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Abstract  

  

The Arabian-Nubian Shield is the largest tract of juvenile continental crust of the 

Neoproterozoic. This crust was generated due to arc-arc collision associated with the closing of 

the Mozambique Ocean, and ophiolitic rocks mark suture zones in the shield. The Sol Hamed 

ophiolite in the southeastern Egypt defines a near-source tectonic facies, representing an 

uncommon example of rocks that might be less deformed due to the movement far from the 

corresponding suture. In order to understand fluid-rock interactions before and during arc-arc 

collision, petrological, mineral chemistry, whole-rock chemistry and thermodynamic studies 

were applied to the Sol Hamed serpentinized ophiolitic mantle fragment. These studies reveal 

that the protolith had a harzburgite composition that probably originated as forearc mantle. 

Protolith alteration resulted from two stages of fluid-rock interaction. The first stage occurred as 

a result of infiltration of concentrated CO2-rich fluid released from carbonate bearing sediments 

and altered basalt at the subduction zone. The alteration occurred during isobaric cooling at a 

pressure of 1 kbar. The fluid composition during the isobaric cooling was buffered by the 

metamorphic reactions. The second stage of fluid-rock interactions took place through prograde 

metamorphism. The increase in pressure during this stage occurred as a result of thrusting within 

the oceanic crust. In this process the forearc crust was loaded by roughly 20-30 km of overthrust 

rocks.      
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 Sol Hamed ophiolitic has a harzburgite composition as protolith 

  The protolith originated as forearc mantle 

 Protolith alteration resulted from two stages of fluid-rock interaction 

 First stage is due to infiltration of CO2-rich fluid during isobaric cooling  

 Second stage of fluid-rock interactions took place through prograde 

metamorphism  
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Abstract  25 

  26 

The Arabian-Nubian Shield is the largest tract of juvenile continental crust of the 27 

Neoproterozoic. This crust was generated due to arc-arc collision associated with the 28 

closing of the Mozambique Ocean, and ophiolitic rocks mark suture zones in the shield. 29 

The Sol Hamed ophiolite in the southeastern Egypt defines a near-source tectonic facies, 30 

representing an uncommon example of rocks that might be less deformed due to the 31 

movement far from the corresponding suture. In order to understand fluid-rock 32 

interactions before and during arc-arc collision, petrological, mineral chemistry, whole-33 

rock chemistry and thermodynamic studies were applied to the Sol Hamed serpentinized 34 

ophiolitic mantle fragment. These studies reveal that the protolith had a harzburgite 35 

composition that probably originated as forearc mantle. Protolith alteration resulted from 36 

two stages of fluid-rock interaction. The first stage occurred as a result of infiltration of 37 

concentrated CO2-rich fluid released from carbonate bearing sediments and altered basalt 38 

at the subduction zone. The alteration occurred during isobaric cooling at a pressure of 1 39 

kbar. The fluid composition during the isobaric cooling was buffered by the metamorphic 40 

reactions. The second stage of fluid-rock interactions took place through prograde 41 

metamorphism. The increase in pressure during this stage occurred as a result of thrusting 42 

within the oceanic crust. In this process the forearc crust was loaded by roughly 20-30 km 43 

of overthrust rocks.      44 

 45 

Key-words: Arabian-Nubian Shield; Forearc peridotite; Ophiolites; Carbonatization; 46 

Thermodynamic modelling; T-XCO2.  47 
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1. Introduction  48 

Arabian-Nubian Shield (ANS) in Northeast Africa and West Arabia is the largest tract of 49 

juvenile continental crust of Neoproterozoic age on Earth (Patchett and Chase 2002; 50 

Stern et al. 2004). This crust was generated when arc terranes were created within and 51 

around the margins of the Mozambique Ocean, which formed in association with the 52 

breakup of Rodinia ~ 800–900 Ma (Stern 1994; Hassan et al. in-review). These crustal 53 

fragments collided as the Mozambique Ocean closed around 600 Ma (Meert 2003), 54 

forming arc-arc sutures, composite terranes, the Arabian-Nubian Shield (Fig. 1), and the 55 

larger collisional belt known as the East-African Orogen (Stern 1994; Kusky et al. 2003, 56 

Stern et al. 2004). Due to this collision processes a supercontinent variously referred to as 57 

Greater Gondwanaland (Stern 1994), Pannotia (Dalziel 1997) or just Gondwana (e.g. 58 

Abu-Alam et al. 2013) was formed.   59 

Ophiolitic rocks are remarkably abundant in the ANS. They are scattered across most of 60 

the shield, over a distance of ~ 3000 km from the farthest north (Gebel Ess) almost to the 61 

equator, and from Rahib in the west to Gebel Uwayjah (45º E) in the east (Fig. 1). The 62 

abundance of the ophiolites is a further indication that the Arabian-Nubian Shield was 63 

produced by processes similar to those of modern plate tectonics (Stern et al. 2004). 64 

The ophiolitic rocks of Eastern Desert (ED) of Egypt (Fig. 1) are interpreted to be formed 65 

in a suprasubduction zone (SSZ) (e.g. Ahmed et al. 2006; Azer and Stern 2007) which 66 

operated at forearc convergent margin (e.g. Stern et al. 2004; El-Gaby 2005). The East- 67 

and West-Gondwana collision led to obduction of the SSZ ophiolitic rocks over a 68 

continental margin (Akaad and Abu El Ela 2002; El-Gaby 2005) of the West-Gondwana 69 
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(Abd El-Rahman et al. 2009). Subduction was active while the process of ophiolitic 70 

overthrusting was operative along thrust planes (Kröner et al. 1987; Stern 1994).  71 

The ophiolite obduction and overthrusting were associated with fluid-rocks interaction 72 

and hence alteration, serpentinization and metasomatism took place (e.g. Hamdy et al. 73 

2013) but it is often not known whether this alteration occurred before, during or after the 74 

obduction (Stern et al. 2004). On other hand, much doubt exists around origin and 75 

composition of the fluid during the alteration process. Some authors suggested that the 76 

alteration of ultramafic rocks – the dominant component of the ANS’s ophiolites –77 

occurred by interaction with hot fluid during seafloor weathering (e.g. Lebda 1995; Li 78 

and Lee 2006). Other authors believed that the alteration took place by infiltration of 79 

metamorphic and hydrothermal fluid along major tectonic fractures during or after rock 80 

exhumation (e.g. Hyndman and Peacock 2003; Hamdy 2004; Hamdy and Lebda 2007). 81 

Sol Hamed ophiolite in the southeastern Egypt and northeastern Sudan (Fitches et al. 82 

