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UPPER CAMBRIAN TO UPPER ORDOVICIAN PERI-GONDWANAN
ISLAND ARC ACTIVITY IN THE VICTORIA LAKE SUPERGROUP,
CENTRAL NEWFOUNDLAND: TECTONIC DEVELOPMENT OF THE
NORTHERN GANDERIAN MARGIN

A. ZAGOREVSKI#*ST, C. R. VAN STAAL**%, V. MCNICOLL**, and N. ROGERS**

ABSTRACT. The Exploits Subzone of the Newfoundland Appalachians comprises
remnants of Cambro-Ordovician peri-Gondwanan arc and back-arc complexes that
formed within the Iapetus Ocean. The Exploits Subzone experienced at least two
accretionary events as a result of the rapid closure of the main portion of the Iapetus
tract: the Penobscot orogeny (c. 480 Ma), which juxtaposed the Penobscot Arc (c. 513 —
486 Ma) with the Gander margin, and c. 450 Ma collision of the Victoria Arc (c. 473 —
454 Ma) with the Annieopsquotch Accretionary Tract that juxtaposed the peri-
Laurentian and peri-Gondwanan elements along the Red Indian Line.

The newly recognized Pats Pond Group forms a temporal equivalent to other
Lower Ordovician intra-oceanic complexes of the Penobscot Arc. The Pats Pond
Group (c. 487 Ma) has a geochemical stratigraphy that is consistent with rifting of a
volcanic arc. An ensialic setting is indicated by low eéNd values (eNd 0.3 to -0.5) near
the stratigraphic base and its abundant zircon inheritance (c. 560 Ma and 0.9 — 1.2 Ga).
The spatial distribution of Tremadocian arc — back-arc complexes indicates that the
Penobscot arc is best explained in terms of a single east-dipping subduction zone. This
model is favored over west dipping models, in that it explains the distribution of the
Penobscot arc elements, continental arc magmatism, and the obduction of back-arc
Penobscot ophiolites without requiring subduction of the Gander margin or subduc-
tion reversal.

The newly recognized Wigwam Brook Group (c. 454 Ma) disconformably overlies
the Pats Pond Group and records the youngest known phase of ensialic arc volcanism
(eNd - 4.1) in the Victoria Arc, which is also related to east-dipping subduction. Thus
the Penobscot and the overlying Victoria Arc are reinterpreted in terms of a single,
relatively long-lived east-dipping subduction zone beneath the peri-Gondwanan micro-
continent of Ganderia. The cessation of arc volcanism towards the top of the Wigwam
Brook Group and the subsequent syn-tectonic sedimentation in the Badger Group
constrain the arrival of the leading edge of Ganderia with the ensialic arc complexes to
the Laurentian margin to c. 454 Ma.

INTRODUCTION

The Penobscot and Victoria arc systems of the Exploits Subzone formed during
the complex Cambro-Ordovician closure of the Iapetus Ocean in proximity to Gande-
ria, a ribbon-like microcontinent outboard of Gondwana (van Staal and others, 1998).
Following the Upper Ordovician arc-arc collision with the peri-Laurentian Red Indian
Lake Arc, they were emplaced under the Annieopsquotch Accretionary Tract (for
example, van Staal and others, 1998; van der Velden and others, 2004; Zagorevski and
others, 2006) along the Red Indian Line (Williams, 1995) closing the main tract of
Iapetus. This paper examines the latest stages of evolution of the Ordovician Victoria
and Cambro-Ordovician Penobscot arcs. Two previously unrecognized volcano-
sedimentary tectono-stratigraphic units are described, the Pats Pond and Wigwam
Brook groups, based on detailed and regional mapping in central Newfoundland
(Lissenberg and others, 2005; Rogers and others, 2005b; van Staal and others, 2005a,
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2005b, 2005¢) combined with geochronology and geochemistry. The identification of
the position of the Red Indian Line based on the peri-Gondwanan affinity of the Pats
Pond Group and Wigwam Brook Group and peri-Laurentian affinity of the adjacent
Annieopsquotch Accretionary Tract (Zagorevski and others, 2006) requires revision of
the north-western boundary of the peri-Gondwanan Victoria Lake supergroup (Evans
and Kean, 2002), and enables an east-dipping subduction model to be developed for
this portion of the Newfoundland Appalachians.

