency of the RADARSAT-2 data is C band 5.4 GHz 

at a wavelength of 5.6 cm. 

The optical data used in the research is geometrically corrected RapidEye satellite imagery 

and air photos. The RapidEye images are multi-spectral optical data, which have five 

multispectral bands (from 440 nm to 850 nm) and 6.5m nadir resolution. The air photos 

used in the study were taken in April, 2011 at a 15cm spatial resolution (Provided by city 

of London). The optical data will be used as reference and auxiliary data for SAR data 

classification.  
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Table 2.1 RADARSAT-2 and RapidEye imagery 

Satellite Mode Wave  

length  

Dates  Resolution      Bands 

RADARSATR-2 Wide 

FQ7  

5.6cm May 4, May 28,     

June 21,July 15, 

Sept.1, 2012  

8-12m HH, VV ,  

HV,VH 

RapidEye Standard 440 -

850nm 

June 7,                           

July 16,July 24,   

Aug 25, 2012 

6.5m Blue, Green,           

Red, Red Edge,         

Near Infrared 

2.2.3 Field Data Collection 

The purpose of the field work was to investigate the crop growing conditions. Two general 

investigations of crop and other non-crop LU/LC types were completed in July and 

September. More frequent field work was conducted through the whole crop growing 

season, so as to guarantee that there was in situ data whenever RADARSAT-2 image was 

taken.  

In the field, the accurate locations of various crop lands were recorded using GPS unites, 

the average crop height were measured and photos of typical crops were taken to observe 

the crops at different growing stages. Weather condition will influence the moisture of 

surface scatterers, such as soil and crops. The change of moisture leads to the change of 

dielectric constant, which might result in abnormal SAR backscattering values. In order to 

facilitate the interpretation of the SAR data, meteorological information was noted down 

on each date when a RADARSAT-2 image was taken. 
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2.3 Methodology 

The methodology for this research consists of RADARSAT-2 image preprocessing; 

samples selections; multi-temporal RADARSAT-2 dataset classification; post 

classification processing, and accuracy assessment (Figure 2.2). 

 

 

Figure 2.2 Flow chart of data processing methodology 

 

2.3.1 RADARSAT-2 Data Pre-processing  

The preprocessing of polarimetric SAR data is critical to achieving good classification 

results (Lee et al., 2009). In this research, three main pre-processing steps have been 

conducted in sequence, including polarimetric decomposition data extraction, speckle 

filtering, and geometric correction (Figure 2.2). 

R-2 datasets 

Final LU/LC maps 

Multi-temporal 
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Figure 2.3 An overview of the preprocessing of RADARSAT-2 images 

2.3.1.1 Coherency Matrix and Pauli Decomposition and  

The raw polarimetric RADARSAT-2 data are contained in the four elements of the S 

matrix, see the function 2.1. First of all, the coherency matrix T3 was extracted from the S 

matrix.by using the PolSARpro software. The coherency matrix T3 contained all the 

polarimetric information. Most of the decomposition parameters were then derived from 

coherency matrix T3, or covariance C3, which contains similar information, but in different 

form. The coherency matrix T3 and covariance matrix C3 can be expressed as:                

S = [
Shh Sℎ𝑣

S𝑣ℎ Svv
] 

(2.1) 

K =
1

√2
[Shh + Svv    Shh − Svv    Sℎ𝑣 + S𝑣ℎ]T 

(2.2) 

T3 = ⟨K ∙ K∗T⟩ (2.3) 

R-2 dataset 

Filter 

Geometric Correction 

Boxcar Lee Sigma Refined Lee  

PCI Matlab 

 Decom- 

 position 
 T3 matrix Freeman 

H/Alpha/A 

Pauli 

Pre-processed  

R-2 Polar data 

MapReady 

Gaussian 
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T3 = [

T11 T12 T13

T12
∗ T22 T23

T13
∗ T23

∗ T33

] 

 (2.4) 

=
1

2

[
 
 
 
 |Shh + Svv   |

2

(Shh + Shv   )(Shh − Svv  )
∗ 2(Shh + Svv   )Shv  

∗

(Shh − Svv   )(Shh + Svv  )
∗ |Shh − Svv   |

2

2(Shh − Shv   )Shv  
∗

2Shv  (Shh + Svv   )
∗ 2Shv  (Shh − Svv   )

∗ 4Shv   ]
 
 
 
 

 

 

C3 = [

C11 C12 C13

𝐶12
∗ C22 C23

𝐶13
∗ 𝐶23

∗ 𝐶33

] 

(2.5) 

= [

|Shh|2 √2ShhShv
∗ ShhSvv

∗

√2ShvShh
∗ 2|Shv|

2 √2ShvSvv
∗

ShvSℎℎ
∗ √2SvvShv

∗ |Svv |2
] 

 

For the monocratic case,𝑆ℎ𝑣  = 𝑆𝑣ℎ  , ∗ denotes the conjugate and | | detonates the module. 

The Pauli decomposition parameters are composed of the three diagonal elements of the 

coherency matrix T3. The advantage of the Pauli decomposition is that each of the three 

elements corresponds to a basic scattering mechanism. SHH + SVV   represents single (odd) 

bounce scattering, SHH − SVV    indicates double bounce scattering, and SHV + SVH   is 

associated with volume. Typical LU/LC examples in the real field for those three scattering 

mechanisms are crop land, buildings and forests, respectively (Lee and Pottier, 2009). 

2.3.1.2 Other Polarimetric Decomposition  

(1) Freeman-Durden decomposition 

The Freeman-Durden decomposition is a method for fitting a physically based, three-

component scattering mechanism model to the polarimetric SAR observations. The three-

components scattering mechanism include surface, double-bounce and volume scattering 

mechanisms (Lee and Pottier, 2009). This approach can be used to determine the dominant 

scattering mechanisms and help to identify the current state of the surface cover. In 
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addition, the three-component scattering may provide features for distinguishing between 

different surface cover types. Although Freeman-Durden decomposition has been widely 

used in LU/LC classification, it has some limitations. Since Freeman-Durden method was 

intended to model the backscattering from terrain and forests, it might be invalid for other 

surface scattering. 

(2) H/Alpha/A Decomposition 

H/Alpha/A decomposition is an approach proposed by Cloude and Pottier for extracting 

average parameters from experimental data using a smoothing algorithm based on second-

order statistics (Cloude and Pottier, 1996; Cloude and Pottier, 1997). Decomposition 

parameters are generated from an eigenvector analysis of the coherency matrix T3. The 

eigenvectors describe different scattering processes, and the eigenvalues indicate their 

relative magnitudes. Among all the parameters, the averaged Alpha angle (α) relates 

directly to underlying average physical scattering mechanisms. The value of Alpha ranges 

from 0° to 90°, which indicates the variance of dominant scattering from surface scattering 

mechanism moving into single scattering by a cloud of anisotropic particles, and finally 

reaching dihedral scatters. Entropy (H) describes the randomness of the scatter. The 

anisotropy (A) corresponds to the relative power of the second and third eigenvectors (Lee 

and Pottier, 2009). 

Both of the two polarimetric target decomposition methods were commonly used in the 

LU/LC classification (Qi et al., 2010; McNairn et al., 2009; Niu et al., 2013). In this study, 

in addition to Pauli decomposition, these two decomposition methods are also applied to 

every RADARSAT-2 image (Figure 2.3). The right window size is critical to the final 

classification results. After several tests, the window size of 3 for Freeman-Durden 

decomposition, and the window size of 7 for H/Alpha/A were applied, see the 

decomposition results in Figure 2.4.  
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Pauli(a) 

 

 

Freeman(b) 

 

H/Alpha/A(c) RapidEye(d) 

Figure 2.4 RGB composition images presenting different polarimetric 

decomposition methods. 

2.3.1.3 Speckle Filter 

Speckle effects are inherent noises resulted from the coherent interference of the waves 

reflected from elementary scatters on SAR images (Lee and Pottier, 2009). In order to 

achieve the best speckle reducing effects, four different filters are tested and compared 

(Figure 2.5). Visually, Gaussian filter achieved the best result among all the filters. In the 

image after boxcar filter, boundaries of each LU/LC type were very blurring. On the Sigma 

Lee filtered images the separability among various classes were increased, but it kept some 

dark and bright points unfiltered. Refined Lee filter remained the sharp boundary of land 



26 

26 

 

surface features, but introduced some false edges, even within homogenous crop fields, 

which looks like larger speckles.  

 

Figure 2.5 Filtered Pauli RGB images using different speckle filtering methods  

The Gaussian function, which is also used to express the normal distribution, is applied to 

smooth an image by calculating the weighted averages in a filter box. In two dimensions 

image, the weight factors for a Gaussian distribution can be expressed as  

G(x,y) =
1

2πσ2
e

−
x2+y2

2σ2  
(2.7) 

Where x is the distance from the origin in the horizontal axis, y is the distance from the 

origin in the vertical axis. σ  is the standard deviation of the Gaussian distribution (Cover, 
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2006). Gaussian filter is a low pass filter, and is able to reduce the image’s high-frequency 

components. The Gaussian filter was applied to each of PolSAR image before further 

analysis.  

2.3.1.4 Geometric Correction  

Geometric correction is an essential step in SAR data preprocessing. Due to the unique 

SAR satellite imaging process, the image is formed in a slant range system. Distances were 

measured between the antenna and the target in the slant range system (Lee and Pottier, 

2009). In areas with large elevation variation, serious geometric distortion can be easily 

observed in SAR images (Chen et al., 2008). Since this study area is generally flat, terrain 

effects, such as layover and shadowing, could be omitted. Effective geometric correction 

should be conducted to transfer the slant range system to ground range coordinate system. 

Subsequently, the five multitemporal SAR image would be georegistered together.  

MapReady is a Remote Sensing Tool kit developed by Alaska Satellite Facility. This tool 

can be used to correct terrain effects, geocode polarimetric decomposition parameters and 

save to several common imagery formats. The MapReady tool kit used in this study is 

embedded in the PolSARpro software. Therefore, geometric correction can be applied 

directly on the datasets of T3, C3 matrix and other polarimetric parameters generated from 

the PolSARpro software. Firstly, the geometric imaging information of SAR images and 

the Digital Elevation Model (DEM) data of the study area are used to simulate an amplitude 

image. Then terrain effects are corrected through matching the real SAR image with the 

simulated SAR data.  
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Visually, after geometric correction streets and boundaries of lakes and rivers in the 

geocorrected SAR images can match with the same features in the geometric corrected 

RapidEye images (Figure 2.5). The accurate geometric correction results provide a solid 

foundation for the subsequent image analysis and classification.  

 

 

 

 

(a) 

 

 

(b) 

Figure 2.6 Pauli RGB image before(a) and after(b) geometric correction using 

MapReady 
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2.3.2 Classification Scheme and Training Samples   

(1) Classification Scheme 

A good classification scheme is important to achieve successful classification results. 

Theoretically, any classification scheme should be mutually exclusive and totally 

exhaustive (Russel C., & Kass G., 1999). In other words, any pixel should be classified 

into one and only one category or class, and also, every different LU/LC type should be 

considered in the classification. Ideally, a hierarchical classification scheme should be used 

to greatly distinguish each LU/LC class. Two or more detailed classes can be merged into 

a more general category, so as to meet the required accuracy standard. 

In this study, LU/LC types can be first categorized into eleven classes, which include six 

crop types: alfalfa, grass, wheat, field peas, soybeans, corn; and four non-crop classes: 

forest, lawn, construction sites (CS), residential areas (RA), and 

commercial/industrial/institutional areas (CIIA). However, the primary objective of this 

research is to distinguish urban built-ups from vegetation, and identify several main crop 

types. Therefore, after classification the CS, RA, and CIIA classes are aggregated into 

built-up, and alfalfa and grass are combined into forage class.   

(2) Training Sample Selection  

In a supervised classification, a classification algorithm needs to be trained to distinguish 

those classes from each other. To achieve this purpose, representative samples, also known 

as prototypes, exemplars, or simply training samples for each class of interest with ground 

truth are required. The training samples of each category should be representative, 

homogeneous, and also include the range of variability of the category (Robert A., 2007). 

In this study, ground truth was acquired from the in-situ survey as well as by referencing 

to the RapidEye and aerial photo. All the training samples for each of the eleven LU/LC 

types evenly distributed and carefully selected to present each LU/LC type in the study 

area.  
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2.3.3 RADARSAT-2 Data Classification 

Maximum Likelihood Classification (MLC) classifier is the most commonly used method 

adopted in supervised classification. MLC is based on the mean, variance or covariance 

statistics of class signal responses, and using a Bayesian Probability Function calculated 

from the training samples for each class. Each pixel is then classified to the class to which 

it most probably belong (Jensen, 2005). In this study, MLC based on two different 

probability functions, i.e. Gaussian and Wishart distributions are applied to find the better 

classification method.  

(1) MLC Based on Gaussian distribution  

MLC classification based on Gaussian (Normal) distribution ( see Function 2.8) is widely 

used in optical image classification, because the distributions of each class spectral 

responses recorded in optical images are normally distributed (Jensen, 2005). However, 

due to the speckle effects, the radar responses in SAR image for each class can hardly 

follow the normal. However, some researchers have proved that when the number of look 

is large enough, the Gaussian probability density distribution is a valid approximation of 

multi- look SAR data (Skriver, 2012).  