1983) differs from other ophiolites further north in the ED of Egypt in being an elongated 83 

belt defining a near-source tectonic facies (Abdelsalam and Stern 1996). To the north, 84 

ophiolites occur in tectonic mélanges or as olistostromal debris, indicating a distal 85 

tectonic facies. This interpretation implies the ophiolitic rocks north of the Sol Hamed 86 

represent a far-travelled ophiolitic nappe, transported to the north away from its 87 

corresponding suture. Thus the Sol Hamed rocks represent an uncommon example in the 88 

Eastern Desert that might be less deformed by the movement along faults that occurred 89 

after the closure of the Mozambique Ocean. In this work, petrological relationships, 90 

mineral chemistry, geochemistry and thermodynamic modelling are described and 91 

applied to rocks from Sol Hamed ophiolite (Fig. 2). The results help to more clearly 92 
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define the nature of the fluid-rock interactions process occurred in the intraoceanic 93 

collision of the ANS.  94 

 95 

2. Geological setting   96 

Many of the ultramafic outcrops in the Arabian-Nubian Shield are detached, scattered 97 

and isolated (Fig. 1) due to intrusion of syn- and post-tectonic plutons. Gass (1977) noted 98 

that these ultramafic bodies have tectonic contacts with other Pan-African rocks. Some of 99 

these ultramafic are recognized as ophiolites, representing obducted fragments of an 100 

oceanic lithosphere that existed between the Proterozoic island arcs (Gareson and 101 

Shalaby 1976; El-Ramly et al. 1993). Dixon (1979) estimated that the ultramafic bodies 102 

account for 5.3% of all Precambrian outcrops in Egypt. Serpentinized ultramafics 103 

constitute the major part of these ophiolite complexes (Ahmed et al. 2001).  104 

The Sol Hamed ophiolite is a part of Allaqi-Heiani-Onib-Sol Hamed-Yanbu arc-arc 105 

suture (Abdelsalam and Stern 1996; Abdelsalam et al. 2003). This arc-arc suture is 106 

considered – along with the Ariab-Nakasib-Thurwah-Bir Umq suture farther south in 107 

Arabia and Sudan (Johnson et al. 2004) to be one of the two longest and most complete 108 

Neoproterozoic ophiolite-decorated sutures in the ANS (Azer et al. 2013). Stern et al. 109 

(1990) proposed that the Allaqi-Heiani-Onib-Sol Hamed-Yanbu suture represents a south 110 

verging nappe which was refolded around a subhorizontal east-west trending axes to 111 

produce upright antiforms and late-stage southeast verging thrusts. Vergence of the 112 

ophiolite nappe was used to infer a north dipping subduction zone along the line of a 113 

suture which lies north of the Allaqi-Heiani-Onib-Sol Hamed-Yanbu ophiolite. Ali et al. 114 
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(2010) suggested two stages for the evolution of Allaqi-Heiani-Onib-Sol Hamed-Yanbu 115 

suture (~810–780 Ma and ~750–730 Ma). 116 

The ultramafic rocks of Sol Hamed (Fig. 2) are composed of serpentinized peridotite 117 

forming the base of a dismembered ophiolitic sequence that comprises also metagabbros, 118 

pillow lavas and pelagic sediments (Abu El-Laban 2002). They occur as sheets and lenses 119 

enclosed within mélange matrix comprises island arc volcanosedimentary assemblages, 120 

gneiss and syn- to post-orogenic intrusions (e.g. Kröner et al. 1987; Greiling et al. 1988; 121 

Taylor et al. 1993; Abd El-Naby and Frisch 2002; Kusky and Ramadan 2002; 122 

Abdelsalam et al. 2003; Zoheir and Klemm 2007; Ali et al. 2010). Serpentinized 123 

ophiolitic peridotites form ridges about 20 km long and about 0.4–1.8 km wide, elongated 124 

in NE-SW direction. They are mostly massive but are sometimes brecciated and 125 

fragmented along their contacts with the mélange matrix. Some portions contain relicts of 126 

primary minerals and others are extremely altered, especially along thrusts and shear 127 

zones, with the development of talc, talc-carbonate and reddish brown quartz-carbonate 128 

rock (listwaenite).  129 

Chromitite deposits occur mainly as lenticular bodies of variable dimensions up to 25 m 130 

length × 6 m width, trending ENE-WSW. Thick pods are abundant in serpentinites that 131 

are mostly derived from dunite. Micro-lenses and thin planar segregations occur in the 132 

serpentinized peridotite. Gradual contacts between massive ore and serpentinized dunite 133 

over a meter-range are frequently observed. A typical contact shows gradation from fine-134 

grained disseminated chromite in the dunite through nodular, to massive coarse-grained 135 

chromite ore. The highly deformed chromite bodies are the most abundant. Magnesite 136 

veins occur in shear zones close to the eastern periphery of the serpentinite rocks. Hamdy 137 
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(2007) based on the C-O isotopes of these veins estimated that carbon was supplied from 138 

both geothermal fluids (giving magnesite with δ
13

C values from –2.06 to –4.34‰ VPDB) 139 

and metamorphic carbonaceous sediments (giving magnesite with δ
13

C values from –9.44 140 

to –10 ‰ VPDB).  141 

 142 

3. Petrography   143 

Variable degrees of alterations are observed in the studied ultramafic rocks. Original 144 

peridotite minerals have been preserved (Table 1) in partly altered peridotites. The 145 

dominant serpentine mineral is lizardite, whereas chrysotile is subordinate. The lizardite 146 

forms psuedomorphic mesh and bastite textures after olivine and orthopyroxene and 147 

sometimes occurs as interlocking and penetrating grains (non-pseudomorphic). The 148 

chrysotile occurs as cross fiber veins traversing the lizardite matrix. Serpentine minerals 149 

appear to be accompanied by shedding of fine-grained magnetite, which concentrates in 150 

veins cutting zoned chromite (Fig. 3a) or along relict pyroxene cleavages. Pyroxene 151 

relicts occur as inclusions in anthophyllite (Fig. 3a). The anthophyllite is a common 152 

replacement mineral of orthopyroxene, where it initially grows along cleavage planes and 153 

eventually replaces the whole grain. Talc is not abundant in the studied serpentinites. It 154 

forms fine shreds, dense fibers and medium grained flaky crystals (0.01–0.04 mm). 155 

Perfect cleavage, straight extinction and high interference colours are characteristic 156 

features of the talc. The talc is pseudomorphic after anthophyllite.  It is homogenous and 157 

commonly associated with the alteration of orthopyroxene. All serpentinite samples 158 

contain zoned-chromite (Fig. 3b) and sulphide grains. Chromite  occurs  as  disseminated  159 
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subhedral  and anhedral  crystals  of  reddish  brown  colour. Some chromite grains look 160 

homogeneous in reflected light.  161 

 162 

4. Mineral chemistry   163 

Different mineral phases were examined in the Institute of Geological Sciences of Polish 164 