The Lower Ordovician Pats Pond Group was generated during the last stages of
Penobscot Arc development. It is correlative to the previously defined lower Wild
Bight, lower Exploits and lower Bay du Nord groups (O’Brien, 1992; Tucker and
others, 1994; O’Brien and others, 1997; MacLachlan and Dunning, 1998) and places
important constraints on the tectonic setting of the Tremadocian Penobscot Arc,
including the polarity of subduction and involvement of peri-Gondwanan continental
crust. The Upper Ordovician Wigwam Brook Group disconformably overlies the Pats
Pond Group. The Wigwam Brook Group contains the youngest known arc volcanic
rocks in the Victoria Arc and records the cessation of arc volcanism in the upper
portions of its stratigraphy. The age and stratigraphic relationships in the Wigwam
Brook Group place new time constraints on the Red Indian Lake — Victoria arc
collision.

Regional Geology

The Dunnage Zone of the Newfoundland Appalachians contains the vestiges of
the Cambro-Ordovician continental and intra-oceanic arc — back-arc and ophiolitic
complexes that formed within the Iapetus Ocean (fig. 1; Williams, 1995). The
Dunnage Zone is subdivided into the peri-Laurentian Notre Dame and Dashwoods
subzones and the peri-Gondwanan Exploits Subzone (Williams, 1995). The peri-
Laurentian and peri-Gondwanan subzones are differentiated on the basis of strati-
graphic, structural, faunal and isotopic contrasts that are marked by the Red Indian
Line, the fundamental suture zone of the Newfoundland Appalachians (fig. 1; Wil-
liams, 1995), which was subsequently imaged by Lithoprobe seismic reflection surveys
as a major crustal scale fault (van der Velden and others, 2004).

To the west of the Red Indian Line, the peri-Laurentian Notre Dame Subzone is in
part represented by the Annieopsquotch Accretionary Tract (fig. 1), a tectonic collage
of arc and back-arc complexes that formed outboard of the Laurentian margin (van
Staal and others, 1998; Zagorevski and others, 2006). To the east of the Red Indian
Line, the peri-Gondwanan Exploits Subzone is dominated by volcanic and sedimentary
rocks, which display a generally continuous Upper Ordovician-Silurian stratigraphy,
contain lower-Ordovician insular (Celtic) faunas, and relatively radiogenic lead in
mineral deposits (Williams, 1995). The Exploits Subzone of Newfoundland and its
correlatives in New Brunswick have been interpreted to mainly represent the remnants
of the Cambrian- Early Ordovician Penobscot and Early to Middle Ordovician Popelo-
gan-Victoria arcs that formed outboard of the Gander margin (for example, van Staal,
1994; van Staal and others, 1998). The Penobscot arc has been generally considered to
have developed in an intra-oceanic setting outboard of the Gander margin above a
west-dipping subduction zone (for example, MacLachlan and Dunning, 1998a; van
Staal and others, 1998), although the presence of continental basement has been
inferred on the basis of Pb-isotope data (Swinden and Thorpe, 1984). The continued
subduction culminated in the collision of the Penobscot arc and the Gander margin
(van Staal and others, 1998), obduction of supra-subduction zone ophiolites on the
Gander margin (Colman-Sadd and others, 1992; Jenner and Swinden, 1993) and
subduction reversal (van Staal and others, 1998). The reversal resulted in subduction
beneath the Ganderian margin and development of the younger Victoria arc above the
Penobscot basement (for example, van Staal and others, 1998).
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Victoria Lake Supergroup