G(f;μ, σ) =
1

𝜎√2𝜋
e

−
(𝑓−𝜇)2

2σ2             
2.8 

In this study we found that the distributions of logarithm of T11, T22 and T33 polarimetric 

SAR data are extremely similar to the normal distribution. As the histogram of T11 

(0.5|HH+VV|²), T22 (0.5|HH-VV|²) and T33 (2|HV|²) shown in Figure 2.8 , the majority of 

the original pixels value concentrated in the low zone. After the logarithmic operation, the 

histogram at T11, T22 and T33 became bell shape. Moreover, the curves of histograms of 

T11, T22, and T33 were well-matched with the corresponding normal distribution ones. 

The same shapes can be observed from the histograms of other classes. The amazing 

similarity between the curves mentioned above, further guaranteed that the Gaussian 

distribution can be a valid if not optimal approximation of logarithm T11, T22, T33 data. 
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Consequently, MLC for multivariate Gaussian statistics was adopted in the classification 

of multi-temporal PolSAR data derived from different decomposition parameters. 

 
 

  

Figure 2.7 Data distributions of wheat from the raw Pauli parameters (blue), 

logarithm Pauli parameters (red), and simulated normal curve (black) at T11 (a), 

T22 (b) and T33 (c). (d) Comparison of fitted normal curves and logarithm Pauli 

parameters histogram curve 

 (2) MLC Based on Complex Wishart distribution 

Complex Wishart distribution MLC is an algorithm proposed by Lee to deal with LU/LC 

classification using polarimetric SAR data (Lee, et al., 1994). Similar to MLC based on 

Gaussian distribution, Bayesian probability function is also adopted to determine to 

classification boundaries. Whereas the likelihood is derived from the probability density 
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functions of the coherency T3 (or covariance C3) matrix of polarimetric SAR data, named 

complex Wishart density function. The Wishart distance measure from a pixel to a class m 

can be simplified as: 

d(Z,wm) = nTr(Cm
−1Z)+ nln|Cm| − ln [ P(wm)] (9) 

Where Z is the covariance matrix of the pixel to be classified, Cm is the average covariance 

matrix of the m class, n is the number of look. P(wm) is the priori probability of the class m. 

MLC based on complex Wishart distribution has been used in the classification of single   

polarimetric SAR image. Some researchers investigate its usefulness in multi-frequency 

polarimetric SAR data classification (Lee et al. 1994). However, few studies have applied 

the Wishart supervised classifier in multi-temporal polarimetric SAR data classification 

(Skriver, 2012). Based on the assumption that multi-temporal data are uncorrelated, the 

joint probability density function will be the product of the probabilities for each image. 

Therefore the Wishart distance measure for multi-temporal polarimetric SAR classification 

becomes: 

D(Z,wm) = ∑ nj[Tr(Cm
−1(j)Z(j))+ ln|Cm(j)|]

J

j=1

− ln [ P(wm)] 

 

(10) 

Where J is the total number of images.  Cm(j) is the average covariance matrix of the m 

class in the jth image. Z(j) is the pixel’s covariance matrix from the jth image. 

The comparison between the results generated from MLC based on Complex Wishart 

distribution and Gaussian distribution will be explained in the Results Analysis and 

Discussions section. 

2.3.4 Post- classification Processing 

Due to the serious speckle effects in SAR images, the preliminary classification results are 

not always satisfactory, no matter which filters are used to the images in the preprocessing 

stage. Visually, a small number of isolated, generally poorly classified pixels are often 

located at the boundaries between two clearly assigned areas or within a large classified 
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area. In order to produce better LU/LC maps, post-classification process is required to 

reduce those isolated misclassified pixels. Two commonly used post-classification 

methods are adopted in this study. 

(1) Sieve Filter  

Sieve filter merges image value polygons smaller than a user specified threshold with the 

largest neighboring polygon. Because the misclassification introduced by speckles in SAR 

images were mostly single pixels or small polygons, sieve filter is particularly useful in 

enhancing SAR image classification results. 

(2) Segmentation  

The segmentation post-classification method is process to group the pixels in the 

preliminary classification results into homogenous objects. Firstly, the original SAR 

images were used to generate homogenous object units using segmentation algorithms. 

Then the class type for each of the object units in the preliminary classification maps is 

assigned by the mode class within that object unit.  

 

2.3.5 Classification Accuracy Assessment 

(1) Testing Sample Selection 

Testing samples are the portions of map that will be selected for accuracy assessment 

(Russel C., & Kass G., 1999). To generate a statistically valid and appropriate assessment 

for classification results, two vital factors should be taken into consideration. One is the 

sample size and the other is the method of testing sample selection. Firstly, adequate 

number of samples per class should be gathered so that the assessment is statistically valid. 

Secondly, the distribution and proportion of each class should also be fully considered 

while choosing sampling methods.  

Usually, in urban areas where the classification maps less homogeneous than rural areas, 

the single pixel unit or clusters of pixel units are chosen as testing samples. In order to 
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obtain enough number of randomly distributed testing samples, which is a basic 

requirement for most assessments (Jenson, 2005), a compromising method is to select a 

homogeneous cluster of pixels around each of the randomly distributed points.  

In rural areas where are mainly dominant by homogenous crop fields, polygons are the 

most common sample units. The testing samples and training samples should be exclusive, 

even if they are derived from the same ground truth data.   

(2) Error Matrix 

The error matrix is the most widely accepted measure for LU/LC mapping (Russel C., & 

Kass G., 1999). As defined by Russel, “An error matrix is a square array of numbers set 

out in rows and columns that expresses the number of sample units assigned to a particular 

category in one classification relative to the number of sample units assigned to a particular 

category in reference data”. It is a very effective way to present errors of omission and 

commission for individual classes. In addition, the error matrix can be used to calculate 

other accuracy measures, such as such as overall accuracy, Kappa accuracy, producer’s 

accuracy, and user’s accuracy.  

Overall accuracy (OA) is simply the sum of the correctly classified sample units divided 

by the total number of sample units in the entire error matrix. Producer’s accuracy (PA) 

describe the accuracy of individual class from map producers’ perspective. PA for each 

category is performed through dividing the number of correct sample units by the total 

number the reference data in that class. “User’s accuracy” (UA) is defined from the map 

users’ perspective. It is computed by dividing the number of correct sample of one class by 

the total number of samples classified to that class in the map. Kappa can be used to 

determine if the values contained in an error matrix represent a result significantly better 

than random (Jensen 2005).Usually, while the OA is the same for two classification result, 

the one with higher the Kappa has better the classification accuracy.  
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2.4 Results Analysis and Discussions 

This study was conducted following the processing introduced in the Methodology 

section.  

(1) Preprocessing 

The preprocessing of multi-temporal RADARSAT-2 datasets were conducted in 

PolSARpro software. Pauli, Freeman-Durden, and H/Alpha/A polarimetric 

decomposition parameters were generated from coherency T3 matrix and covariance C3 

matrix. Gaussian filter at the window size of 5 was then applied to each of the 

decomposition parameters. The filtered decomposition parameters from each image was 

finally geometrically corrected and resampled into 10 meter resolution datasets, using a 

DEM data though MapReady tool kit.  

(2) Training Samples Selection 

In order to provide enough sample units for classifier training, over 200 polygons were 

manually selected, which include 7000 pixels, from the reference and ground truth data 

see table 2.2).  

Table 2.2 Number of the plots and pixels selected for each LU/LC class in the 

training groups. 

class alfalfa wheat hay peas soybeans corn forest lawn CS RA CIIA 

Plots 3 53 3 6 40 49 10 6 4 26 14 

Pixels 45 762 40 71 1849 2397 695 155 158 553 524 

CS: construction sites, RA: residential areas, CIIA: commercial/industrial/institutional 

areas. 
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(3) Multi-temporal dataset classification 

To assess the potential of multi-temporal polarimetric RADARSAT-2 data in urban/rural 

fringe area mapping, a series of classifications were conducted using different 

RADARSAT-2 datasets (Figure 2.8). As the Figure shown, the different classification 

were conducted and compared in terms of different classifiers, polarimetric parameters, 

time selections and combinations of image dates, as well as different post-classification 

processing methods. 
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Figure 2.8 An overview of the comparisons among various classification strategies 
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(4) Testing Samples selection 

Nine LU/LC classes, which include five crop types (i.e. forage, wheat, field peas, 

soybeans, corn) and four non-crop classes (i.e. forest, lawn, construction sites (CS), and 

built-up areas), were aggregated from the originally eleven detailed classes. To fully 

assess the classification for each LU/LC class in the fringe areas, two sets of testing 

samples were selected. For all the classes, 700 random points were generated using the 

PCI software, and over 500 clusters of more than 7000 pixels were selected around those 

points as the testing samples (table 2.3). In addition, to test classification results of the 

five crop types, all the field inventory data except for those selected as training samples 

were used for testing (table 2.4). 

Table 2.3 Number of the plots and pixels selected for five crop types in the testing 

samples. 

class forage wheat peas soybeans corn 

fields surveyed 23 44 3 63 57 

pixels per class 6175 42200 6037 69311 76583 

% of total 3% 21% 3% 35% 38% 

Table 2.4 Number and percentage of pixels selected for the testing samples of all 

LU/LC classes 

  forage wheat peas soybean corn Bups CS forest lawn 

Pixels #  79 765 72 1859 2395 1079 159 698 161 

Class% 1% 11% 1% 26% 33% 15% 2% 10% 2% 

CS: construction sites, Bups: Built-ups 

(4) Accuracy Assessment 

Finally, error matrix for each of the classification results was generated to assess the 

classification accuracy. The advantages and disadvantages of each classification method 

are analyzed and discussed based on the error matrix and LU/LC maps in the following 

sections.  
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2.4.1 Training Data Analysis   

To briefly analysis the separability of different classes, the responses of polarimetric 

parameters to different land surface at different images are analyzed. Based on the training 

sample units, the mean values and standard deviations of the polarimetric parameters in 

each image for every LU/LC class have been extracted.  

(1)Pauli Decomposition Parameters 

The temporal profiles of Pauli decomposition parameters (T11, T22, and T33) of 

RADARSAT-2 data for the six crop types were shown in Figure 2.6. Generally, T11 

represents the surface scattering, and T33 indicates the volume scattering. In T11 

parameter, the separability of various crops is higher in May 4th and June 21st than that in 

the other dates. However, in both T22 and T33 parameters, the May 28th, July 15th, and 

Sept. 1st dates’ data provide higher separability among various crops.  
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Figure 2.9 Temporal profiles of Pauli decomposition parameters value for various 

crop types in PauliT11 single bounce (a), PauliT22 double bounce (b), and PauliT33 

volume scattering(c). 

For each crop type, the separability varies from parameter to parameter and image to image. 

For example, peas can be easily separated from other crops using T33 on the May 28th date 

image alone. The mean T33 value of peas is at least 6 dB higher than those of the other 

crops. The curves of the wheat, hay, and alfalfa at T11 are very close to each other, but 

greater difference is observed between the wheat and hay at T22 on May 28th and also 

between the hay and alfalfa at T33 on Sept. 1st. The curves of corn and soybeans are 

particularly different from those of other crops. The sharp increase of double bounce (T22) 
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and volume (T33) scattering from May 28th to June 21st is corresponding to the rapid 

growth of soybeans and crop. Before May 28th, the SAR backscattering from the fields of 

soybeans (height<15cm) and crop (height<20cm) was dominated by the soil. However, 

since June 21st, the fields were fully covered by soybeans plants (height >25cm) and corn 

plants (height>70cm).The marginal difference is observed between the soybeans and crop 

at T22 and T33, which might lead to the misclassification of them. 

(2)Freeman-Durden and H/Alpha/A Decomposition Parameters 

The values of Freeman-Durden decomposition parameters indicate the contributions of 

different scattering mechanisms, such as double-bounce, volume, and odd-bounce 

scattering mechanisms. In Figure 2.10(b), the mean values of Freeman volume scattering 

are close to each other for most classes, but at double and odd bounced scatterings, the 

differences between the mean values among different classes are more significant. Figure 

2.10 (a) shows that the separability of H/Alpha/A parameters between crop and non-crop 

types is much larger than that among crops.  

  

  

Figure 2.10 H/Alpha/A (a, T11, T22, T33 scattering value in dB) and Freeman 

decomposition parameters (b, Double Volume and Odd scattering value in Db.) 

from ten LU/LC classes. 
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2.4.2 Classification Results Using Gaussian and Wishart  

The classification results using Gaussian distribution (Gaussian) are better than those using 

complex Wishart distribution (Wishart). Gaussian method generates a better classification 

results mainly in non-crop classes. For example, considering the nine LU/LC classes, the 

results given by Gaussian are 86.3% (OA) and 0.83(Kappa), but those given by Wishart 

are 78.4% (OA) and 0.73 (Kappa). 

However, in terms of crop classification accuracy, Gaussian is slightly superior to Wishart. 

Using the five main crop type testing samples, the assessment results show that Gaussian 

is merely 1%(OA) and 0.01(Kappa) better than Wishart. 

The results revealed that the Gaussian is more suitable than complex Wishart for LU/LC 

classification in urban/rural fringe areas with various crop and non-crop LU/LC classes.  

2.4.3 Classification Results Using Different Polarimetric SAR 
Parameters  

To fairly compare the classification accuracy using different polarimetric parameters, the 

same Gaussian MLC classifier was adopted. Classification results using four sets of 

decomposition parameters (i.e. coherency matrix, Pauli, H/Alpha/A, and Freeman) were 

compared respectively.  