Academy of Sciences (IGS-PAS). The electron microprobe analyses were carried out by 165 

JEOL-JXA-840A scanning electron microscope equipped with Link Analytical AN-166 

1000/855 energy dispersive X-ray spectrometer. The analytical conditions were 15 kV 167 

accelerating voltage and 35 nA beam current. Mineral formula and activity of the end-168 

members were calculated by AX program (http://www.esc.cam.ac.uk/research/research-169 

groups/holland/ax). The chemical formula of the serpentine minerals was calculated 170 

based on 28 oxygen atoms and ignoring the H2O, pyroxene formula based on 6 oxygen 171 

atoms. 11 oxygen atoms and ignoring the H2O were used to calculate talc formula, 24 172 

oxygen atoms were used for the spinel while the carbonate formula was calculated based 173 

on 2 cations. The mineral abbreviations which will be used in the following sections are 174 

from Holland and Powell (2011).   175 

CaO content is below 0.03 wt% in the orthopyroxene and FeO content is in the range of 176 

4.85 – 5.09 wt% while MgO content is around 35 wt% (Table 2). This reveals that the 177 

main pyroxene end-member is enstatite. SiO2 content of the serpentine ranges between 178 

40.62 and 44.54 (Table 2). Al2O3 is in the range of below the detection limit up to 1.79 179 

wt%.  FeO shows a wide range (0.83 – 6.21 wt%). MgO ranges between 34.37 to 39.35 180 

wt%. The MgO and the FeO ranges indicate ionic substitution between Fe
2+

 and Mg
2+

. 181 

Figure 4a shows limitation of the substitution between Al
3+

, Mg
2+

 and Si
4+ 

in the 182 
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serpentine crystals. FeO and Cr2O3 contents in lizardite increase (0.94 to 6.21 wt% and 183 

from below detection limit to 0.36 wt% for FeO and Cr2O3, respectively) distinctly with 184 

increasing degree of alteration from partly to completely serpentinized rocks (Table 2). 185 

Chrysotile shows that Al and Cr are relatively immobile during recrystallization of 186 

lizardite and therefore remain in their original crystal lattice.  187 

Low Al2O3 and TiO2 contents in talc chemistry reveal limitation in substitution between 188 

Si, Ti and Al. The main ionic substitution is between Mg
2+

 and Fe
2+

 (Table 3). The 189 

activities of talc and Fe-talc end-members are in the range of 0.68-0.85 and 0.00013-190 

0.00061, respectively. Table (4) shows chemical analyses of the carbonate minerals. The 191 

high concentrations of MgO and FeO (35.53-40.14 and 8.46-14.1 wt%, respectively) 192 

indicate high activity of the magnesite and the siderite end-members. The CaO content is 193 

in the range of 0.04 to 0.27 wt% revealing low activity of the calcite.   194 

Three compositional zones are distinguished for the spinel minerals. The composition of 195 

core, intermediate and rim zones is given in Table (5) and plotted in Al-Cr-Fe
3+

 triangle 196 

of Stevens (1944) (Fig. 4b). Cores and intermediates zones have aluminian chromite to 197 

ferritchromite composition. Composition of the outer rim is Cr-magnetite which is nearly 198 

devoid of Al and lie along the Cr–Fe
3+

 sideline (Fig. 4b). The studied spinels show 199 

metamorphic conditions correspond to that of the upper greenshist to the transitional 200 

greenschist-amphibolite facies (Fig. 4b).  201 

The variation in the spinel composition can be interpreted as a result of chemical 202 

alteration under hydrothermal conditions (Abzalov 1998; Barnes 2000; Proenza et al. 203 

2004). The alteration is accompanied by decrease in Al, Mg and Cr contents and 204 

consequence increase in Fe
3+

 and Fe
2+

. Apparently with the increasing of the alteration, 205 
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Fe releases from olivine and orthopyroxene and Cr releases from chromite and are 206 

accommodated in the serpentines. In addition, the wide compositional variation 207 

(particularly in Al2O3) reflects temporal and/or spatial variations in melt types (boninitic 208 

and tholeiitic) that were generated from, and emplaced in subarc mantle domains in a 209 

suprasubduction zone environment (Hamdy and Lebda 2011).  210 

 211 

5. Whole-rock chemistry   212 

Representative bulk rock chemistry of Sol Hamed serpentinite is given in Table (6). 213 

Chemical analyses of major and some trace elements were carried out at the 214 

geochemistry labortory of the IGS-PAS. Concentrations of major and trace elements were 215 

determined after microwave-assisted acid digestion with atomic absorption 216 

spectrophotometer (AAS-PU 9100xUNICAM). Before digestion samples were heated to 217 

1100 to determine loss on ignition (LOI). Analytical precession was better than 0.5% for 218 

major elements and 4 ppm for trace elements.  219 

Due to the almost complete serpentinization of some of the Sol Hamed peridotites, modal 220 

compositions could not be determined. Therefore, normative compositions were 221 

calculated from anhydrous analyses using the CIPW norm, assuming a Fe2O3/FeO ratio 222 

of 0.2 (Melcher et al. 2002), and plotted in Streckeisen (1976) classification diagram (not 223 

shown). The normative contents of olivine, orthopyroxene, and clinopyroxene of the 224 

studied Sol Hamed serpentinites classify them as harzburgites. Trace element values are 225 

typical of residual mantle (e.g. high Cr (2.696–2.742 ppm), Ni (1.650–2.381 ppm) and Co 226 

(116.20-166.79 ppm)). In contrast, the contents of Ba, Pb, Sr and, Li are highly 227 

concentrated compare to depleted and pristine mantle peridotites (McDonough and Sun 228 
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1995). This enrichment in the fluid-mobile elements may be directly related to the 229 

serpentinization process or due to metasomatism by subduction-related fluids (Hamdy et 230 

al. 2013).  231 

 232 

 233 

6. Discussion  234 

6.1. Origin and tectonic setting of the serpentinite protolith 235 

Earth contains two main shallow mantle domains: sub-oceanic lithosphere and sub-236 

continental lithosphere. The Sol Hamed harzburgite falls within the oceanic array (Niu 237 

2004) in MgO/SiO2–Al2O3/SiO2 space (Fig. 5). The oceanic array is parallel to the 238 

terrestrial array but offset to lower MgO/SiO2 values, presumably due to loss of MgO 239 

during low-temperature seafloor weathering and not due to the serpentinization process 240 

itself (Snow and Dick 1995; Niu 2004). Oceanic peridotites may originate in a variety of 241 

tectonic environments including mid-ocean ridge (MOR), suprasubduction zone (SSZ) 242 

and rifted margins settings. We term these suprasubduction zone (SSZ) peridotites 243 