In central Newfoundland the tectonic elements of the Penobscot and Victoria arcs
are represented by the Victoria Lake Group (Kean, 1977), which comprises Middle
Ordovician and older volcanic and sedimentary rocks lying to the north of the Victoria
Lake and southeast of the Red Indian Lake (fig. 1). The Victoria Lake Group is bound
by the Red Indian Line to the west, Noel Pauls Line to the east and is overlain by (for
example, Kean and Jayasinghe, 1980) or is in fault contact (for example, Rogers and
others, 2005b) with Ordovician to Silurian sedimentary rocks of the Badger Group
(Williams and others, 1995) to the northeast. Detailed investigations of the Victoria
Lake Group required its informal elevation to supergroup status in order to reflect its
composite nature (Evans and others, 1990; Evans and Kean, 2002; Rogers and van
Staal, 2002). There have been several subdivisions of the Victoria Lake supergroup, the
most recent one subdivides it into five distinct fault-bound belts with unique tectono-
stratigraphy and age (fig. 1; Lissenberg and others, 2005; Rogers and others, 2005b;
van Staal and others, 2005a, 2005b, 2005¢). From east to west these include the Tally
Pond Group (c. 513 Ma: Dunning and others, 1991), Long Lake group (c. 506 Ma:
McNicoll and Rogers, unpublished data in van Staal and others, 2005¢), Tulks group
(c. 498 Ma: Evans and others, 1990), Sutherlands Pond group (c. 462 Ma: Dunning and
others, 1987), Pats Pond and Wigwam Brook groups (c. 488 and c. 453 Ma respectively:
this study; fig. 1).

STRATIGRAPHY

The rocks underlying the study area were previously included in the Tulks Hill
volcanics (that is Tulks group: fig. 1) of the Victoria Lake supergroup (for example,
Kean, 1977; Kean and Jayasinghe, 1981). However, recent mapping in association with
detailed geochronology have required that the area be divided into several distinct
tectono-stratigraphic units (Lissenberg and others, 2005; Rogers and others, 2005b;
van Staal and others, 2005a, 2005b, 2005¢), and that the stratigraphy be revised. Two
new fault-bounded tectono-stratigraphic units are proposed herein, namely the Pats
Pond and Wigwam Brook groups, which together form the western most portion of the
Victoria Lake Supergroup (fig. 2).

The Pats Pond and Wigwam Brook groups form a shear zone-bound structural
panel. They are metamorphosed to dominantly sub- to greenschist facies conditions
and have experienced multiple phases of deformation from Middle Ordovician to
Devonian. The macroscopic structural style in the study area is characterized by shear
zone-truncated synform-antiform pairs. The shear zones are interpreted to represent
mainly Middle Ordovician steepened southeast-directed thrust faults (D) which are
marked by high strain phyllonites, mélange and broken formation (for example,
Rogers and van Staal, 2002; Zagorevski, ms, 2006). The upright folding and steepening
of thrusts occurred during the Late Ordovician to Middle Silurian Salinic orogeny (D)
and was accompanied by transposition of D, fabrics. D, thrusts were commonly
reactivated as Silurian south-southeast-directed reverse faults (Zagorevski, ms, 2006).
Hence, the penetrative regional structures are a D; — Dy, composite. These are
commonly overprinted by the Devonian northwest verging folds and shear zones
(Zagorevski, ms, 2006) related to the emplacement of the Meelpaeeg subzone over the
Exploits subzone (Valverde-Vaquero and others, 2006). The effects of multiple
phases of folding, faulting, in association with possible thrust repetition and
ubiquitous poor exposure, preclude any realistic estimations of the thickness of
stratigraphic units.

The Pats Pond Group is exposed along Route 480 and in the Pats Pond area (figs.
1 and 2). In the Pats Pond — Red Indian Lake (fig. 2A) area the Lower Ordovician
upward facing Pats Pond Group and disconformably overlying Upper Ordovician
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Fig. 2. Detailed geology of Pats Pond - Red Indian Lake area and Route 480 area.

Wigwam Brook Group are exposed in a doubly plunging anticline. The Wigwam Brook
Group is bound to the northwest by the Red Indian Line, and to the southeast by the
Barren Pond Shear Zone (fig. 2A). Near Route 480, the Pats Pond Group forms a
southeast facing fault-bounded structural panel that is cut out to the southeast by the
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Fig. 3. Schematic stratigraphy of Lower Ordovician Pats Pond and upper Ordovician Wigwam Brook

Victoria Lake Shear Zone (fig. 2B; Valverde-Vaquero and van Staal, 2002) and to the
northwest by the Red Indian Line.