(1) Coherency Matrix and Pauli Decomposition Parameters 

Pauli decomposition parameters (Pauli3) are consisted of the diagonal elements of 

coherency matrix (T3all). Classification results show that Pauli3 outperforms T3all, 

although T3all contains more polarimetric information than Pauli3.  

The classification accuracies using Pauli3 (in red) and T3all (in blue) parameters from the 

same four-date datasets. Overall, the results given by Pauli3 is 89 %( OA) at 0.87 (Kappa), 

while those by T3all is only 84.8 %( OA) at 0.81 (Kappa). Specifically, for most crops 

(hay, wheat, and peas) and other vegetation types, such as forest, the Pauli3 gives higher 

accuracy than T3all in either producer’s or user’s accuracy.  
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The comparison reveals that diagonal parameters in the Pauli decomposition parameters 

contain the most useful polarimetric information in T3 matrix. The other off-diagonal 

elements in the T3 matrix introduced more noise rather than useful information to the 

classification. 

(2) Freeman-Durden and H/Alpha/A Decomposition Parameters 

The classification results using H/Alpha/A decomposition parameters are better than those 

yielded by Freeman decomposition, but were much worse than those using the Pauli 

decomposition parameters. The OA given by H/Alpha/A was 84.1% at 0.79 (Kappa), while 

those accuracies achieved by Freeman were merely 76.9 %( OA) at 0.71(Kappa). 

(3) Separability Analysis of Different Parameters 

Among the three polarimetric parameter datasets, the Pauli3 gives the best results, while 

the Freeman gives the lowest accuracy. The inferior performance of Freeman can be 

explained by the poor separability among different classes in the decomposed images. 

According to the concept of feature separation (Cumming and Van Zyl 1989, Shi et al. 

1994), features can be separated well if the distance between the class mean values is larger 

than the standard deviations. Richards (Richards 1987) proposed a criteria, named 

Bhattacharya distance, to quantitatively measure the separability between two classes, such 

as in class i and j :  

S𝑖 ,𝑗 =
|𝑢𝑖 − 𝑢𝑗|

S𝑖 + S𝑗 

 
 

(11) 

Where 𝑢 and s are mean value and standard deviation of the classes. The higher the S𝑖,𝑗  is, 

the more useful the feature is in distinguishing class i and j.  

Taking the separability between corn and soybeans as an example. In the same image taken 

on July 15th, the S𝑖,𝑗 of Freeman T22, H/Alpha/A T22, and Pauli T22 parameter is 0.09, 

0.22, and 0.36 respectively. The classification results also indicates that polarimetric 

parameters with higher S𝑖,𝑗  value, such as Pauli2, generated better results.  



43 

43 

 

2.4.4 Classification Results Using Different Time Combinations  

Dataset with high temporal resolution are preferable for LU/LC classification, particularly 

for crop type’s identification. However, due to the limitation of budget, the quality of data, 

and the image processing ability, selection and combination of multi-temporal data has 

become especially valuable. In this study, in order to find the optical multi-temporal data 

combination, images with one to five dates were tested under the same classification 

procedure.  

(1) Overall Trends 

Generally, the classification accuracy increases as more dates of images are included in the 

classification (Table 2.5). The highest accuracy was achieved by using all the five-date 

dataset at 91% (OA) and 0.888 (Kappa). The best classification results generated by four-

date dataset, 90.1% (OA) and 0.877 (Kappa), was very close to that of five-date one. The 

classification results given by three-date and two-date datasets are less satisfactory, with 

the highest OA of 87.8% and 83.3% respectively. The best result generated by one-date 

data is as low as 62.4% (OA).  

The greatest enhancement of classification accuracy (over 20%) is observed from one-date 

datasets to two-date ones. Less than 1% increase in OA is observes from the highest four-

date datasets to five-date one, which indicates that a well-selected four-date datasets is 

preferable than five-date one.  
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Figure 2.11 the classification result using different time combination ranking by 

classification OA from highest to lowest. 

 (2) Four-date Dataset 

The overall accuracy of four-date dataset varies from 88.3% to 90.1%. Among these four-

date combinations, datasets without May 28th (528) or July 15th (715) date image give the 

lowest overall accuracy. In other words, the May 28th and July 15th images contained the 

most useful information in multi-temporal classification. By referencing to the ground 

truth, the greatest separability among various crops was also observed on those two periods, 

particularly in Mid-July, 2012.  
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Table 2.5 The classification results from four-date data by different combinations 

As Figure 2.12 shows, in the Mid-July, 2012, crops in Southwestern Ontario were in 

different growing stages. Most wheat was harvested, while forage grew very well. Field 

peas were withered and dry. The soybeans plants could just cover the soil, and started 

flowering. Corn had begun tasseling, but some of them were already as tall as 200cm.   

  May 4 May 28 June 21 July 15 Sep.1 overall kappa 

4 
dates 

          90.1% 0.877 

          89.5% 0.869 

          88.8% 0.86 

          88.6% 0.858 
          88.3% 0.855 
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(3) Three-date Datasets 

The overall accuracy of three-date dataset varies from 87.8% to 84.0%. As the table() 

shows, the classification results given by images obtained in early and middle growing 

seasons ( May to July) are relatively better than that of the late seasons. For example, the 

OA given by the 504_528_715 dataset is 3.8% higher than that given by 621_715_901. In 

the early growing seasons, as most crops have not been planted yet, non-crop vegetation 

and other built-ups classes can be identified more easily. In the late crop growing season,  

1 Km 

Wheat Forage Field Peas 

Soybean 

Corn 

N 

Figure 2.12 The PauliRGB composite image was acquired at London, Ontario on July 

15th, 2012. Five major crop types can be clearly identified within this image. 



47 

47 

 

some harvested and unreaped crop fields might still be confused, due to various kinds of 

residues.  

Table 2.6 The classification results from three-date data by different combinations 

 

 

 

 

In sum, a wise selection and combination of multi-temporal data sets, instead of using 

more dates of images, is an economic and effective method to increase the classification 

accuracy. As the study show, satisfactory classification OA (over 87%) can be achieved 

using images from four-date or even three-date datasets, as long as the images at the key 

seasons were included.   

2.4.5 Classification Results Using Different Post-classification 
Processing Methods  

In general, both sieve filter and segmentation methods are effective in enhancing 

classification accuracy after classification. For example, the overall accuracy of five-date 

MLC results was 87% before any post-classification processing. The OA increased to 

91% and 92% after using sieve filter (Figure 2.15) and segmentation method respectively.  

A detailed analysis of each class types reveals that both methods are effective for most 

classes, but also induced some omission errors in the classification of LU/LC classes with 

small and fragmentized patches. The forage class is a good example. Because some field 

areas of forage were so small that were reassigned to their neighboring classes in the 

segmentation, its producer’s accuracy decreased by 40%.  

  May 4 May 28 June 21 July 15 Sep.1 overall kappa 

3 
dates 

          87.8% 0.849 

          86.3% 0.83 

          86.3% 0.83 

          86.2% 0.83 

          84.0% 0.801 
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Figure 2.12 Accuracy statistics using different post-classification processing 

methods 

2.5 Conclusions 

In sum, the capabilities of multi-temporal polarimetric RADARSAT-2 data for LU/LC 

classification in urban/rural fringe areas have been well proved and assessed by using the 

basic MLC supervised classification method in this study.  

Generally, LU/LC classes in urban/rural fringe areas can be successfully identified using 

multi-temporal polarimetric RADARSAT-2 datasets. An accurate LU/LC map of study 

area has been generated (Figure 2.13). Most non-crop classes and crop types in the rural 

areas have been well-separated. Within crop-fields, some confusion can still be observed, 

such as misclassifications between corn and soybeans, wheat and forage. Some 

construction sites have been successfully detected in the north boundaries of London city, 

which indicates the happening of urban expansion.  
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Figure 2.13 LU/LC map of the study area generated by five-date image after sieve 

filtering 
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To assess the potential of multi-temporal polarimetric RADARSAT-2 data, four aspects of 

classification have been evaluated: classifiers, decomposition parameters used for 

classification, time combinations of images, and post-classification processing methods. 

The major findings of this study are as follows. 

(1)Gaussian is more suitable than complex Wishart based MLC for LU/LC classification 

in urban/rural fringe areas with various crop and non-crop LU/LC classes.  

(2) An appropriate decomposition method is essential for polarimetric RADARSAT-2 

classification. Using Pauli decomposition parameters, the overall accuracy increased by 

12% than that using Freeman-Durden decomposition parameters.    

(3) Using the same classification method, the accuracy can still be significantly improved 

through carefully selecting and combining multi-date images. Although more dates can 

obtain slightly higher accuracy, satisfactory classification accuracies (over 87%) have been 

achieved using images from three dates, as long as the images at the key seasons were 

included.   

(4) A right post-classification processing method is also useful in improving the 

classification results. In this study, the overall accuracies of classification results have been 

improved by 5% and 4% by using segmentation and filter post-classification processing 

method, respectively. 

The classification procedure provided in this study might have significant applications in 

annual crop inventory, or LU/LC change detection in urban/rural fringe areas.  
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Chapter 3  

3 Sensitivity of RADARSAT-2 Polarimetric SAR Data to 
Normalized Difference Vegetation Index and Crops 

Height 

3.1 Introduction  

3.1.1 Background 

Agriculture plays a critical role in Canada’s economy, and accounts for more than 8% of 

Canada’s Gross Domestic Product (Longtin, 2006). The timely information on 

agricultural land use and land management, the estimation and prediction of crops yields 

are essential for the agriculture and economic suitability.  

Remote Sensing technology has the capability of providing timely and wide coverage of 

land surface information at a range of spatial and temporal scales. Thus, space borne or 

airborne Remote Sensing images have been widely used in agricultural applications, such 

as crop type inventory, crop health, soil analysis, crop condition monitoring and even 

yield prediction.  

Traditionally, agricultural survey and crop condition monitoring is mainly depended on in 

situ measurement, and thus used to be time and labor consuming. Currently, with the 

development of Remote Sensing techniques, the plant biological parameters observed in 

the field, can also be derived from remotely sensed data, and extend to a wide area ().  

Optical Remote Sensing data have been primarily used to extract vegetation index, such 

as Normalized Difference Vegetation Index (NDVI), Perpendicular Vegetation Index 

(PVI), Soil Adjusted Vegetation Index (SAVI), and Transformed Soil Adjusted 

Vegetation Index (TSAVI) (). These indices are provided to be sensitive to canopy 

characteristics such as Leaf Area Index (LAI) or plant biochemical constituents (), and 

thus are useful in crop condition monitoring, and biomass estimation, or even yield 

prediction.  
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Vegetation indices (VI), such as Normalized Difference Vegetation Index (NDVI), 

Perpendicular Vegetation Index (PVI), Soil Adjusted Vegetation Index (SAVI), and 

Transformed Soil Adjusted Vegetation Index (TSAVI), are important biophysical 

parameters for monitoring vegetation growth. These indices are provided to be sensitive to 

canopy characteristics such as Leaf Area Index (LAI) or plant biochemical constituents. 

Tracking VI change through the growing season is critical for crop growth modeling and 

yield forecast.  Conventionally, optical data have been widely used to calculate VI (Liu et 

all, 2012).  However, due to unfavorable weather conditions, optical sensors cannot meet 

the time requirement when information on key growth stages is needed.  

3.1.2 Previous Studies 

Synthetic Aperture Radar (SAR) sensors are able to transmit microwaves through the haze 

and clouds, and therefore offer an alternative data source. Different from traditional optical 

data, SAR signals respond to the crop structure (size, shape, and orientation of leaves, 

stalks, and fruits), the dielectric properties of the canopy, as well as the roughness and 

moisture of the underlying soil (McNairn et al. 2009a, Steffen et al., 2012). Meanwhile, 

the crop structure and water content are indicative of each crop type in various growth 

stages and crop conditions. The existence of the connection between the SAR signals and 

crops parameters has been proved by previous researches (McNairn et al. 2004). However, 

how robust the connections are has not yet been fully explored.  

SAR data acquired at different frequency bands have different transmission abilities, and 

thus are sensitive to different plants’ properties at different components’ scales (Lopez-

Sanchez et al.2009). The selection of SAR sensors for agricultural applications is highly 

dependent on the crop types and objectivities. Indeed, many successes have resulted from 

using multi-frequency SAR data in a wide range of agricultural applications, such as crop-

type mapping (McNairn et al. 2009b, Shang et al.2009), crop condition monitoring 

( Ferrazzoli et al. 1997, Paloscia S 1998), and soil moisture retrieval (Lievens et al. 2011). 

Baghdadi et al. investigated the potential of TerraSAR-X, ASAR/ENVISAT and 

PALSAR/ALOS for monitoring sugarcane crops, and results show that cross polarizations 

at long radar wavelengths are mostly sensitive to the changes in sugarcane crops’ height 

and NDVI early in the growing stages ( Baghdadi et al. 2009). The C band SAR data was 
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proved to be appropriate for biomass estimation of crops such as colza, wheat, alfalfa, and 

soybeans (Ferrazzoli et al. 1997). Compared to L and P band SAR data, C band has a 

relatively short wave, and thus is less able to penetrate into crop plants with large biomass. 

Therefore, the sensitivity of C band SAR data to crop biomass is also restricted by the 

presence of signal saturation effects of other crops, such as the corn and sugarcane 

(McNairn et al. 2000).  