(Pearce et al. 1984); a group that incorporates peridotites from both island arcs and 244 

spreading centers above subduction zones. These discrete genetic types are distinct in 245 

mineralogical and geochemical characteristics of mantle residues. Composition of the 246 

unaltered accessory spinel is extensively used as a petrogenetic and geotectonic indicator 247 

(e.g. Barnes and Roeder 2001). Chromium numbers [Cr/(Cr+Fe
3+

+Al)] higher than 0.6 248 

are usually restricted to subduction-related rocks (Dick and Bullen 1984). Ishii et al. 249 

(1992) used the Mg# [Mg/(Mg+Fe
2+

)] and Cr# of the spinel to discriminate between 250 

peridotites from MOR, forearc and back-arc settings. Spinels from the Sol Hamed 251 
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serpentinites lie in the chemical space of the forearc peridotite (Fig.6) and distinctly 252 

higher than spinels from MOR and back-arc basin in the Cr#. This indicates that the Sol 253 

Hamed serpentinites represent a fragment of oceanic lithosphere that has been 254 

incorporated above subduction zone in a forearc.  255 

Hellebrand et al. (2001) tested which trace elements correlate with major element 256 

indicators of partial melting in central Indian ridge peridotites. The most common of 257 

these is the Cr# in spinel. They found a well-defined correlation between moderately 258 

incompatible elements, such as HREEs in clinopyroxene with spinel Cr#. Hellebrand et 259 

al. (2001) developed an empirical equation (F = 10 ln (Cr#) + 24) to estimate the degree 260 

of melting F (in percent) as a function of spinel Cr#. Using the equation of Hellebrand et 261 

al. (2001), the estimated melting in the studied peridotites ranges from 20 to 22%. 262 

 263 

6.2. Thermodynamic modelling  264 

All the thermodynamic calculations in the following sections were calculated by 265 

THERMOCALC (Powell and Holland 1988), PerPle_X (Connolly 1990) and using the 266 

internally consistent dataset of Holland and Powell (2011). Lizardite bearing reactions 267 

which were proved experimentally (i.e. liz = br atg (Evan 2004), liz = chr (Chernosky 268 

1975), liz = ta fo clin H2O (Caruso and Chernosky 1979)) will be only used (Fig. 7).  269 

Figure 7 shows a P-T grid in the system CFMASH for the following end-members: atg, 270 

chr, en, fs, di, hed, fo, fa, anth, tr, clin, ta, sp, herc, mgts, fta, br, H2O. Activity of the H2O 271 

is imposed to be the unity therefore all the CO2 bearing phases are not seen in this grid. 272 

The P-T grid shows forty six univariant equilibria, five invariant points and three 273 

experimental lizardite bearing reactions. All the H2O bearing univariant reactions show 274 
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steep slope in the P-T space. Consequently these reactions can be used as temperature 275 

indicators. Two water absent invariant points (508 
o
C-1.08 kbar and 542 

o
C-2.2 kbar) 276 

involve reactions with notable change in the volume and can be used as pressure 277 

indicators. For better reading to the P-T grid, only the interesting reactions are shown in 278 

Figure 8 using two different scales for temperature axe.   279 

 280 

Anthophyllite and talc formation  281 

One of the key petrographic features is the relation between pyroxene, anthophyllite and 282 

talc. The anthophyllite is a common replacement mineral of orthopyroxene. The 283 

anthophyllite can be formed due to eight metamorphic reactions (Fig. 8), however the 284 

absence of clinochlore and the formation of the talc psuedomorphic after anthophyllite 285 

make the only possibility to crystallize anthophyllite is due to breakdown of high grade 286 

minerals (i.e. pyroxene). Two reactions can produce anthophyllite during a retrograde 287 

path at relatively high pressure (> 1.7 kbar) and above the atg-chr-fs-di-hed-fa-tr-ta-herc-288 

fta-br-mgts invariant point, however, these reactions produce clinochlore in considerable 289 

values. This makes reaction fa anth=fs en H2O and the lower pressure part (< 1.7 kbar) of 290 

reaction fo anth=en H2O are preferred way to produce anthophyllite in the assumed fluid 291 

composition.  292 

Eight reactions can produce talc as a retrograde phase due to breakdown of high grade 293 

assemblage that includes anthophyllite. Four reactions can be excluded since they contain 294 

clinochlore as a reactant or a product. The petrographic observation “orthopyroxene 295 

consumed due to talc growing” makes fa ta=fs anth H2O, ta sp=H2O mgts anth reactions 296 

(Fig. 8) are the favorable equilibria to produce talc. The two talc producing reactions 297 
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have a temperature range 630 - 790 
o
C in a wide pressure condition. The pressure 298 

conditions of anthophyllite formation (< 1.7 kbar) make the upper temperature limit of 299 

talc producing reactions is below 730 
o
C. Other reactions can produce anthophyllite and 300 

talc in the same pressure-temperature range but with different fluid compositions, these 301 

reactions will be discussed in the fluid composition section.  302 

Talc and anthophyllite formations indicate isobaric cooling path at pressure below 1.7 303 

kbar and in a temperature range of 800-550 
o
C. The cooling path can be extended to a 304 

lower temperature condition based on the presence of lizardite in the studied assemblage. 305 

This assumption is in agreement with the greenschist facies conditions of the intermediate 306 

zone of the spinel grains (Fig. 4b).  307 

Stern et al. (2004) reconstructed the ophiolitic sequence of the Arabian-Nubian Shield 308 

and concluded that the ophiolitic successions have crustal thicknesses of 2.5 to 5 km. 309 

These crustal thicknesses are equivalent to pressure 0.7 and 1.4 kbar, respectively (Fig. 8) 310 

assuming lithostatic conditions and a rock density of 2.84 x 10
3
 kg/m

3
 (Carlson and 311 

Raskin 1984). This constrains pressure conditions of the formation of the anthophyllite 312 

and talc process by 0.7-1.4 kbar (the retrograde path as shown by the black arrow in 313 