Pats Pond Group

The Pats Pond Group comprises mainly intertonguing mafic and intermediate
tuffs. The discontinuous and interdigitating nature of these tuffs, combined with
paucity of exposure and complex structure, precludes any formal subdivision of Pats
Pond Group into formal geochemical members, however some informal geochemical
types have been defined (PP1 to PP6: see Geochemistry, fig. 3). The sections in the Route
480 and Pats Pond areas were correlated on the basis of the lithological, geochemical
and Sm-Nd isotopic characteristics of the volcanic rocks (fig. 3). Pillow basalt forms a
distinct unit with limited exposure at the lowest exposed stratigraphic level of Pats
Pond Group in the Route 480 area. The basalt is brown weathered and almost always
sparsely to abundantly amygdaloidal. The amygdales are commonly radial with respect
to the center of the pillow and are more abundant towards the top. Although the basalt
appears aphyric in outcrop, most thin sections contain small to coarse euhedral
colorless clinopyroxene phenocrysts and glomeroporhyrocrysts (fig. 4A) locally rimmed
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Fig. 4. Pats Pond Group bimodal tuff breccia unit; (A) pyroxene glomeroporphyritic mafic tuff matrix,
(B) intermediate, pyroxene porphyritic lapilli in mafic tuff matrix (top left). (C) Tuff breccia unit at the
dated locality of Wigwam Brook Formation containing accidental fragments of underlying epiclastic tuff,
shale and dark shale (arrows), which are locally folded during subsequent deformation (scale in cm).
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by colorless actinolite. Fragments of this basalt occur in the overlying tuff breccia in the
Route 480 area.

Feldspar and/or quartz porphyritic ash tuff, lapilli tuff and tuff breccia are
abundant and represent a characteristic unit of the Pats Pond Group. Breccia is
commonly bimodal, and contains mafic and intermediate to felsic fragments in a
finer-grained feldspar porphyritic mafic to intermediate groundmass. Feldspar com-
prises 5 to 45 percent of the rock by volume with crystal or glomeroporphyrocryst
diameters ranging from <1 mm to >1 cm, although the average is around 3 to 4 mm.
In general, quartz is subordinate and comprises less than 5 percent of the rock by
volume, with crystal diameters from <Imm to 1 cm. Locally, both mafic and intermedi-
ate fragments contain small colorless microscopic phenocrysts of pyroxene (fig. 4B).
Bimodal tuff grades into and is interlayered with light green to buff colored quartz (=
feldspar) porphyritic andesitic tuff, lapilli tuff, tuff breccia, flows and related subvolca-
nic intrusions. Quartz phenocrysts may comprise as much as 40 percent by volume of
the rock, with diameters ranging from 2 mm to 1 cm. Andesitic tuffs are overlain by
bimodal mafic- aphyric felsic tuff breccia and aphyric rhyolite, which form the
uppermost distinctive horizon in the Pats Pond Group. These rocks are in turn
overlain by basaltic to andesitic tuff breccia, lapilli tuff and gray rhyolitic tuff, which
form the highest observed stratigraphic horizon in the Pats Pond Group in the Pats
Pond area (fig. 3).

Wigwam Brook Group

The Wigwam Brook is a volcano-sedimentary package of rocks exposed on the
periphery of the doubly plunging anticline, which spans across Pats Pond to Red
Indian Lake (fig. 2). Wigwam Brook Group continues further northeast as a fault
bounded sliver (fig. 2). The contact with the Pats Pond Group is poorly exposed, but is
interpreted to be an unconformity, because of the significant hiatus between the two
groups (453 vs. 487 Ma: see following). The Wigwam Brook Group is subdivided into
three lithologically distinct formations, namely the Dragon Pond, Halfway Pond, and
Perriers Pond formations (fig. 3).