Multipolarization SAR data provide more information about crop growing conditions than 

the single polarization data set. The potential of single polarization SAR data in crop 

monitoring was well explored in the previous studies. For example, strong correlations 

have been reported between HH polarization backscattering values from multitemporal 

RADARSAT data and plant height, age, and biomass of rice (Shao et al. 2001, Li et al. 

2003, Chakraborty et al. 2005). However, the sensitivity of the wave polarization to the 

orientation, shape and dielectric properties of the plants is less studied. Recently, as more 

Quadpol polarization data are provided by satellites such as C band RADARSAT-2, 

PAlSAR L band ALOS, and X band TerraSAR sensors, increasing number of studies have 

focused on the application of multi-polarization data in crop conditions monitoring. For 

instance, studies show that for both corn and soybeans, significant correlation has been 

reported between volume scattering indicative RADARSAT-2 Quadpol parameters and the 

LAI (Jiao et al. 2011). In addition, Steffen et al compared TerraSAR-X Quadpol 

backscattering with RapidEye multispectral vegetation indices over rice fields, and the 

results showed that significant correlations are found between VV and cross-polarized 

images and the modified chlorophyll absorption ratio index/second modified triangular 

vegetation index(MCARI/MTVI2) on an object basis (Steffen et al.,2012 ).  

The temporal and spatial dimensions of remotely sensed data are also critical to certain 

agricultural applications, such as crop phenological stages monitoring, and plant pathology 

detection (Lopez-Sanchez et al.2009). Most of the crops in North America change rapidly 

in the summer season, when weather conditions are optimal. Also, the variation of crops in 

the same field is sometimes significant. As the results in a campaign in 2007 showed, 

variations of 20% in LAI, 20% in vegetation height and 40% in biomass were measured 

within the same corn fields (Gerighausen et al., 2007). Therefore, high temporal and spatial 
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resolution of remotely sensed data is necessary for accurate farming and time critical 

agricultural applications. Several newly launched SAR sensors, such as RADARSAT-2 

and TerraSAR, have short revisit intervals and fine spatial resolution, and thus are able to 

provide great opportunity for these applications. 

3.1.3 Objectives 

The objectives of this study are to investigate the potential of RADARSAT-2 polarimetric 

SAR data in monitoring crops growth conditions of wheat, peas, soybeans and corn in 

Southwestern Ontario.  

3.2  Study Areas and Data Description 

3.2.1 Study Area 

The study site is in Middlesex County, Ontario, Canada (43° 02 Ń, 81° 19 Ẃ), one of the 

most agriculturally productive areas in Ontario, Canada.  The terrain is generally flat. The 

soils are mainly Huron Lobe Glacial till with loamy and clayey texture, and some stratified 

sand, and gravel along the rivers. The climate is ideal for farming, with plenty of sunshine 

and precipitation. Metrology data show that, during most of the crop growing season from 

May to September in 2012, the average monthly temperature ranged from 13°C to 20°C, 

and the monthly precipitation was 82 to 87 cm. In that same time, the mean relative 

humidity at 3pm was 55%-60%, and monthly total hours of bright sunshine was 221 – 262 

hours. The main crops in this area include corn, soybeans, wheat, forage, and field peas.  
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Figure 3.1 Study fields presented on the true color combined RapidEye image  

 

3.2.2 Satellite Data 

Two sets of multi-temporal RADARSAT-2 Wide Swath Quad-pol data, FQ7 and FQ21, 

were acquired over the 2012 growing season. The FQ7 has a steeper incidence angles (25.7° 

- 27.6°), while those for FQ 21 ranges are much shallower (40.2°-41.6°). The nominal pixel 

spacing for the Quad-pol image is 4.7m in range ×5.1m in azimuth (Table 3.1).    

During the same crop growing season, four scenes of RapidEye images were obtained 

(June 7th, July 20th, August.5th and August 25th). The multispectral RapidEye sensors are 

particularly useful in vegetation applications because they observe the Earth in a wide 

spatial range and five spectral bands ranging from 400 to 850nm at 6.5m resolution at nadir. 
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Table 3.1 Summarizing of Satellite images and acquiring dates 

Satellites RapidEye R-2 FQ7 R-2 FQ21 

Dates   5-04-2012 5-07-2012 

d-mm-yyyy 6-07-2012 5-28-2012 5-31-2012 

 7-16&24-2012 7-15-2012 7-18-2012 

 8-05-2012  8-11-2012 

 8-25-2012 9-01-2012 9-04-2012 

   9-28-2012 

3.2.3 Field Work 

The in situ measurements were taken coincident with the satellites overpasses. 

Measurement were conducted on a field-based. The croplands selected in the fields are 

representative of the main crops in the Southwestern Ontario. As corn, soybeans, wheat are 

the most common field crop types in this areas, 13 corn, 19 soybeans, and 16 wheat 

croplands as well as 6 forage and 3 peas’ fields were selected, respectively. The polygons 

for each field were manually drawn from the RapidEye images. 

Information investigated from the fields including the field management information, crop 

phenological stages, height, and general soil conditions. Height information is one of the 

most important characters in describing the plant growing conditions. The plants’ heights 

are usually homogenous for the most of the fields, and thus are measurement by averaging 

three samples in one fields. As SAR signals might be responsive to the soil moisture, the 

soil wetness are also recorded in each field on every image acquiring date. Soil conditions 

are briefly measured by hand and recorded in five categories, i.e., dry, slightly moist, moist, 

wet, and extremely wet.     

The meteorological information is very useful in analysis the SAR signal, which is 

sensitive to the moistures in the land surface. Detailed meteorological information was 

downloaded from local weather network online. Hourly weather information on the image 

acquiring date are recoded, such as participation, temperature, wind, and pressure.  
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3.3 Methodology  

The methodology of this study can be separated into three main steps (Figure 3.2): (1) 

RADARSAT-2 polarimetric data decomposition; (2) NDVI mapping and segmentation; 

(3) Correlation analysis between crop parameters (height and NDVI) and polarimetric 

parameters. The detailed concepts and methods are explained below.  
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Figure 3.2 The methodology of the data processing and Analyzing 
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3.3.1 Polarimetric Data Processing 

The polarimetric information contained in the RADARSAT-2 is related to the crop 

parameters, such as crop height, density, moisture, as well as the canopy structures. Using 

polarimetric decomposition methods, a variety of parameters can be extracted from the 

original RADARSAT-2 datasets. Different parameters contain different physical 

meaning, and thus each of them might have different sensitivities to each kind of crops. 

Among all the polarimetric parameters, the most commonly used one can be separated 

into two main categories: (1) the basic matrix and intensity ration; (2) decomposition 

parameters.  

(1) Basic Polarimetric Parameters 

T3 coherency and C3 covariance matrix are fundamental matrices, basic on which other 

decomposition parameters can be derived (Lee and Pottier, 2009). Among all the 

parameters in T3, the diagonal parameters T11 (| HH+VV|), T22 (| HH-VV|), and T33 (| 

HV|) contained the most useful polarimetric information. The widely used Pauli 

Decomposition is based on the T3 matrix. Each of the parameters has clear physical 

meaning: T11 represents single (odd) bounce scattering, T22 indicates double bounce 

scattering, and T33 is associated with volume (Lee and Pottier, 2009).  

From the C3 matrix, the intensity of different polarization bands can also be easily 

extracted from the diagonal parameters. C11 (|HH|) and C33 (|VV|) represent horizontal 

and vertical polarization band intensities, respectively. C22 (|HV|) is similar to T22, 

which indicates the intensity in volume scattering.   

The intensity ratios are also sensitive to the canopy characteristics of different crops at 

various growing stages. Three main intensity ratio have been studied in this study, 

including HH/VV, HV/HH, and HV/VV.  
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(1) Polarimetric Decomposition Parameters 

The Freeman-Durden decomposition is a method for fitting a physically based, three-

component scattering mechanism model to the polarimetric SAR observations. The three-

components scattering mechanism include surface, double-bounce and volume scattering 

mechanisms (Lee and Pottier, 2009). This approach can be used to determine the dominant 

scattering mechanisms in the land surface. The crop land, as the plants development, the 

dominant scattering mechanisms would be change accordingly. Therefore, the 

decomposition results from Freeman-Durden might related to the crop growing stage and 

conditions.  

(2) H/Alpha/A Decomposition 

H/Alpha/A decomposition is an approach proposed by Cloude and Pottier for extracting 

average parameters from experimental data using a smoothing algorithm based on second-

order statistics (Cloude and Pottier, 1996; Cloude and Pottier, 1997). Decomposition 

parameters are generated from an eigenvector analysis of the coherency matrix T3. The 

eigenvectors describe different scattering processes, and the eigenvalues indicate their 

relative magnitudes. Among all the parameters, the averaged Alpha angle (α) relates 

directly to underlying average physical scattering mechanisms. The value of Alpha ranges 

from 0° to 90°, which indicates the variance of dominant scattering from surface scattering 

mechanism moving into single scattering by a cloud of anisotropic particles, and finally 

reaching dihedral scatters. Entropy (H) describes the randomness of the scatter. The 

anisotropy (A) corresponds to the relative power of the second and third eigenvectors (Lee 

and Pottier, 2009).  

Among the three H, Alpha, A parameters, H has been reported to be most sensitive to the 

density and randomness of some plants canopy (Lee and Pottier, 2009, McNairn et. al, 

2009). The sensitivity of H to crop parameters, such as height and NDVI, has not been fully 

investigated yet, and thus deserve more studies.  
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(3) Pedestal Height and Span 

Pedestal height is another way of measuring randomness in the scattering. Pedestal height 

is equivalent to measuring the ratio of the minimum eigenvalue to the maximum 

eigenvalue. It is an indicator of the presence of an unpolarized scattering component in the 

received signal, and thus is related to the degree of polarization of a scattered wave (Lee 

and Pottier, 2009). Span is a measurement of total power by adding all the intensities from 

different polarization bands.  

As the Figure 3.3 show, in this study, all the parameters were extracted from the multi-

temporal Radarsat-2 Quadpol data after filtering. After all the decomposition parameters 

extraction, all parameters images are orthorectified and registered together. All the 

polarimetric data processing are conducted in the PCI Geomantica 10.3 software and the 

additional Polarimetric SAR Work Station.  

 

Figure 3.3 Flowchart showing the polarimetric RADARSAT-2 datasets processing 
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3.3.2 NDVI Calculation  

NDVI is one of the most commonly used vegetation indices derived from optical Remote 

Sensing data. It is calculated from the visible and near-infrared (NIR) light reflected by 

vegetation (). NDVI is able to reflect the health conditions of vegetation because healthy 

vegetation absorbs most of the visible light that hits it, and reflects a large portion of the 

near-infrared light. However, unhealthy or sparse vegetation (right) reflects more visible 

light and less near-infrared light. The normalized difference between NIR and Red 

reflectance (Function 3.1) is able to characterize the healthiness of vegetation.   

The RapidEye images have a wide coverage of NIR and visible spectral wavelength, and 

thus has great potential in vegetation indices derivation. However, due to the different 

atmospheric condition of each image taken at different time, the merely using Digital 

Number is not accurate enough to derive high quality NDVI maps. Atmospheric Correction 

is necessary to be conducted on each images, particularly in vegetation monitoring 

applications, which usually require multi-temporal images over the whole growing seasons.  

In this study, the atmospheric correction module ATCOR, which is an embedded in PCI 

software, has been used to do the correction.  

Pixel based analysis of the sensitivities between polarimetric parameters and vegetation 

indices is usually unstable, due to the serious speckle effects in the SAR images. 

Therefore, the object unites have been adopted in this study to investigate the relationship 

between polarimetric SAR parameters and NDVI.  

In this study, NDVI maps were segmented into homogenous zones using the multi-

resolution algorithm in ECognition software. In addition, as the crop growing conditions 

various a lot from date to date even within the same crop land, each NDVI map from 

different images should be segmented independently. The mean values of the NDVI and 

polarimetric parameters within each of the homogenous zones were extracted for the 

correlation analysis.  
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𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑

                                                                                  (3.1) 

Whereρ𝑁𝐼𝑅 , and ρ𝑅𝑒𝑑 are the reflectance in NIR, and Red bands.  

 

3.3.3 Correlation Analysis 

The most widely used Pearson product-moment correlation coefficient (Pearson’s r) is 

utilized in this study for correlation analysis (Wilcox, 2005). Pearson’s r is a measure of 

the linear correlation (dependence) between two variables X and Y, giving a value 

between +1 and −1 inclusive.  

In this study, take as NDVI example, the Pearson's r between NDVI and SAR parameter 

is defined as the covariance of the two variables divided by the product of their standard 

deviations. The absolute value of Pearson’s rs are less than or equal to 1. The higher the 

absolute value of Pearson’s r, the stronger correlations between two variables are. 

3.4 Results and Discussion 

This study was conducted from three aspects as mentioned in methodology section.  

(1) The crop height information was measured from each of the cropland at every image 

acquiring date. The crop phenological information was observed in the field. The 

vegetation characteristics changes are tracking and analysis based on the field 

measurements results. 

(2) The NDVI maps were first generated from RapidEye maps, and then segmented. Over 

1000 objects with mean NDVI values have been extracted for the sensitivity analysis.   

(3) A high dimension of polarimetric dataset were derived from the multi-temporal 

RADARSAT-2 data. Their responses to the vegetation parameters (both height and 

NDVI) at different image incidence angles (FQ7 and FQ21) were analysis respectively.  