Figure 8).     314 

 315 

Chrysotile formation and prograde metamorphism  316 

Presence of chrysotile fibers traversing the lizardite matrix indicates that the rocks passed 317 

the reaction liz = chr (Fig. 8). Hamdy and Lebda (2007) showed that the magnetite rims 318 

of the chromite grains of Malo Grim serpentinites (part of the Sol Hamed ophiolites) 319 

equilibrated at a temperature range of 500-550 
o
C. These conditions are in agreement 320 
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with the composition of the rim zones of the spinel grains which show condition of 321 

amphibolite facies (Fig. 4b). Neither petrographic observations nor mineral chemistry 322 

data allow predicting the pressure conditions of chrysotile formation. 323 

The Arabian-Nubian shield ophiolites were obducted within volcanic arc assemblages 324 

due to arc-arc collision process (e.g. Stern 1994; Kusky et al. 2003; Meert 2003; Stern et 325 

al. 2004). Obducted ophiolites, associated volcanics and sediments may represent an 326 

accretionary prism system. Here we will follow the assumption of Valli et al. (2004) that 327 

average thermal gradient of ancient and modern accretionary prisms can be in the range 328 

of 30 
o
C/km and 10 

o
C/km, respectively (Fig. 8). El-Naby and Frisch (1999) studied 329 

Allaqi-Heiani ophiolite belt and they concluded that these ophiolites record temperature 330 

of 700 
o
C and pressures up to 8 kbar. These conditions can be converted to a thermal 331 

gradient of 25 
o
C/km which locates between the two assumed thermal gradient. This 332 

thermal gradient cuts the predicted temperature (500-550 
o
C) in a pressure range of 5.5-333 

6.5 kbar (Fig. 8).  334 

 335 

Fluid composition and T-XCO2 section 336 

Due to the ambiguity around the pressure condition during the prograde path of the 337 

studied samples, the fluid composition will be studied only along the cooling path. Figure 338 

9 shows a T-XCO2 grid in the system CFMASH-CO2 for the following end-members: 339 

anth, atg, chr, en, fs, di, hed, fo, fa, ta, sp, herc, mgts, fta, mag, sid, H2O, CO2 at 1 kbar 340 

(the cooling path of Figure 8). The T-XCO2 grid was constructed in the full XCO2 range 341 

(not shown here), however all anthophyllite and talc producing invariant points occur at 342 

high XCO2 (> 0.88). In this type of sectioning (P-, T-XCO2), mineral phases are produced 343 
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mainly at the invariant point conditions (Spear 1993). The grid includes twenty five 344 

univariant reactions and seven invariant points. All of these invariant points occur at 345 

temperature range of 450-520 
o
C (Fig. 9). All the invariant points above 500 

o
C are 346 

magnesite-siderite absent invariant points. At 500 
o
C and XCO2 (0.913), magnesite-347 

bearing invariant point appears. With cooling, the carbonate phase (siderite) becomes 348 

more stable (at 460 
o
C and XCO2 (0.978)). Below 450 

o
C, the magnesite becomes 349 

metastable (Fig. 9). These invariant points show sequence of fluid evolution in the Sol 350 

Hamed serpentinites. 351 

At XCO2 range (0.88-0.99), the first talc producing reaction (ta sp=mgts anth H2O (Fig. 352 

9)) is at higher temperature than any anthophyllite producing reactions which were 353 

discussed in the P-T grid. Consequently reaction (herc anth=mgts en fs H2O) is the 354 

preferred anthophyllite producing reaction. Once the rocks started the cooling path, the 355 

anthophyllite producing reaction (op. cit.) buffers the fluid composition of the system and 356 

the T-XCO2 path (dashed arrows in Figure 9) followed the reaction till the mineral 357 

composition arrives the atg-chr-di-hed-fo-fa-sp-fta-mag-sid-CO2 invariant point (510 
o
C; 358 

0.998 (XCO2)). The assemblage stayed at the invariant point conditions until one of the 359 

phases (i.e. fs, herc, mgts) was completely consumed or excluded out the equilibrium. At 360 

this stage of the path, the rocks follow the isothermal reaction (ta en=anth H2O) which 361 

produces a considerable amount of talc. This reaction crosses all the invariant points at 362 

510 
o
C with different XCO2 composition (Fig. 9). Presence of magnesite in the studied 363 

assemblage (Table 4) and presence of magnesite-bearing invariant point at 500 
o
C and 364 

XCO2 (0.913) make the only possibility to terminate the talc producing reaction (op. cit.) 365 

is at the atg-chr-fs-di-hed-fa-sp-herc-mgts-fta-mag-sid-CO2 invariant point (510 
o
C; 366 
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0.885 (XCO2)). The assemblage stayed at this invariant point until the anthophyllite was 367 

trapped and excluded out the equilibrium, afterward the mineral equilibrium follows the 368 

reaction (fo ta=en H2O) until the magnesite-bearing invariant point at 500 
o
C and XCO2 369 

(0.913) which allows the first appearance of carbonate-bearing phase. Forsterite 370 

consuming drives the equilibrium to leave the magnesite-bearing invariant point toward 371 

the magnesite-siderite-bearing invariant point (460 
o
C and XCO2 (0.978)). Subsequently 372 

the reaction (ta sid=en fa CO2 H2O) buffers the equilibrium until the magnesite becomes 373 

metastable at 450 
o
C and 0.984 (XCO2). Finally, reaction (ta sid=en fs CO2 H2O) 374 

produces talc and siderite with constant consuming rate of H2O and CO2.  375 

  376 

6.3. Fluid source and Tectonic implications  377 

Decarbonation of altered metabasalts and carbonates of marine sediments at low pressure 378 

condition has been considered as a possible mechanism in order to explain CO2 fluxes at 379 

convergent margins (Staudigel et al. 1996; Kerrick and Connolly 1998; Fischer et al. 380 

1998; Molina and Poli 2000). When hot geotherms are assumed, CO2-rich fluids can be 381 

transferred from the altered oceanic crust to shallower reservoirs (Fig. 10) in the forearc 382 

region (Molina and Poli 2000). This mechanism can account for the CO2 enrichment of 383 

lithospheric mantle on a long-term scale and it may explain the occurrence of carbonates 384 

in peridotite xenoliths (Ionov et al. 1993) as well as in some camptonitic lamprophyres 385 

(Bea et al. 1999). Here this mechanism can be used to explain the high CO2 fluxes in the 386 

studied ophiolites (XCO2 = 0.89-0.99 (Fig. 9)). This high CO2 fluid content reacted with 387 

the ophiolitic rocks in the forearc (Fig. 10) under pressure condition of 1 kbar and 388 

temperature of around 800 
o
C (Fig. 8). Stern and Gwinn (1990) argued on the basis of C 389 
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and Sr isotopic that carbonate intrusions in the Eastern Desert of Egypt - which could be 390 

related to the carbonatizing fluids affecting Arabian-Nubian Shield ultramafic rocks - are 391 

mixtures of mantle derived and remobilized sedimentary carbonate. Hamdy and Lebda 392 

(2007) concluded the same conclusion based on carbon isotope composition of south 393 