The Dragon Pond Formation dominantly comprises an overall coarsening-up
sequence of felsic volcanic and volcaniclastic rocks. It has been informally subdivided
into five geochemical types (WBI1 to WBb5: see Geochemisty, fig. 3). The base of the
Dragon Pond Formation comprises a tuffaceous turbiditic sandstone and siltstone that
is locally associated with dark shale, felsic tuff and tuff breccia, flow-banded rhyolite
and felsic dikes. The tuffaceous turbidite is interlayered with and grades into a
volcano-sedimentary breccia (fig. 4C) and conglomerate over a 20 m interval. The
latter rocks have a predominantly local provenance, as is indicated by the abundance
of angular clasts, similar to the underlying beds (fig. 4C). However, the presence of a
few well-rounded granitoid cobbles suggests a minor contribution from a distal source.
The breccia horizon is overlain by felsic tuff, lapilli tuff and tuff breccia containing
fragments of turbidite and black shale. The uppermost portions of the Dragon Pond
Formation contain gabbro sills, massive to pillowed basalt flows and mafic tuff.

The Halfway Pond Formation conformably overlies the Dragon Pond Formation
and is mainly comprised of sedimentary rocks (fig. 3). The transition from the Dragon
Pond Formation to the Halfway Pond Formation is gradational, and is marked by an
increase in siltstone and shale and a decrease of the volcanic and epiclastic compo-
nents. Unlike the Dragon Pond Formation where the sandstones are predominantly
epiclastic, the wacke of the Halfway Pond Formation contains abundant smoky quartz
and black shale fragments. A marked increase in abundance of black shale versus gray
shale marks the transition from the Halfway Pond to the Perriers Pond Formation. The
Perriers Pond Formation comprises abundant, locally calcareous, black shale with
minor volcanogenic siltstone and sandstone and is most readily identifiable in the
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north-eastern portion of the mapped area, where it is commonly transformed into
broken formation and mélange along the Red Indian Line. The Perriers Pond
Formation generally has maximum structural thickness of only several hundred meters
and is not plotted in figure 3, however it does form a mappable unit (for example,
Rogers and others, 2005a, 2005b).

U-Pb GEOCHRONOLOGY

Analytical Techniques

SHRIMP II analyses were conducted at the Geological Survey of Canada (GSC)
using analytical procedures described by Stern (1997), with standards and U-Pb
calibration methods following Stern and Amelin (2003; see Appendix). Isoplotv. 2.49
(Ludwig, 2001) was used to generate concordia plots and calculate Concordia ages.
The data are presented in table 1 and plotted in concordia diagrams with errors at the
20 level (fig. 5).

Pats Pond Group VLO1A-067 (z7252)

A sample of rusty weathering intermediate to bimodal breccia (VL0O1A-067) that
overlies the lower calc-alkaline basalt was collected in the Route 480 area (figs. 1, 2, and
3). Based on the younging indicators, the dated bimodal breccia is one of the oldest
rocks present in the Pats Pond Group in the Route 480 area (fig. 2B). The sample
yielded sparse, fair quality zircon (n = 57). Angular fragments, with smaller amounts of
prism fragments, prisms and rounded zircons, comprise the zircon population. Most of
the zircons are euhedral and SEM study revealed oscillatory zoning in the majority of
the zircon grains (n = 41), suggesting magmatic derivation. Some of these contained
distinct, presumably inherited cores (n = 9). The rest of the grains (n = 16) were
either not zoned or irregularly zoned and lacked crystal faces suggesting partial
resorbtion. SHRIMP analysis yielded three distinct age populations of zircon: c. 487 Ma
(n=13),c. 553 Ma (n = 1),and c. 0.9 to 1.2 Ga (n = 5; fig. 5A, table 1). A Concordia
age, calculated from the SHRIMP analyses of the youngest population, is 487 * 3 Ma
(MSWD of concordance and equivalence = 1.1, n = 12). All zircons in this population
displayed oscillatory zoning (fig. 5A). This age of 487 = 3 Ma is interpreted to
represent the eruption age of the tuff breccia. Two analyses on a single un-zoned
partially resorbed zircon are c. 553 Ma which is interpreted to be a xenocryst. The c. 0.9
to 1.2 Ga population is represented by slightly to moderately discordant xenocrystic
zircons that were not zoned or irregularly zoned and partially resorbed.