Detailed analysis of study results are discussed below.  

http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviations
http://en.wikipedia.org/wiki/Standard_deviations
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3.4.1 Field Data Collection 

Over 20 times of field work were conducted from early May to the end of September. 

One of the most important crop information- height, has been carefully recorded (See 

Appendix 2.4).  

(1) Corn and Soybeans 

Six stages of corn growing were captured, from the end of May to the end of September: 

stalk initiation, stalk development, tasseling and flowing, ear development, kernel 

development, and maturation (Figure 3.4). The height of corn start increasing dramatically 

in the end of May with corn stalk initiation (20cm) and the growth rate slowed down with 

corn start initiation in the middle of July (200cm).  

For the soybeans, five images taken at the different soybean growing stages are presented 

in Figure 3.4. The average soybean height varied from 20cm in late June to 70cm in early 

September. Most soybeans were planted in late May. On June 24th, the 2-trifoliate was 

fully developed for the majority of the soybeans. The height of soybeans increased stably 

through the stages of flowering, bean filling, and reached its climax when leaves began 

shedding in early September, and decreased by 5cm when the soybeans matured. 
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Corn May31 Corn June24 Corn July 18 Corn Aug.11 Corn Sept.28 

  

 

 
 

soybeanJune24 Sb Jul 18 Sb Aug 11 Sb Sept.4 Sb Sept.28 

Figure 3.4 Key crop growing stages for corn and soybeans during the growing 

season 

 (2) Wheat and Field peas 

For wheat, four main growing stages were captured by the RADARSAT-2 images taken 

from early May to the middle of July, 2012 (Figure 3.5). The height of wheat increased 

rapidly from tillers forming in early May at 30cm, and reached the climax at heading and 

flowering stages by the end of May at 75cm.Most wheat began ripening at the end of June, 

and were harvest at the middle of July.  

For field peas, the development stages in 2012 were similar to those of wheat. The majority 

of pea plants emerged in early May, and bloomed in early June. The pea pods were fully 

developed at the end of June, and were finally harvested in the middle of July (Figure 3.4). 

The height of pea plants varied from 10cm to 55cm (Figure 3.5).  
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Wheat May 7 Wheat May 31 Wheat June 24 Wheat July 18 

Peas May 7 Peas May 31 Peas June 24 Peas July 18 

Figure 3.5 Key crop growing stages for wheat and field Peas during the growing 

season 

3.4.2 Correlation Analysis between RADARSAT-2 Polarimetric 
SAR Data and Crop Height 

The correlation between crop height and RADARSAT-2 polarimetric parameters are 

summarized in Table 2. The average heights of each crop field were observed in the field 

at each date when the satellite passed by. The mean values for each SAR parameter at 

corresponding field points were extracted from the polarimetric parameters datasets.  

(1) Overall Trend 

Relative high correlations(r) were observed in corn and peas. That highest r varied from 

0.7 to 0.8. For soybeans and wheat, the correlations were relatively low, with the highest 

r around 0.55. To further investigate the relationship between crop height and SAR 

parameters, one typical field for each crop was selected for detailed analysis.  
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Table 3.2 The correlation between crop height and  

SAR parameters 

 

 

 

 Corn  Soybean  Wheat  Peas 

Linear Backscatter coefficient(dB) 
C11(HH) 0.57 0.41  -0.49 0.26 

C22(HV) 0.68 0.52  -0.57 0.82 

C33(VV) 0.47 0.35  -0.20 0.54 

T11(HH+VV) 0.36 0.23  -0.40 0.54 

T22(HH-VV) 0.70 0.56  -0.36 0.31 

Intensity ratio 

HH/VV 0.51 0.16  -0.22 -0.46 

HV/HH 0.43 0.45  -0.15 0.82 

HV/VV 0.67 0.49  -0.56 0.51 

Freeman-Durden decomposition parameters  

Single  -0.61 -0.38  0.15 -0.26 

Double  -0.49 0.24  0.17 -0.72 

Volume  0.68 0.52  -0.57 0.82 

Cloude-Pottier decomposition parameters  

Entropy 0.79 0.42  -0.05 0.18 

Alpha (deg.) 0.79 0.47  -0.11 0.01 

Anisotropy 0.04 -0.23  0.51 -0.75 

Polarimetric variables 

PH 0.71 0.54  -0.40 0.62 

Total power 0.59 0.44  -0.45 0.59 
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(2) Corn 

The volume scattering indicative parameters, such as HV and Fre_V, are sensitive to the 

corn height. The volume scattering values increase as the growth of corn height. Large 

amount of rainfall accumulated around June 24 might also contribute to the high volume 

scattering value. 

The Entropy and Alpha parameters were more sensitive to the change in corn height 

(r=0.79) than the other parameters. The variation of the corn height was well characterized 

by the change of Entropy value, even at the late of corn growing season. A minor decrease 

of Entropy was observed at the corn maturation stage, which might be a result of the 

withering of most leaves.  

The Alpha angle indicates the dominant scattering mechanism. In the early stage of the 

corn growing season (stalk initiation and development) the dominant mechanism was 

surface scattering since the plants could barely cover the ground. The Alpha increased from 

40 to 50 degrees during the period from the tasseling to the maturity of most corn, which 

indicate that the main scattering mechanism was volume scattering. High densities of 

canopy corn were also observed in the in-situ investigation during that period. At the corn 

maturation stage, the Alpha was approaching to 50 degrees, which indicated that increasing 

double bounce scattering was also observed. As the canopies were less dense than before, 

more reflectance was backscattered from the semi-double-faced geometry between stalks 

and the surface.  

In sum, both Entropy and Alpha angle from Cloud-Pottier decomposition parameters and 

HV scattering are good indicators of corn height.  

(3) Soybeans 

The values of both Pedestal Height (Ph) and HH-VV (T22) correlated well with the height 

of soybeans. Ph is an indicator of the presence of an unpolarized scattering component, and 

the randomness of scattering. A high Ph value indicates targets that are dominated by 

volume scattering or multiple-surface scattering. Researchers reported that (Evans, et al. 

1988) pedestal height was directly proportional to vegetation density.   
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Day of Year 2012  over corn Day of Year 2012 over Soybean 

Figure 3.6 Temporal evolution of the SAR responses over corn and soybean. SAR 

parameters are presented together with crop height and precipitation amounts. 
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The sensitivity of Ph to soybean height was also observed in this study. However, the 

decrease in Ph value was much greater than the drop of height after the maturation of 

soybeans. The plants of soybeans became sparse as most leaves had been defoliated at the 

maturation stages, which resulted in the decrease of crop density, and consequently the 

decrease in Ph value. Similar results were also observed in the HV and HH-VV parameters, 

which are the indicators of volume and double scattering, respectively.  

(4) Wheat and Field Peas 

Fig.5 shows that the backscattering in the HH polarization channel of RADARSAT-2 is 

negatively correlated with the wheat height. HH is an indicator of surface scattering. The 

value of HH decreased as the wheat leaves and stems developed, and reached its minimum 

when the biomass was at its highest. The temporal change in HH indicated that, as wheat 

grew, the signals scattering from the bare soil were less intensive. The value in the 

Anisotropy of Cloude-Pottier decomposition is positively correlated with the wheat height. 

Anisotropy represents the relative power of the second and third eigenvectors of the 

covariance matrix.  

The value of HV and the HV/HH positively corresponded to the growth of the peas. The 

rise in the value of HV/HH and HV indicated that the volume scattering, instead of surface 

scattering, became the dominant components as the pea’s biomass increased.  
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(a) Day of Year 2012 over wheat  (b) Day of Year 2012 over peas 

Figure 3.7 Temporal evolution of the SAR response over wheat (a) and peas (b). 

SAR parameters presented together with crop height and precipitation amount 
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3.4.3  Correlation Analysis between RADARSAT-2 Polarimetric 
SAR Data and Crop NDVI 

The NDVI maps of both soybeans and corn were generated from multi-temporal RapidEye 

images. The segmentation results give the basic units for the correlation analysis. In the 

following part, the segmentation results, the correlation between NDVI and basic 

polarimetric parameters, the correlation between NDVI and polarimetric decomposition 

parameters were analyzed from two incidence angles respectively.  

(1) NDVI Segmentation 

The statistics between NDVI and RADARSAT-2 polarimetric parameters were conducted 

on the object level. Four NDVI maps were generated on the dates of June 7 th, July 16th and 

24th, August 5th, and August 25th, 2012. Each NDVI map was segmented into homogeneous 

objects at the scale of 15(Table 3.3). Objects covered by clouds or other non-crops land 

cover classes were extracted from the maps. The number of objects included for statistics 

is 212 for June 7th, 365 for July 16&24th, 382 for August 5th, and 295 for August 25th. The 

correlation analyses were conducted for the fields of corn and soybeans using the images 

taken on the FQ7 or FQ21 angle independently.   
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Table 3.3 Sampling segmentation results for soybean and corn fields superimposed 

on the June 7th (a), July 16th and 24th (b), August 5th (c), and August 25th (d) 

2012, NDVI maps. 

soybean(a) soybean(b) soybean(c) soybean(d) 

corn(a)  corn(b) corn(c)  corn(d)  

        

 

 

3.4.3.1 Basic Polarimetric Parameters  

For both corn and soybeans, significant correlations between linear cross-polarization HV 

and NDVI were observed at FQ7 and FQ21. Also, strong correlations were observed 

between the T22 (HH-VV) and the NDVI at FQ7 (r= 0.89 for corn, 0.9 for soybeans). At 

FQ21, however, T22 (HH-VV) was slightly lower compared to NDVI for both corn(r=0.83) 

and soybeans(r=0.83). In Figure 6, the HV and HH-VV parameters are plotted against 

derived NDVI for both corn and soybean crops. HV is associated with volume and HH-

VV represents double or even-bounce scattering from within the target. The significant 

correlation between HV, HH-VV and NDVI reflects that both HV and HH-VV are 

sensitive to physical structure of crops. Early in the crop growing season, most scattering 

originated directly from the soil surface. Therefore, the volume and multiple scatterings 

NDVI: 1                                                   0 
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were low during that period. With the growth of leaves and stems of plants, more scattering 

was reflected from the canopies of plants, as well as from the geometry between the stalks 

and soil surface. Consequently, the volume and multiple scattering increased rapidly.  

 

Table 3.4 The correlation between soybean and corn NDVI to basic polarimetric 

parameters in FQ7 and FQ21 

 R(FQ7, NDVI)  R(FQ21,NDVI) 

 Soybean  Corn  Soybean  Corn 

Linear Backscatter coefficient(dB) 
C11(HH) 0.42 0.56  0.80 0.79 

C22(HV) 0.93 0.92  0.89 0.93 

C33(VV) 0.43 0.43  0.79 0.75 

T11(HH+VV) 0.25 0.38  0.73 0.75 

T22(HH-VV) 0.89 0.90  0.83 0.83 
Intensity Ratio 

HH/VV -0.90 -0.80  -0.07 0.48 

HV/HH 0.63 0.74  0.67 0.65 

HV/VV 0.76 0.78  0.63 0.73 
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The saturation of HH-VV to NDVI was observed once the NDVI reached 0.8 at the FQ21 

angle for both soybean and corn crops. In the samples of corn crops with an NDVI higher 

than 0.75, see the (f) in Figure 3.6, half of the samples have HH-VV values, which are 

positively relative to NDVI , while the HH-VV values of the other samples are in negative 

relation to the NDVI value. This difference might be because after the maturation of most 

corn, the NDVI decreased due to the drop in chlorophyll in the plant. In the meantime, the 

double bounce increased when most leaves were dry. Stronger signals were reflected from 

the double bounced scatter between corn stalks and soil surface. For the soybeans, the 

sensitivity of HH-VV to NDVI matured when the NDVI values were higher than 0.8, 

particularly in FQ21 images. Compared with the FQ7 image, the shallower angle at FQ21 

provides less penetration into the canopy, thus, it is less sensitive to NDVI.  

  

 

(a) 

 

  

(b) 
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(c) 

 

(d) 

 

(e) 

 

 (f) 

 

(g) 

 

 (h) 

 

Figure 3.8 Correlation between the HV, HH-VV for the RADARSAT-2 FQ7 and 

FQ21 acquisitions and NDVI for corn and soybean 
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3.4.3.2 Decomposition Polarimetric parameters 

(1) Freeman-Durden and Pedestal Height 

The volume scattering of Freeman-Durden decomposition parameters was significantly 

correlated with NDVI for both soybeans and corn. In addition, pedestal height was highly 

correlated with NDVI for both crops. Pedestal height describes the degree of polarization 

of a scattered wave. Studies demonstrate that pedestal height is directly proportional to 

vegetation density [8]. In this study, it is also positively correlated with the NDVI. Also, 

the saturation of Pedestal Height to NDVI was observed when the NDVI of crop samples 

was higher than 0.75, particularly in the FQ21 images.  

(2) Entropy 

A slightly weak correlation was reported between Entropy and crop NDVI. Entropy 

characterizes the randomness of scattering occurring within a target. As crops develop, the 

randomness increases because scattering from the soil, the vegetation, as well as the soil-

vegetation interaction all contribute to the total scattering. As Figure 3.7 shows, the 

correlation between Entropy and crop NDVI is slightly higher for soybeans than that for 

corn. It might be interpreted from the figure that the Entropy is more sensitive to the low 

biomass plants, such as soybeans, than those with high biomass.  