Eastern Desert of Egypt.  394 

T-XCO2 grid (Fig. 9) shows that the fluid composition was buffered all the time by the 395 

metamorphic reactions (e.g. Greenwood 1975; Rice and Ferry 1982; Spear 1993; Abu-396 

Alam et al. 2010). Field, petrographical and mineral chemistry evidences support this 397 

thermodynamic observation. Majority of the T-XCO2 path took place at a temperature 398 

range of 450 – 550 
o
C. Most of the reactions in this range of the temperature occurred as 399 

isothermal reactions which means that the rocks were held at this temperature for a time 400 

period enough to consume one phase or more to drive the equilibria toward a lower 401 

temperature conditions. Figure 5a of Hamdy and Lebda (2007) shows that spinel minerals 402 

of the studied ophiolites were re-equilibrated at temperature condition of 500-550 
o
C 403 

which is the same range provided by the T-XCO2 grid. Presence of magnesite in 404 

considerable amount in thin-section scale as well as presence of small pockets and veins 405 

of magnesite in outcrop scale, indicate that the rocks were held for a long time at the two 406 

magnesite-bearing invariant points (at temperature 500 and 460 
o
C (Fig. 9)). 407 

The high pressure condition (8 kbar) which was assumed by El-Naby and Frisch (1999) 408 

and which was used here to predict the geothermal gradient and the prograde path (the 409 

black arrow of Figure 8) as well the predicted pressure range (5.5-6.5 kbar from this 410 

study) can be explained in the context of extensive duplex array and thickness of the 411 

original ophiolitic sequence (e.g. Hirono and Ogawa 1998; Ueno et al. 2011). Oceanic 412 
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crust in a forearc setting can be overloaded by obduction of a crust that formed in a mid-413 

oceanic ridge and the thrusting in the forearc crust itself can add more loads (Fig. 10). 414 

Original thickness of the Arabian-Nubian Shield’s ophiolitic sequence is 2.5 to 5 km 415 

(Stern et al. 2004). Following oceanic crust density of 2.84 x 10
3
 kg/m

3
 (Carlson and 416 

Raskin 1984), the studied ophiolites were overloaded by 20-28 km thickness of obducted 417 

and thrusted oceanic crust from both mid-oceanic and forearc settings. This is in 418 

agreement with thickness of the original sequence by a factor in range of 5.6 and 11.2. 419 

The same thickening factors were suggested numerically by Ueno et al. (2011). 420 

One of the opened questions around the ophiolites of the Arabian-Nubian Shield is “when 421 

did the alteration take place? Is it before or after the obduction? (Stern et al. 2004)”. 422 

Clearly, petrographic observations and thermodynamic modelling that are presented here 423 

give an answer to this question. The studied ophiolites show two segments of the P-T 424 

path; one is the isobaric cooling path at pressure condition of 1 kbar and the second is 425 

prograde path from a pressure 1 kbar up to 5.5-6.5 kbar (black arrow of Figure 8). The 426 

isobaric cooling path occurred under oceanic crustal thickness of 3.5 km which means 427 

that the first stage of alteration took place before the obduction while the second stage 428 

occurred during thrusting and obduction processes (prograde metamorphism). At today 429 

situation, the ophiolites are thrusted over volcanic arc-assemblage. The volcanic arc-430 

assemblage of the Arabian-Nubian Shield records a peak pressure around 3-4 kbar (e.g. 431 

Noweir et al. 2006; Abu-Alam 2005; Abu-Alam and Farahat unpublished data). This can 432 

be ensued only if the ophiolites achieved the peak condition (5.5-6.5 kbar) before the 433 

final thrusting above the low-pressure arc-assemblage.   434 

 435 
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7. Conclusions   436 

The Sol Hamed serpentinised ophiolitic mantle peridotite in the south Eastern Desert of 437 

Egypt at the Allaqi-Heiani-Onib-Sol Hamed-Yanbu arc-arc suture formed in forearc 438 

setting and later thrusted over low-grade arc-assemblage of the Arabian-Nubian Shield. It 439 

shows a P-T path of an isobaric cooling at lithostatic pressure of 1 kbar which is 440 

equivalent to an oceanic crustal thickness of 3.5 km. The alteration occurred before the 441 

thrusting and at high CO2 fluxes. The decarbonation of altered oceanic metabasalts and 442 

carbonates of marine sediments at low pressure condition can be considered as a possible 443 

mechanism to explain the high concentrated CO2 fluid fluxes at the convergent margin. 444 

The concentration of the fluid during the cooling path was buffered by the metamorphic 445 

reactions. The second segment of the path represents a prograde metamorphism which 446 

occurred under extensive duplex array and thrusting of the oceanic crust. The crust in the 447 

forearc basin was overloaded by 20-28 km of obducted and thrusted oceanic crust from 448 

both mid-oceanic and forearc basin. This is equivalent to thickness of the original 449 

ophiolitic sequence by a factor in range of 5.6 and 11.2.   450 
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Nubian Shield’s ophiolitic crustal thicknesses as reconstructed by Stern et al. 728 

(2004). The two gray arrows show the modern thermal gradient and ancient 729 

thermal gradient. The black arrow showing the path of the study samples, the 730 
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Fig. 10. A three dimensional model illustrating the tectonic evolution of the studied 740 

ophiolites. a) Development of subduction zone. High concentrated CO2 fluid is 741 
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 Opx  Serpentine 

Sample 325/1 325/2  323 324 324 324 325 325 333 333 278 278 310 347 347 369 369 

SiO2 58.21 58.37  43.73 41.86 42.62 41.13 42.47 42.6 40.62 43.78 44.54 43.04 43.96 41.56 41.3 43.23 41.94 

TiO2 0.12 0.09  0.12 b.d.l 0.01 0.03 b.d.l 0.01 0.12 0.08 0.07 0.15 0.08 0.01 b.d.l b.d.l 0.03 

Al2O3 0.74 0.67  0.48 0.46 1.12 1.79 0.13 b.d.l 0.3 0.06 0.28 0.14 0.14 0.14 0.26 0.21 0.28 

Cr2O3 0.42 0.36  b.d.l b.d.l 0.16 0.02 0.02 b.d.l 0.22 b.d.l b.d.l 0.34 0.12 0.09 0.16 0.15 0.36 

FeO 4.85 5.09  2.61 2.88 1.98 3.33 1.81 2.05 4.2 2.66 1.37 1.85 0.94 3.99 3.36 2.11 6.21 

MnO 0.03 0.07  0.09 b.d.l 0.04 b.d.l b.d.l b.d.l 0.38 b.d.l 0.01 0.09 b.d.l 0.17 0.22 0.01 b.d.l 

MgO 34.99 35.1  37.04 37.04 37.67 36.99 38.42 36.68 34.37 37.74 37.78 36.88 38.14 38.06 38.68 37.17 35.98 