Wigwam Brook Group VLO1A-314 (27630)

A sample of beige weathering, quartz and feldspar rich tuff (VLO1A-314) immedi-
ately overlying the breccia-conglomerate horizon in the Dragon Pond Formation was
collected in the Pats Pond area. The sample yielded abundant zircon with several
distinct morphologies including: euhedral needles, prisms, equant multifaceted zir-
cons; angular fragments; slightly to moderately rounded prisms; and very well rounded
zircon grains. Most of the zircons were colorless to slightly yellow, however some of the
very well rounded zircons were distinctly purple. SEM imaging of 87 zircons revealed
mostly igneous oscillatory zoning and at least some euhedral faces on many zircons
(fig. 5B). Some zircons contained distinct cores (n = 3). Several rounded zircons with
irregular or no zoning (purple zircon) were also observed (n = 4). SHRIMP analyses
have yielded two age populations of zircon. A Concordia age, calculated from the
dominant age population, is 453 * 4 Ma (MSWD of concordance and equivalence =
1.7, n = 22) (fig. 5B, table 1). This population includes both rounded and euhedral
morphologies with oscillatory zoning, which showed no statistically significant differ-
ence in age (fig. 5B). This age of 453 * 4 Ma is interpreted to represent the eruption
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Fig. 5. U/Pb concordia diagrams and representative SEM images of zircons from the Pats Pond (A) and
Wigwam Brook (B) groups. Circles represent the spot location. CL — cathode luminescence.

age of the tuff, although the presence of rounded zircons may suggest post-eruption
reworking. One purple, un-zoned and rounded zircon was analyzed and yielded a
discordant age of c. 2.7 Ga (table 1, not plotted).

GEOCHEMISTRY

The majority of the volcanic units have been sampled for geochemistry during
this study and analyzed for major and trace elements using XRF and ICP-MS
techniques (table 2). Samples are separated into groups based on stratigraphic
position and chemical characteristics on extended spidergrams. Selected samples
were analyzed for Sm-Nd isotopic composition (table 3; fig. 3). Complete analytical
results, methods and errors are presented in Rogers (2004). Several ratios were
calculated to facilitate the discussion of data, including La,/Th,, La,/Nb,,
Zr,/Sm,, La, /Sm, and Gd,/Lu, (N-MORB normalization factors, Sun and
McDonough, 1989). These ratios represent the intensity of the Th, Nb and Zr
anomalies, and the slope of LREE and HREE. Cs, Rb, Ba, K, Pb and Sr are
considered to be mobile (Cann, 1970) under the metamorphic and metasomatic
conditions experienced by the rocks in this study. Only immobile elements are
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TABLE 2