(3) Overall 

In summary, the sensitivity of crop NDVI to polarimetric parameters varied from parameter 

to parameter. The correlation between the same parameter to the crop NDVI also depends 

on the crop types, and incidence angles of images. In general, parameters that are indicative 

of volume and multi-scattering, such as HV, HH-VV, and volume scattering from 

Freeman-Durden decomposition, are relatively highly related to the value of crop NDVI. 

Also, parameters related to the density and randomness of plants, like the pedestal height 

and entropy in the Cloude-Pottier decomposition, are correlated with the crop NDVI. 

However, due to the lack of high quality optical images in mid-June, the NDVI values of 
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most samples were clustered in the high and low zones. The statistical results might be 

more convincing if NDVI maps from various dates were available.  
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(g) 

 

(h) 

 

Figure 3.7 Scatter plots between the Entropy, Pedestal and NDVI for corn and 

soybeans at FQ7 (a, c, e, g), and FQ21 (b, d, f, h) image. 

3.4.3.3 Comparison of all Polarimetric Parameters 

By comparing the correlation between NDVI and polarimetric parameters, the rankings 

of the coefficients for soybean and corn have been generated.  

(1) Soybeans 

For soybeans, the volume scattering derived from HV intensity and Freeman-Durden 

decomposition parameters are most correlated to the value of NDVI, with a Pearson’s r of 

0.93. The Pedestal Height and HH/VV are very sensitive to the NDVI values of 

soybeans, as well, with the same Pearson’s r of 0.9. The correlation between T22 (|HH-

VV|) and NDVI is the third place, with a Pearson’s r o f 0.89.  

As discussed in the above sections, serious saturations were observed while using FQ21 

image, due to the less penetration of canopy. Parameters derived from FQ7 images, at a 

steeper incidence angle, higher correlation were generated than other from FQ21.  
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Table 3.5 the ranking of correlation coefficients between polarimetric parameters 

and NDVI for soybeans 

Ranking Recommended 

parameters 

Better 

Mode 

r 

1 C22 (HV) FQ7 0.93 

1 Freeman(Vol) FQ7 0.93 

2 PH FQ7 0.9 

2 HH/VV FQ7 -0.9 

3 T22(HH-VV) FQ7 0.89 

(1) Corns 

The volume scatterings from HV intensity and Freeman-Durden decomposition are 

strongest correlated to corn NDVI, with the Pearson’s r as high as 0.93. Pedestal Height 

and T22 are second and third sensitive to NDVI values.  

The better mode for volume scatterings is FQ21, and that for PH and T22 is FQ7. 

However, the difference between FQ7 and FQ21 is not significant, which is less than 

0.02. Therefore, no absolute better angle mode was found in this study.   

Table 3.6 The ranking of correlation coefficients between polarimetric parameters 

and NDVI for corn. 

Ranking Recommended 
parameters 

Better 
Mode 

R 

1 C22(HV) FQ21 0.93 

1 Freeman(Vol) FQ21 0.93 

2 PH FQ7 0.91 

3 T22(HH-VV) FQ7 0.9 
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3.5 Conclusion 

This study investigates the sensitivity of RADARSAT-2 polarimetric SAR signals to 

structural changes of wheat, field peas, soybeans, and corn during the growing season in 

2012, Southwestern Ontario. Several conclusions have been drawn from this study: 

(1) Polarimetric SAR are able to provide complement information for optical data in time 

critical agricultural applications, such as crop condition monitoring, when high quality 

optical data are not available under unfavorable weather conditions.   

(2) The potential of polarimetric SAR parameters in characterizing the temporal change of 

crop height have been proved in this study. The high correlation coefficients of 0.82 and 

0.79 were observed in peas and corn. And the recommended parameters for field pea height 

estimation are Freeman-Durden volume scattering and HV/VV, and those for con height 

estimation are Entropy, Alpha. 

(3) Strong correlation coefficients have been observed between polarimetric parameters 

and NDVI values for both corn and soybeans. The highest correlation coefficient is 0.93, 

between HV, Freeman-Durden Volume and NDVI for both corn and soybeans. Pedestal 

Height is also sensitive to crop NDVI, and the correlation coefficients are 0.9 and 0.91 for 

soybeans and corn.  

(4) Marginal differences were observed between the images taken at FQ21 and FQ7 

incidence angles. FQ7 is slightly better than FQ21 in estimation soybeans NDVI from some 

polarimetric SAR parameters, such as HH-VV, HH/VV, Pedestal Height, and volume 

scattering. 

The potential of deriving NDVI from C band polarimetric SAR data has been 

demonstrated in this study. More researches should focus on investigating the 

relationship between the SAR parameters and other plant parameters, such as LAI and 

biomass, so as to facilitate the estimates of crop yields. 

 

 



86 

86 

 

 

 

  

3.5 References  

Baghdadi, N., et al. (2009). "Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT 

and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island." Remote 

Sensing of Environment, Vol.113, pp.1724-1738.  

Bugden, J.L., Pattey, E., et McNairn, H. (2009). « Classification of crop and soil 

homogenous 6 zones using Multipolarization C-Band SAR. », Canadian Journal 

of Remote Sensing , 35(2), p. 130-140. doi : 10.5589/m09-001 

Chakraborty , M., M ANJUNATH , K.R., P ANIGRAHY , S., K UNDU , N. and P 

ARIHAR , J.S. (2005),Rice crop parameter retrieval using multi-temporal, multi-

incidence angle Radarsat SAR data. ISPRS Journal of Photogrammetry and Remote 

Sensing, 59, pp. 310–322. 

Ferrazzoli, P., S. Paloscia, et al. (1997). "The potential of multifrequency polarimetric 

SAR in assessing agricultural and arboreous biomass." Geoscience and Remote 

Sensing, IEEE Transactions on 35(1): 5-17. 

Gerighausen, H., et al. (2007), DEMMIN—A test site for the validation of remote sensing 

data products: General description and application during AgriSAR 2006, in 

Proceedings of the AGRISAR and EAGLE Campaigns Final Workshop,Eur. Space 

Res. and Technol. Cent., Noorwijk, Netherlands. 

Jiao, X., et al. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and 

soybean leaf area index (2011). Canadian Journal of Remote Sensing, Vol. 37, pp. 

69-81.  

Li , Y., L IAO , Q., L I , X., L IAO , S., C HI , G. and P ENG , S. (2003). Towards an 

operational system for regional-scale rice yield estimation using a time-series of 

http://www4.agr.gc.ca/abstract-resume/abstract-resume.htm?lang=fra&id=14175000000410
http://www4.agr.gc.ca/abstract-resume/abstract-resume.htm?lang=fra&id=14175000000410


87 

87 

 

Radarsat ScanSAR images. International Journal of Remote Sensing, 24, pp. 

4207–4220. 

Lievens, H., Verhoest, N., De Keyser, E., Vernieuwe, H., Matgen, P., Alvarez-Mozos, J., 

& De Baets, B. (2011). Effective roughness modelling as a tool for soil moisture 

retrieval from C-and L-band SAR. Hydrology and Earth System Sciences, 15(1), 

151-162. 

Liu, J., E. Pattey, et al. (2012). Assessment of vegetation indices for regional crop green 

LAI estimation from Landsat images over multiple growing seasons. Remote 

Sensing of Environment 123(0): 347-358. 

Lopez‐Sanchez, J. M., & Ballester‐Berman, J. D. (2009). Potentials of polarimetric 

SAR interferometry for agriculture monitoring. Radio Science, 44(2). 

McNairn, H., and B. Brisco (2004), The application of C-band polarimetric SAR for 

agriculture: A review, Can. J. Remote Sensing, 30(3). 

McNairn, H., Champagne, C., Shang, J., Holmstrom, D.A., et Reichert, 

G(2009a).  Integration of optical and Synthetic Aperture Radar (SAR) imagery for 

delivering operational annual crop inventories. ISPRS Journal of Photogrammetry 

and Remote Sensing, 64, pp. 434–449. 

McNairn, H., J. van der Sanden, R. Brown, and J. Ellis (2000) The potential of 

RADARSAT-2 for crop mapping and assessing crop condition, in Proceedings of 

the 2nd International Conference on Geospatial Information in Agriculture and 

Forestry, vol. 2, pp. 81 – 88, Veridian ERIM Int. Conf.,Ann Arbor, Mich. 

McNairn, H., Shang, J., Jiao, X., et Champagne, C. (2009b).  The Contribution of ALOS 

PALSAR Multi-polarization and Polarimetric Data to Crop Classification.  IEEE 

Transactions on Geoscience and Remote Sensing, 47(12, Article No. 5233805), p. 

3981-3992. doi : 10.1109/TGRS.2009.2026052 

Paloscia,S. (1998). "An empirical approach to estimating leaf area index from 

multifrequency SAR data." International Journal of Remote Sensing 19(2): 359-

364. 

http://www4.agr.gc.ca/abstract-resume/abstract-resume.htm?lang=fra&id=15311000000410
http://www4.agr.gc.ca/abstract-resume/abstract-resume.htm?lang=fra&id=15311000000410


88 

88 

 

Shang, J., McNairn, H., Champagne, C., et Jiao, X. (2009). « Contribution of multi-

frequency, multi-sensor, and multi-temporal radar data to operational annual crop 

mapping. », IEEE Geoscience and Remote Sensing Letters, 3(1), p. III378-III381. 

doi : 10.1109/IGARSS.2008.4779362 

Shao , Y., F AN , X., L IU , H., X IAO , J., R OSS , S., B RISCO , B., B ROWN , R. and 

S TAPLES , G. (2001) Rice monitoring and production estimation using 

multitemporal RADARSAT. Remote Sensing of Environment, 76, pp. 310–325. 

Steffen Gebhardt , Juliane Huth , Lam Dao Nguyen , Achim Roth & Claudia Kuenzer 

(2012): A comparison of TerraSAR-X Quadpol backscattering with RapidEye 

multispectral vegetation indices over rice fields in the Mekong Delta, Vietnam, 

International Journal of Remote Sensing, 33:24, 7644-7661 

 

http://www4.agr.gc.ca/abstract-resume/abstract-resume.htm?lang=fra&id=15890000000410
http://www4.agr.gc.ca/abstract-resume/abstract-resume.htm?lang=fra&id=15890000000410
http://www4.agr.gc.ca/abstract-resume/abstract-resume.htm?lang=fra&id=15890000000410


89 

89 

 

Chapter 4   

4 Conclusion 

4.1 Summary 

The successful management of LU/LC planning and agricultural applications relies on 

continuous monitoring of LU/LC changes and crop growing conditions. This is even more 

critical in Southwestern Ontario, Canada, where rapid urban expansion has a great 

influence on agricultural production and the economy. Frequent monitoring permits 

complete and accurate assessments of the impacts of urban development on the local and 

regional agriculture.  Remote Sensing provides an efficient and effective tool for this 

purpose.  

Traditional optical Remote Sensing data are not reliable for crop type identification and 

conditions monitoring during the growing seasons due to the frequent cloudy and rainy 

weather. SAR images are a good complementary data source for optical images. Newly 

available Quadpol SAR data contain full polarization information, and have great potential 

in extracting more LU/LC mapping and vegetation change monitoring.   

Chapter 2 presented a classification procedure for the LU/LC mapping of urban/rural fringe 

areas using multi-temporal Quadpol RADARSAT-2 images. Nine classes were identified 

with a high accuracy of over 90% in OA. The classification results were compared and 

analyzed in four aspects: decomposition parameters, classifiers, multi-date images 

combination, and post-classification processing methods.  

Chapter 3 described the sensitivities of RADARSAT-2 polarimetric parameters to 

vegetation parameters over the crop growing season from two aspects: (1) the responses of 

polarimetric parameters to the change of crop heights in different phenological stages. (2) 

The statistical relationship between polarimetric parameters and crop NDVI. 
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4.2 Conclusions 

The research presented in this thesis has given answers to the questions listed in the 

introduction: 

1. How accurately can LU/LC be classified in this urban/rural fringe areas from the 

fine beam multi-temporal RADARSAT-2 satellite images? 

An accurate LU/LC map of the urban and rural fringe area of the city London, 

Ontario has been generated with a high accuracy of 91.0% (OA) at 0.888 (Kappa). 

The results are satisfactory considering the complex natural of the boundary areas 

and various kinds of crop types growing in the rural areas.  

2. What is the suitable classification procedure for LU/LC classification in urban/rural 

fringe areas using RADARSAT-2 satellite images? 

We find that the classification procedure using Pauli decomposition parameters and 

Gaussian distribution MLC yielded better classification results than other 

parameters or the Wishart based MLC methods.  

3. What is the appropriate multi-date combination of RADARSAT-2 images in crop 

types’ classification?  

Although slightly higher accuracy can be obtained from more than four-date 

images, satisfactory classification accuracies (over 87%) have been achieved using 

images from three dates, as long as the images at the key seasons were included. 

The images taken in the early and middle of growing seasons give better 

classification results than those from the other seasons.  

4. What is the potential of RADARSAT-2 Quadpol in monitoring crop growing 

changes? 

The temporal and spatial variation of crop height over the crop growing season are 

well characterized by the polarimetric SAR parameters. The curves of entropy, HH-

wrchurch
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VV, and Anisotropy, as well as HV/VV were shown to be most close to the 

temporal profile of height in corn, soybeans, wheat, and peas respectively. 

5. How sensitive is the RADARSAT-2 polarimetric parameters to the crop vegetation 

index and parameters in terms of NDVI and crops height? 