CaO b.d.l 0.03  b.d.l 0.1 b.d.l b.d.l b.d.l 0.19 0.03 0.07 0.06 0.13 b.d.l b.d.l b.d.l 0.18 0.11 

Na2O b.d.l b.d.l  0.13 0.01 0.05 0.05 0.02 b.d.l b.d.l 0.12 0.01 0.01 0.1 b.d.l b.d.l 0.09 0.08 

K2O b.d.l b.d.l  b.d.l 0.02 0.03 b.d.l 0.01 0.03 b.d.l 0.01 0.02 0.03 0.08 0.01 b.d.l 0.08 0.01 

Total 99.36 99.78  84.2 82.37 83.68 83.34 82.88 81.56 80.24 84.52 84.14 82.66 83.56 84.03 83.98 83.23 85 

                   

Si 2 2  8.381 8.237 8.211 8.027 8.258 8.41 8.283 8.369 8.47 8.385 8.418 8.097 8.036 8.375 8.162 

Ti 0.003 0.002  0.017 - 0.001 0.004 - 0.001 0.018 0.012 0.01 0.022 0.012 0.001 - - 0.004 

Al 0.03 0.027  0.108 0.107 0.254 0.411 0.03 - 0.072 0.014 0.063 0.032 0.032 0.032 0.06 0.048 0.064 

Cr 0.011 0.01  - - 0.024 0.003 0.003 - 0.035 - - 0.052 0.018 0.014 0.025 0.023 0.055 

Fe 0.139 0.146  0.418 0.474 0.319 0.543 0.294 0.338 0.716 0.425 0.218 0.301 0.151 0.65 0.547 0.342 1.011 

Mn 0.001 0.002  0.015 - 0.007 - - - 0.066 - 0.002 0.015 - 0.028 0.036 0.002 - 

Mg 1.792 1.792  10.58 10.86 10.82 10.76 11.13 10.79 10.44 10.75 10.71 10.71 10.88 11.05 11.21 10.73 10.43 

Ca - 0.001  - 0.021 - - - 0.04 0.007 0.014 0.012 0.027 - - - 0.037 0.023 

Na - -  0.048 0.004 0.019 0.019 0.008 - - 0.044 0.004 0.004 0.037 - - 0.034 0.03 

K - -  - 0.005 0.007 - 0.002 0.008 - 0.002 0.005 0.007 0.02 0.002 - 0.02 0.002 

Cations 3.977 3.98  19.57 19.71 19.66 19.77 19.73 19.59 19.65 19.64 19.49 19.56 19.58 19.88 19.92 19.62 19.79 

                   

en 0.93 0.92                 

fs 0.0055 0.006                 

mgts 0.027 0.01                 
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Talc 

Sample 306/2 306/2 306/2 306/2 306/2 347/2 347/2 347/2 347/2 

SiO2 61.07 60.04 60.92 59.98 61.09 56.78 57.36 57.22 57.21 

TiO2 0.05 b.d.l 0.04 0.07 0.22 b.d.l b.d.l b.d.l b.d.l 

Al2O3 0.03 0.14 0.28 0.05 b.d.l 0.42 0.5 0.37 0.34 

Cr2O3 0.02 0.14 0.26 0.03 b.d.l 0.28 0.2 0.21 0.17 

Fe2O3 b.d.l b.d.l b.d.l b.d.l b.d.l 0.68 0.64 0.64 0.62 

FeO 3.31 3.61 3.85 2.71 3.11 5.54 5.22 5.16 5.04 

MnO b.d.l b.d.l 0.04 b.d.l b.d.l b.d.l 0.16 b.d.l 0.2 

MgO 27.14 26.91 26.85 27.17 27.6 34.4 34.26 34.41 34.84 

CaO 0.09 0.02 b.d.l 0.15 0.16 b.d.l b.d.l b.d.l b.d.l 

Na2O 0.13 b.d.l 0.16 0.17 0.13 b.d.l b.d.l b.d.l b.d.l 

Totals 91.84 90.86 92.4 90.33 92.31 98.1 98.34 98 98.42 

          

Si 4.053 4.036 4.034 4.041 4.035 3.646 3.666 3.667 3.654 

Ti 0.002 - 0.002 0.004 0.011 - - - - 

Al 0.002 0.011 0.022 0.004 - 0.032 0.038 0.028 0.026 

Cr 0.001 0.007 0.014 0.002 - 0.014 0.01 0.011 0.009 

Fe
3+

 - - - - - 0.033 0.031 0.031 0.03 

Fe
2+

 0.184 0.203 0.213 0.153 0.172 0.297 0.279 0.276 0.269 

Mn - - 0.002 - - - 0.009 - 0.011 

Mg 2.685 2.696 2.65 2.728 2.717 3.292 3.263 3.286 3.316 

Ca 0.006 0.001 - 0.011 0.011 - - - - 

Na 0.017 - 0.021 0.022 0.017 - - - - 

Sum 6.951 6.955 6.957 6.964 6.962 7.316 7.296 7.3 7.315 

          

ta 0.71 0.72 0.68 0.75 0.74 0.83 0.83 0.85 0.85 

fta 0.00023 0.00031 0.00036 0.00013 0.00019 0.00061 0.00052 0.00051 0.00046 
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Carbonate minerals 

Sample 300 300 300 306 306 306 306 306 306 368 368 368 368 

SiO2 0.19 0.15 0.04 0.11 0.23 0.18 0.05 0.04 0.09 0.13 0.16 0.1 0.09 

Cr2O3 0.11 0.04 0.09 b.d.l 0.07 b.d.l b.d.l b.d.l b.d.l 0.05 0.04 0.02 0.07 

FeO 13.47 11.17 13.42 14.1 12.33 8.46 13.03 13.08 13.79 8.97 13.06 13.95 10.63 

MnO 0.09 0.25 0.13 0.33 0.33 0.22 0.03 0.08 0.17 0.24 0.25 0.25 0.27 

MgO 36.19 38.06 36.82 35.53 36.53 40.14 36.57 36.09 36.63 39.53 36.58 36.08 38.07 

CaO 0.11 0.23 0.17 0.15 0.15 0.24 0.04 0.21 0.27 0.17 0.21 0.21 0.15 

Totals 50.16 49.9 50.67 50.22 49.64 49.24 49.72 49.5 50.95 49.09 50.3 50.61 49.28 

              