Strong correlations were observed between the NDVI values and HV, volume 

scattering in Freeman-Durden decomposition, and Pedestal Height for soybean and 

corn. Insignificant differences were observed between the images taken at FQ21 

and FQ7 incidence angles. However, polarimetric SAR parameters, such as HH-

VV, HH/VV, PH, in FQ7 were slightly more sensitive to plant parameters than 

those in FQ21. 

4.3 Contributions of This Research 

4.3.1 Technical Contribution  

In Chapter 2 the capabilities of Gaussian based Maximum Likelihood Classifier (MLC) in 

polarimetric SAR image classification have been proved in this study. The classification 

results indicates that Gaussian distribution is an effective method of characterizing 

logarithm Pauli parameters probability distribution function. 

4.3.2 4. 3. 2 Application Contribution 

The main contributions of the study in Chapter 2 are demonstrated in two aspects: 

 (1) An operational procedure has been provided for LU/LC classification in the urban/rural 

fringe areas using polarimetric RADARSAT-2 data. Using this procedure, detailed LU/LC 

classes, including the crop types and urban land use classes, can be classified with a high 

accuracy.  

(2) An accurate and economic combination strategy of multi-date data for LU/LC 

classification has been recommended by comparison. This strategy can be used for annual 

crop inventory in Southwestern Ontario, particularly in the urban/rural fringe areas.  
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The main contributions in Chapter 3 is that it explored the potential of polarimetric 

RADARSAT-2 data for crop conditions monitoring in Southwestern Ontario, Canada. 

(1) Some polarimetric parameters are proved to be responsive to the variation of crop plants 

in Southwestern Ontario, and thus might be used for vegetation change monitoring. 

(2) The capabilities of deriving NDVI from polarimetric RADARSAT-2 data for corn and 

soybeans in Southwestern Ontario have been demonstrated through statistical correlation 

analysis. Several polarimetric parameters with high correlation coefficients were 

recommended for NDVI estimation.  

 

4.4 Possible Future Research 

4.4.1 Texture Analysis and Object Classification  

The advantages of the object-based method are not obvious while merely applied in post-

classification processing. More researches would be worthwhile in studying the benefits of 

applying object-based method to the multi-temporal Quadpol RADARSAT-2 data 

classification. In the meanwhile, the texture information from the SAR images, such as the 

gray-level co-occurrence matrices (GLCM), within each object might be useful in 

improving classification accuracy. Future research could focus on using the texture features 

extracted from the polarimetric SAR data on an object-based analysis classification.  

4.4.2 Correlation Analysis with Other Agricultural Parameters 

Crop height and NDVI are two of the most important parameters that can describe crop 

growing conditions. However, in order to accurately estimate the biomass of crops as well 

as give early predictions of field yields, more information is necessary. The correlation 

between the polarimetric SAR parameters and other crop parameters, such as Leaf Area 

Index, enhanced vegetation index, and soil moisture, deserve more study.  
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Appendices  

A Polarimetric Decomposition Theorem and Results 

A1  H/Alpha/A Decomposition and Pedestal Height 

H/Alpha/A Decomposition method was proposed by Cloude and Pottier in 1997. This method is 

based on an eigenvector analysis of 3X3 coherency T3 matrix. 

 The Entropy (H) indicates the randomness of scattering surface. It is given by Eq.(A1) 

𝐻 = ∑−𝑃𝑖𝑙𝑜𝑔3𝑃𝑖         𝑊ℎ𝑒𝑟𝑒      𝑃𝑖 =
𝜆𝑖

∑ 𝜆𝑗
3
𝑗=1

 

3

𝑖=1

 

𝜆𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑦 𝑚𝑒𝑡𝑟𝑖𝑥 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠.                                                          (𝐴1) 

 The alpha angle identified scattering types. It is defined by Eq. (A2) 

𝑒𝑖⃗⃗⃗  = exp(𝑖𝜙𝑖) [

cos𝛼𝑖

sin 𝛼𝑖 cos𝛽𝑖 exp(𝑖𝛿𝑖)

sin 𝛼𝑖 sin 𝛽𝑖 exp(𝑖𝛾𝑖)
]  

𝑤ℎ𝑒𝑟𝑒 𝑒𝑖⃗⃗⃗    𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠. 

𝛿 𝑖𝑠 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝐻𝐻 + 𝑆𝑉𝑉 𝑎𝑛𝑑 𝑆𝐻𝐻 − 𝑆𝑉𝑉. 

𝛾 𝑖𝑠 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝐻𝐻 + 𝑆𝑉𝑉 𝑎𝑛𝑑   𝑆𝐻𝑉.     

 𝜙 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒 𝑆𝐻𝐻 + 𝑆𝑉𝑉. 

 𝑇ℎ𝑒 𝑚𝑒𝑎𝑛 𝑎𝑙𝑝ℎ𝑎 𝑎𝑛𝑔𝑙𝑒 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦: 𝛼 = 𝑃1𝛼1 + 𝑃2𝛼2 + 𝑃3𝛼3 .  

𝑇ℎ𝑒 𝛼𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎 𝑎𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑖⃗⃗⃗   𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟.                   (A2) 

The anisotropy is defined by Eq. (A3) 

𝐴 =
𝜆2 − 𝜆3

𝜆2 + 𝜆3
 ;  𝜆𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑦 𝑚𝑒𝑡𝑟𝑖𝑥 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠,𝜆1 > 𝜆2 > 𝜆3             (𝐴3) 

The Pedestal Height is defined by Eq. (A4) 
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                                                       𝑃𝐻 =
𝜆3

𝜆1
                                                                               (𝐴4) 

 

A 2 Freeman Decomposition 

The Freeman-Durden decomposition is a method for converting the polarimetric SAR 

observations into a physically based, three-component scattering model, without any 

ground truth measurements (Freeman & Durden, 1998). The scattering model is 

composed of surface, double- or even- bounce and volume scatter.  

 

𝑅𝐻 = 
𝑐𝑜𝑠𝜃 − √휀𝑟 − 𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠𝜃 + √휀𝑟 − 𝑠𝑖𝑛2𝜃
 , 𝑅𝑉 = 

(휀𝑟 − 1){𝑠𝑖𝑛2𝜃 − 휀𝑟(1 + 𝑠𝑖𝑛2 𝜃)} 

(휀𝑟𝑐𝑜𝑠𝜃 + √휀𝑟 − 𝑠𝑖𝑛2𝜃 )2
, 

   𝑆 = [
𝑅𝐻 0
0 𝑅𝑉

] ,    𝐹𝑆 = |𝑅𝑉|2,   

𝑆 = [
𝑒2𝑗𝛾𝐻 𝑅𝑇𝐻𝑅𝐺𝐻 0

0 𝑒2𝑗𝛾𝑉 𝑅𝑇𝑉𝑅𝐺𝑉

] ,        𝐹𝐷 = |𝑅𝑇𝑉𝑅𝐺𝑉 |2 ,   𝐹𝑉 =
3

2
⟨𝑅𝑉𝐻𝑅𝐻𝑉

∗⟩.   

𝑤ℎ𝑒𝑟𝑒 𝜃 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑎𝑛𝑔𝑙𝑒, 휀𝑟  𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

. 𝑅𝑇𝑉𝑅𝑇𝐻 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑡𝑟𝑢𝑛𝑘 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑛𝑑 

 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.  𝑅𝐺𝑉𝑅𝐺𝐻 𝑎𝑟𝑒𝑡ℎ𝑒 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚  

𝐹𝑟𝑒𝑠𝑛𝑒𝑙 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑓𝑜𝑟 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑛𝑑  ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.  

𝛾𝑉𝑎𝑛𝑑 𝛾𝐻  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑛𝑦 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑝ℎ𝑎𝑠𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑖𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  

𝑎𝑛𝑑 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.  
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B Reference Data and Samples  

The reference data used in this study including air photo, RapidEye images, as well as 

pictures and height measurements taken in the field.  
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B1 Optical Images 

 

Figure B.1 The RapidEye image by false color composition taken in July, 2012 
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Figure B.2 The air photo of London, Ontario taken in 2009 
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B2 Training Samples and Testing Samples 

 

Figure B.3 Training and testing samples shown in a RapidEye image  
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Figure B.4 Crop samples collected from the fields shown in a RapidEye image 
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B3 LU/LC Classes and Field Work Pictures 

(a) 

(b) 

(c) 

Figure B6 LU/LC classes pictures, (a) commercial area, (b) construction site, (c) 

industrial areas 



101 

101 

 

 

 (a) 

 (b) 

 (c) 

Figure B7 LU/LC classes pictures, (a) residential area, (b) forest, (c) lawn 
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B 4 Crop Height Measurements 

Table B.1 the height measurement results from the field work. H: Height (cm), Wt: 

Wheat, Sb: Soybeans, Soil: bare soil, NSb: new soybeans, Gr: Grass,  

field 

name 

May_4/7 May_28/31 June_21/24 July_16/18 Aug_8/11 Sep_2/5 Sep_25/28 

1 Type Wt Wt Wt Wt Cut Wt Cut Wt Cut Wt Cut 

 H 30 75 70  <30  <20 

2 Type Wt Wt Wt Wt Cut Wt Cut   Wt Cut 

 H 30 75 70  <30  <20 

3 Type   Sb Sb Sb Sb Sb 

 H   20 39 55 70 65 

4 Type  Sb Sb Sb Sb Sb Sb 

 H   20 37 70 80 65-75 

5 Type Soil corn corn corn corn corn corn 

 H  20 76 180 190 230 215 

6 Type Soil corn corn corn corn corn corn 

 H  20 80-120 210 200 230 232 

7 Type Soil Sb Sb Sb Sb Sb Sb 

 H   25 43 63 70 60 

8 Type Soil corn corn corn corn corn corn 

 H  35 80-120 210 215 230 Cut 

9 Type     Wt Cut Gr Gr Gr Gr 
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 H   <15 35 <15 50  

10 Type Cut corn Sb Sb Sb Sb Sb 

 H   20-25 40 65 50 50 

11 Type Wt Wt Wt Wt Cut NSb NSb N Sb 

 H 25 70 50-60 <10 <15 33 45 

12 Type Cut corn Sb Sb Sb Sb& Gr Sb& Gr 

 H   33-40 50 60 70 Cut 

13 Type Wt Wt Wt Wt Cut       

 H 28 53 70     

14 Type   Wt     NSb NSb NSb 

 H  55    43 55 

15 Type   corn corn corn corn corn corn 

 H  30 100 225 235 250 175 

16 Type Gr Gr Gr cut Gr Gr Gr Gr 

 H  60 <15   <15 25 

17 Type Soil corn corn corn corn corn corn 

 H  25 100-120 210 230 275 220 

18 Type Wt Wt Wt Wt Cut       

 H 30 70 66     

19 Type Wt Wt Wt Wt Cut       

 H 30 70 69     

20 Type   Sb Sb Sb Sb Sb& G Sb& G 



104 

104 

 

 H   27 57 60 155 100 

21 Type   Sb Sb Sb Sb Sb Cut 

 H   26 45 63 60  

22 Type  Sb Sb Sb Sb Sb Sb Cut 

 H   30 55 65 65  

23 Type Soil Sb Sb       Sb 

 H   30 55 65 65 100 

24 Type Wt Wt Wt Wt Cut       

 H 24 73 90     

25 Type Soil corn corn corn corn corn corn 

 H  25 150 200 220 Cut Cut 

26 Type Soil corn corn corn corn corn corn 

 H  25 120-130 200 220 240 Cut 

27 Type     Soil corn corn corn corn 

 H    <15 60 160 Cut 

28 Type  Sb Sb Sb Sb Sb 

 H   24 53 57 45 Cut 

29 Type Wt Wt Wt Wt Cut       

 H  72 70     

30 Type Gr Gr Gr  Gr Gr Gr Gr 

 H  72 <15 15 35 <10 25 

31 Type Wt Wt Wt Wt Cut       
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 H 24 60 60     

32 Type Soil corn corn corn corn corn corn 

 H  25 120 190 200 210 210 

33 Type Wt Wt Wt Wt Cut Wt Cut Gr 

 H 45 75 77   40  

34 Type Wt Wt Wt Wt Cut Wt Cut Gr 

 H 50 74 74   60  

35 Type Wt Wt & Gr Wt & Gr Wt Cut Wt Cut Gr 

 H 50 90 80   80  

36 Type Wt Wt  Wt Cut        

 H 23 50      

37 Type Wt Wt Wt Cut         

 H 33 60      

38 Type Wt Wt Wt Wt Cut       

 H 31 68 40     

39 Type     Sb Sb Sb Sb Sb 

 H   22 63 75 80 Cut 

40 Type Gr  Gr  Gr  Gr  Gr  Gr  Gr  

 H   70 160 160 160 160 

41 Type   corn corn corn corn corn corn 

 H  20 120 210 275 310 300 

42 Type   Sb Sb Sb Sb Sb Sb 
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 H   20-22 48 66 67 55 

43 Type peas peas peas NSb NSb NSb NSb 

 H 8 45 55 <10 30 63 75 

44 Type   corn corn corn corn corn corn 

 H  20 64     

45 Type peas peas peas Cut peas   N Pea Cut Pea 

 H 8 35 34   20  

46 Type peas peas peas Cut peas       

 H 8 35 30     

47 Type     Sb Sb Sb Sb Sb 

 H   20 47 53 50 Cut 

48 Type     Sb Sb Sb Sb Sb 

 H   18 47 53 50 Cut 

49 Type Sb   Sb Sb Sb Sb Sb 

 H   30 63 65 63 Cut 

50 Type Sb   Sb Sb Sb Sb Sb 

 H   35 55 60 63 Cut 

51 Type     Sb Sb Sb Sb Sb 

 H   25 50 47 Cut Cut 

52 Type     corn corn corn corn corn 

 H   70 190 220 220 230 

53 Type     corn corn corn corn corn 
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 H   80-100 210 220 250 220 

 

C Classification Results 

The comparisons of classification results are compared in four aspects, Gaussian V.S. 

Wishart distribution, four sets of polarimetric parameters, different time combinations, 

and three different post-processing methods.  

C.1 Gaussian MLC and Wishart MLC 

Table C.1 Error matrix for Wishart MLC using 528, 715, and 901 images  

Reference Data  

class Hay wheat peas soybeans corn built-

ups 

CS forest lawn UA 

Hay 56 0 0 0 0 0 4 7 63 43% 

wheat 0 659 0 6 1 0 7 0 0 98% 

peas 0 13 61 0 0 11 6 0 1 66% 

soybeans 0 0 0 1072 325 1 14 16 3 75% 

corn 1 0 0 591 1585 0 9 10 0 72% 

built-ups 4 7 0 0 9 1197 8 5 15 96% 

CS 0 0 0 0 5 0 106 0 5 91% 

forest 0 0 0 0 8 358 1 793 5 68% 

lawn 9 0 0 0 1 16 0 0 77 75% 

PA 80% 97% 100% 64% 82% 76% 68% 95% 46%  
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Table C.2 Error matrix for Gaussian MLC using 528, 715, 901 images 

Reference Data  

class Hay wheat peas soybeans corn built-

ups 

CS forest lawn UA 

Hay 43 0 0 0 0 0 0 2 7 83% 

wheat 4 732 0 0 5 5 23 0 0 95% 

peas 0 0 68 0 0 0 0 0 0 100% 

soybeans 8 0 0 1553 396 0 17 27 15 77% 

corn 0 0 0 219 1636 0 3 0 0 88% 

built-ups 0 0 0 0 2 1479 4 7 3 99% 

CS 5 0 0 0 1 0 121 0 0 95% 

forest 0 2 0 0 11 226 3 855 6 78% 

lawn 13 6 0 0 0 40 0 0 178 75% 

PA 83% 95% 100% 77% 88% 99% 95% 78% 78%  

OA 0.86  KA 0.83       

 

OA 0.78  KP 0.73       
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C.2 PolSAR Parameters 

Table C.7 Error matrix for Gaussian MLC using all T3 elements from 504, 528 , 

621,715 images 

Reference Data  

class Hay whea

t 

peas soybean

s 

corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 4 23 0 0 0 0 0 0 1 14% 

wheat 47 1368 0 0 2 15 7 4 5 94% 

peas 1 25 85 0 7 0 0 0 0 72% 

soybeans 9 12 2 1328 272 49 4 246 10 69% 

corn 19 2 0 180 2013 15 0 4 0 90% 

built-ups 0 0 0 10 0 1321 5 22 26 95% 

CS 3 0 0 0 0 14 97 0 6 81% 

forest 21 9 0 71 4 79 0 949 34 81% 

lawn 8 4 0 0 0 45 4 0 256 81% 

PA 4% 95% 98% 84% 88% 86% 83% 77% 76%  

OA 0.85  KP 0.81       
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Figure C.1 classification map for Gaussian MLC using all T3 elements from 504, 

528, 621,715 images 
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Table C.4  Error matrix for Gaussian MLC using Pauli3 elements from 504, 528, 

621,715 images 

Reference Data  

class Hay whea

t 

peas soybean

s 

corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 4 23 0 0 0 0 0 0 1 66% 

wheat 47 1368 0 0 2 15 7 4 5 97% 

peas 1 25 85 0 7 0 0 0 0 100% 

soybeans 9 12 2 1328 272 49 4 246 10 78% 

corn 19 2 0 180 2013 15 0 4 0 94% 

built-ups 0 0 0 10 0 1321 5 22 26 92% 

CS 3 0 0 0 0 14 97 0 6 90% 

forest 21 9 0 71 4 79 0 949 34 85% 

lawn 8 4 0 0 0 45 4 0 256 80% 

PA 19% 99% 100% 94% 85% 88% 70% 92% 74%  

OA 0.89  KP 0.87       
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Figure C.2 classification map for Gaussian MLC using Pauli3 elements from 504, 

528, 621,715 images 
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Table C.5  Error matrix for Gaussian MLC using Freeman Durden elements from 

528, 621,715 images 

Reference Data  

class Hay whea

t 

peas soybean

s 

corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 56 109 0 0 4 12 20 15 9 25% 

wheat 20 578 0 2 0 87 45 5 19 76% 

peas 0 0 69 0 0 3 0 13 0 81% 

soybean

s 0 14 0 1511 615 2 1 34 1 69% 

corn 0 4 0 333 1507 2 1 2 1 81% 

built-ups 0 11 4 1 7 1516 14 132 9 89% 

CS 0 0 0 12 6 0 84 0 0 82% 

forest 0 18 0 0 4 184 0 737 1 78% 

lawn 6 21 0 0 0 46 14 4 173 66% 

PA 68% 77% 95% 81% 70% 82% 47% 78% 81%  

OA 0.77  KP 0.71       
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Figure C.3 classification map for Gaussian MLC using Freeman-Durden 

decomposition parameters from 528, 621,715 images 
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Table C.6  Error matrix for Gaussian MLC using H/Alpha/A elements from 504, 

528, 621,715 images 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 62 2 0 0 0 0 0 3 6 85% 

wheat 2 754 0 0 6 17 13 0 0 95% 

peas 0 0 72 0 0 0 0 0 0 100% 

soybean

s 6 0 0 1575 619 0 0 28 14 70% 

corn 0 0 0 264 1493 0 0 0 0 85% 

built-

ups 0 0 0 0 0 1534 4 3 10 99% 

CS 5 0 0 1 0 0 154 0 1 96% 

forest 0 4 0 3 8 256 9 900 8 76% 

lawn 6 0 0 0 0 39 0 0 179 80% 

PA 77% 99% 100% 85% 70% 83% 86% 96% 82%  

OA 0.83  KP 0.79       
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Figure C.4 classification map for Gaussian MLC using H/Alpha/A decomposition 

parameters from 528, 621,715 images 
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C.3 Time Combinations 

Table C.7 Error matrix for Gaussian MLC Pauli elements from 504, 528, 

621,715,901 five- date images 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 31 0 0 0 0 0 0 0 0 100% 

wheat 25 740 12 0 4 5 24 0 7 91% 

peas 0 0 56 0 0 0 0 0 0 100% 

soybean

s 4 0 0 1646 211 6 4 24 6 87% 

corn 0 0 0 126 1827 0 0 3 2 93% 

built-

ups 0 0 0 0 4 1577 11 20 9 97% 

CS 2 0 0 0 0 0 131 0 0 98% 

forest 0 0 0 0 5 138 1 844 5 85% 

lawn 11 0 0 0 0 24 0 0 180 84% 

PA 42% 100% 82% 93% 89% 90% 77% 95% 86%  

OA 0.91  KP 0.89       
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Figure C.5 classification map using Pauli3 from 504, 528, 621,715,901 images 
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Table C.8 Error matrix for Gaussian MLC Pauli elements from 504, 528, 715,901 

four- date images 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 33 0 0 0 0 0 0 0 3 92% 

wheat 13 740 13 0 1 1 7 0 0 95% 

peas 0 0 55 0 0 0 0 0 0 100% 

soybean

s 3 0 0 1617 269 0 21 27 9 83% 

corn 1 0 0 155 1768 0 13 0 0 91% 

built-

ups 0 0 0 0 7 1540 8 11 4 98% 

CS 2 0 0 0 1 0 121 0 0 98% 

forest 0 0 0 0 5 184 1 853 9 81% 

lawn 21 0 0 0 0 25 0 0 184 80% 

PA 45% 100% 81% 91% 86% 88% 71% 96% 88%  

OA 0.89  KP 0.87       
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Figure C.6 classification map using Pauli3 from 504, 528, 621,715 images 
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Table C.9 Error matrix for Gaussian MLC Pauli elements from 528, 715,901 three-

date images 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 43 0 0 0 0 0 0 2 7 83% 

wheat 4 732 0 0 5 5 23 0 0 95% 

peas 0 0 68 0 0 0 0 0 0 100% 

soybean

s 8 0 0 1553 396 0 17 27 15 77% 

corn 0 0 0 219 1636 0 3 0 0 88% 

built-

ups 0 0 0 0 2 1479 4 7 3 99% 

CS 5 0 0 0 1 0 121 0 0 95% 

forest 0 2 0 0 11 226 3 855 6 78% 

lawn 13 6 0 0 0 40 0 0 178 75% 

PA 59% 99% 100% 88% 80% 85% 71% 96% 85%  

OA 0.86  KP 0.83       
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Figure C.7 classification map using Pauli3 from 528, 715,901 images 
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Table C.10 Error matrix for Gaussian MLC Pauli elements from 528, 715 two-date 

images 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 58 9 0 0 0 0 0 0 10 75% 

wheat 9 706 0 0 0 0 10 0 0 97% 

peas 0 9 72 0 0 0 0 0 0 89% 

soybean

s 0 0 0 1556 711 0 6 21 15 67% 

corn 0 0 0 287 1681 0 0 0 0 85% 

built-

ups 0 0 0 0 0 988 0 0 0 100% 

CS 0 0 0 15 3 0 143 0 0 89% 

forest 0 6 0 1 0 80 0 677 0 89% 

lawn 12 35 0 0 0 11 0 0 136 70% 

PA 73% 92% 100% 84% 70% 92% 90% 97% 84%  

OA 0.83  KP 0.78       
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Figure C.8 classification map using Pauli3 from 528, 715 images 
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Table C.11 Error matrix for Gaussian MLC Pauli elements from 528 one-date 

image 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 46 14 0 197 126 4 7 2 50 10% 

wheat 8 711 0 4 0 79 0 0 6 88% 

peas 0 0 57 0 0 57 0 452 0 10% 

soybean

s 4 0 0 1332 932 0 80 19 1 56% 

corn 0 0 0 220 981 0 45 2 0 79% 

built-

ups 0 0 0 2 0 903 0 29 0 97% 

CS 5 0 0 88 350 0 27 0 0 6% 

forest 0 0 15 0 0 29 0 194 0 82% 

lawn 16 40 0 16 6 7 0 0 104 55% 

PA 58% 93% 79% 72% 41% 84% 17% 28% 65%  

OA 0.60  KP 0.51       
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Figure C.9 classification map using Pauli3 from 528, 715 images  
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C.4 Post-classification Processing 

Table C.12 Error matrix for five-date images results without post-classification 

processing  

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 30 2 0 0 0 0 0 0 0 94% 

wheat 17 682 11 0 0 11 20 0 6 91% 

peas 0 0 50 0 0 0 0 0 0 100% 

soybean

s 2 0 1 1429 340 0 0 21 3 80% 

corn 0 1 0 211 1841 0 0 1 0 90% 

built-

ups 0 0 0 0 0 868 10 36 0 95% 

CS 4 0 0 2 0 2 107 0 0 93% 

forest 1 1 0 0 0 54 0 552 4 90% 

lawn 7 1 0 0 0 13 0 0 120 85% 

PA 49% 99% 81% 87% 84% 92% 78% 90% 90%  

OA 0.88  KP 0.84       
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Figure C.10 classification map 528, 621, 715 images without any post-classification 

processing 
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Table C.13 Error matrix for five-date images results after sieve filtering 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 31 0 0 0 0 0 0 0 0 100% 

wheat 25 740 12 0 4 5 24 0 7 91% 

peas 0 0 56 0 0 0 0 0 0 100% 

soybean

s 4 0 0 1646 211 6 4 24 6 87% 

corn 0 0 0 126 1827 0 0 3 2 93% 

built-

ups 0 0 0 0 4 1577 11 20 9 97% 

CS 2 0 0 0 0 0 131 0 0 98% 

forest 0 0 0 0 5 138 1 844 5 85% 

lawn 11 0 0 0 0 24 0 0 180 84% 

PA 42% 100% 82% 93% 89% 90% 77% 95% 86%  

OA 0.91  KP 0.89       
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Figure C.11 classification map 528, 621, 715 images after sieving  
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Table C.14 Error matrix for five-date images results after segmentation 

Reference Data  

class Hay whea

t 

peas soybeans corn built

-ups 

CS fores

t 

law

n 

UA 

Hay 4 0 0 0 0 0 0 0 0 100% 

wheat 62 760 0 0 3 0 15 0 0 90% 

peas 0 0 72 0 0 0 0 0 0 100% 

soybean

s 
0 0 0 1721 137 0 1 26 16 

91% 

corn 0 0 0 113 1985 0 0 0 0 95% 

built-

ups 
0 0 0 0 0 1670 4 16 4 

99% 

CS 5 0 0 0 0 0 160 0 0 97% 

forest 0 0 0 9 1 160 0 892 12 83% 

lawn 10 0 0 0 0 16 0 0 186 88% 

PA 5% 100% 100% 93% 93% 90% 89% 96% 85%  

OA 0.92  KP 0.90       
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Figure C.12 classification m ap 528, 621, 715 images after segmentation 
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