Si 0.006 0.004 0.001 0.003 0.007 0.005 0.002 0.001 0.003 0.004 0.005 0.003 0.003 

Cr 0.003 0.001 0.002 - 0.002 - - - - 0.001 0.001 0 0.002 

Fe
2+

 0.343 0.28 0.338 0.361 0.315 0.21 0.333 0.336 0.346 0.224 0.331 0.354 0.269 

Mn 0.002 0.006 0.003 0.009 0.009 0.006 0.001 0.002 0.004 0.006 0.006 0.006 0.007 

Mg 1.643 1.701 1.65 1.622 1.663 1.772 1.664 1.653 1.638 1.759 1.65 1.63 1.715 

Ca 0.004 0.007 0.005 0.005 0.005 0.008 0.001 0.007 0.009 0.005 0.007 0.007 0.005 

Sum 2 2 2 2 2 2 2 2 2 2 2 2 2 

              

mag 0.84 0.86 0.84 0.83 0.84 0.89 0.85 0.84 0.83 0.89 0.84 0.83 0.87 

sid 0.26 0.21 0.25 0.27 0.24 0.17 0.25 0.25 0.26 0.18 0.25 0.26 0.21 
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Spinel 

 core02 rim03 core05 rim06 rim core core-rim rim core core-rim rim core core-rim rim core core-rim rim 
 

                 

SiO2 0,07 0,05 0,07 0,23 0,13 0,24 b.d.l 0,21 0,05 0,02 0,22 0,19 0,12 0,21 0,22 0,04 0,35 

TiO2 0,36 0,23 0,21 0,18 b.d.l 0,22 0,27 b.d.l 0,15 b.d.l 0,02 0,21 0,13 b.d.l 0,08 0,11 b.d.l 

Al2O3 8,81 9,23 8,28 8,4 b.d.l 6,27 6,32 0,12 5,4 6,53 0,1 6,67 6,5 b.d.l 5,57 6,49 0,15 

FeO 34,12 34,47 31,23 32,51 89,78 32,88 31,47 90,89 34,12 32,71 91,34 31,6 32,14 90,03 30,39 30,7 90,16 

Cr2O3 51,38 51,1 53,76 52,76 1,64 56,51 56,62 1,56 56,25 55,26 1,34 55,82 55 2,1 56,98 56,84 0,75 

MnO 0,39 b.d.l 0,36 0,51 0,46 0,18 0,92 0,5 0,02 0,54 0,41 0,66 1,09 0,45 0,85 0,25 0,11 

MgO 4,23 4,03 4,96 4,56 1 4,03 4,52 0,88 3,67 4,4 1,05 4,07 4,06 0,75 4,53 5,17 1,03 

NiO b.d.l 0,72 0,48 0,17 0,35 b.d.l 0,22 0,72 0,01 b.d.l 0,23 0,02 0,25 0,38 0,34 b.d.l 0,46 

Total 99,36 99,83 99,35 99,32 93,36 100,33 100,34 94,88 99,67 99,46 94,71 99,24 99,29 93,92 98,96 99,6 93,01 

                  

Si 0,02 0,014 0,02 0,065 0,052 0,068 - 0,083 0,014 0,006 0,087 0,054 0,035 0,084 0,063 0,011 0,141 

Al 2,96 3,084 2,76 2,809 - 2,099 2,113 0,056 1,84 2,207 0,047 2,249 2,203 - 1,889 2,17 0,071 

Ti 0,08 0,049 0,045 0,038 - 0,047 0,058 - 0,033 - 0,006 0,045 0,028 - 0,017 0,023 - 

Cr 11,56 11,451 12,018 11,83 0,522 12,687 12,692 0,488 12,852 12,526 0,42 12,623 12,499 0,663 12,956 12,744 0,239 

Mn 0,094 - 0,086 0,123 0,157 0,043 0,221 0,168 0,005 0,131 0,138 0,16 0,266 0,152 0,207 0,06 0,038 

Mg 1,796 1,705 2,093 1,93 0,6 1,708 1,913 0,52 1,583 1,883 0,621 1,737 1,742 0,447 1,944 2,188 0,62 

Ni - 0,16 0,11 0,04 0,11 - 0,05 0,23 - - 0,07 - 0,06 0,12 0,08 - 0,15 

Fe
2+

 6,11 6,135 5,711 5,907 7,133 6,249 5,816 7,082 6,412 5,986 7,171 6,103 5,932 7,281 5,769 5,752 7,192 

Fe
3+

 1,39 1,402 1,157 1,258 15,426 1,099 1,137 15,373 1,261 1,261 15,44 1,029 1,235 15,253 1,075 1,052 15,549 

Mg# 0,227 0,217 0,268 0,246 0,079 0,214 0,247 0,068 0,197 0,239 0,079 0,221 0,227 0,057 0,252 0,275 0,079 

Cr# 0,726 0,718 0,754 0,744 0,0321 0,798 0,796 0,030 0,805 0,783 0,026 0,793 0,784 0,041 0,813 0,798 0,015 

Fe
3+

# 0,087 0,087 0,072 0,079 0,967 0,069 0,071 0,965 0,079 0,078 0,970 0,064 0,077 0,958 0,067 0,065 0,980 

                  

mt 0.004 0.006 0.005 0.004 0.90 0.0013 0.0015 0.90 - 0.0009 0.89 0.0026 0.0012 0.90 0.0008 0.0018 0.91 

cmt 0.39 0.39 0.41 0.40 0.00058 0.48 0.46 0.00052 0.50 0.45 0.0004 0.47 0.46 0.001 0.48 0.45 0.0001 
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310 369 347 306 Oxide 

0.04 0.01 0.02 0.06 TiO2 

38.00 38.55 38.41 41.49 SiO2 

0.88 0.80 0.31 0.48 Al2O3 

7.49 8.70 7.54 6.79 Fe2O3 

0.07 0.09 0.09 0.09 MnO 

39.11 39.83 38.43 38.99 MgO 

0.12 0.65 1.19 0.18 CaO 

0.17 0.01 b.d.l 0.09 Na2O 

0.05 0.01 b.d.l 0.01 K2O 

85.94 88.65 86.00 88.19 Sum 

13.14 10.27 12.99 10.60 LOI 

     

2696.98 2703.71 2717.47 2742.20 Cr 

120.41 116.20 154.23 166.79 Co 

1799.16 1650.08 2060.51 2381.21 Ni 

14.97 46.32 8.27 63.83 Cu 

13.32 11.98 16.55 57.11 Zn 

46.61 48.08 89.11 55.04 Sr 

29.83 33.93 14.00 40.31 V 

15.00 20.00 45.00 35.24 Ba 

13.15 24.04 4.63 4.70 Pb 

2.00 3.43 3.31 2.00 Cd 

4.99 1.68 9.93 10.08 Li 

0.97 0.17 0.86 1.80 Rb 
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Reaction equations are written with the high T assemblage to the right of
the equal sign
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