Geochemistry of peri-Gondwanan Penobscot and Victoria arc complexes

Sample VLO2A VLO2A VLO2A VLO2A VLOIA VLO2A VLOTA VLOTA VLOIA VLO2A
026 202 204 205 341b 150 021 067 344 121
UTMx' 448003 484514 484361 484179 469183 470046 453123 449594 470315 477638
UTMy* 5341400 5376241 5376134 5375787 5360797 5362877 5344015 5541669 5360839 5367582
NTS map 12A/04 12A/11 12A/11 12A/11 12A/06 12A/06 12A/04 12A/04 12A/06 12A/06
Type PP, PP, PP, PP, PP, PP, PP, PP, PP, PP,
mtuff ituff itufl’
Rock type pbsit pbslt bslt bsit (fp) miuff (tgp} ituft(ip) ituff (fp) (fqp)
Laboratory¥ 1 1 ] 1 2 1 2 2 3 1
Si0, (wt%) 46.65 50.39 56.02 50.66 48.36 46.48 59.50 49.41 07.79 5426
TiO, 0.75 0.64 0.73 0.70 038 039 032 0.59 0.44 0.35
AL O, 16.29 15.37 14.18 15.19 16.17 18.11 15.40 18.80 13.05 17.16
MnO 0.12 0.16 0.16 0.19 0.09 0.20 0.12 0.16 0.03 0.15
MgO 9.59 8.88 6.00 9.40 8.26 6.97 3.02 544 1.81 551
Ca0 8.57 7.46 6.09 532 9.86 11.83 6.23 8.57 6.90 6.59
Na;O 3.10 4.21 593 4.97 1.34 0.83 2.11 1.38 2.02 3.67
K;0 0.99 0.09 0.22 0.05 0.13 0.02 247 0.01 0.02 0.68
P04 0.13 0.10 0.11 0.15 0,02 0.05 0.04 .04 0.24 0.03
LOI 5.05 3.06 1.58 3.58 4.39 3.79 5.56 3.94 2.20 250
Fe,0; total 8.73 9.75 9.21 9.89 12.20 11.62 595 12.88 4.48 9.48
Total 160.07 100.20 100.27 100.23 10r.21 100.33 100.78 101.22 99.89 100.41
Ba (ppm) 72 49 129 23 96 12 146 i1 39 647
Cr 388 420 82 582 36 96 57 59 27 35
Cs .86 0.15 0.28 0.14 0.08 0.08 1.84 0.08 b.d. 0.44
Hf 1.30 1.00 1.20 1.20 0.40 0.40 1.10 0.90 1.40 1.00
Nb 1.48 0.63 0.86 1.00 0.58 0.53 0.74 0.55 1.40 0.90
Ni 144 1353 312 174 25.0 316 16.9 16.9 4.40 12.5
Pb 220 220 1.80 330 6.20 6.40 3.60 591 9.50 230
Rb 18.45 0.04 2.56 0.45 2.13 0.14 577 b.d. b.d. 12.0
Se 39.0 443 41.7 525 48.5 48.8 31.7 49.1 16.0 36.7
Sv 284 157 119 234 223 323 119 367 197 177
Tu 022 Q.16 0.17 0.18 b.d. 015 b.d. b.d. bd. 0.18
Th 1.82 1.72 212 4.06 0.93 0.92 0.98 0.87 1.80 0.68
U 0.57 0.46 (.50 1.01 043 0.72 0.44 0.52 1.20 031
v 256 315 315 315 315 315 190 351 53.0 210
Y 19.14 15.56 19.05 18.21 5.22 6.14 15.05 1226 29.70 1529
Zr 44.40 30.20 43.20 44.40 13.05 12.90 34.64 27.02 42.70 2970
La 8.33 5.80 7.50 1118 338 334 2.85 3.01 8.10 297
Ce 19.43 1332 17.80 2528 7.23 7.03 6.80 7.66 16.40 6.83
Pr 2.63 1.85 2.4 3.37 0.92 0.88 0.92 1.13 215 0.99
Nd 12.22 833 10.75 14.49 3.82 3.58 448 540 10.80 4.76
Sm 3.02 223 2.92 3.64 0.92 0.89 1.34 1.62 2.20 1.54
Eu 1.00 0.71 0.88 097 0.38 032 0.46 0.84 0.87 0.54
Gd 3.18 243 2.84 3.50 0.94 0.95 1.84 1.86 3.08 1.86
Tb 0.56 0.44 0.51 0.57 0.16 0.16 0.34 034 0.64 037
Dy 3.19 2.57 321 3.17 0.99 1.00 223 2.19 4.16 220
Ho 0.71 0.57 0.65 0.69 022 023 0.50 .51 1.02 0.56
Er 2.12 1.57 1.95 2.05 0.59 0.69 1.55 1.39 2.82 1.70
Tm 031 024 0.3t 0.29 0.10 0.12 0.24 0.20 0.52 029
Yb 1.98 1.75 1.90 1.75 0.61 0.73 1.60 1.30 321 1.59
Lu .31 023 0.28 0.28 .10 0.12 0.28 023 0.47 0.30
Mg#' 70.5 66.5 58.7 67.4 59.6 56.7 525 479 46.8 559
(La/Thm# 0.2 02 0.2 0.1 02 02 0.1 02 0.2 02
(La/Nbn 5.2 8.6 8.1 104 54 59 36 5.1 5.4 3.1
(Zr/Smn 0.52 048 0.53 043 0.5 0.52 0.92 0.59 0.69 0.69
(La/Sm)n 2.9 2.74 2.7 323 3.86 3.95 224 1.95 3.87 203
(Gd/Lu)n 1.27 1.31 1.25 1.55 1.16 0.98 0.81 1 0.97 0.77

plotted on the extended trace element spidergrams presented in figure 6 (N-
MORB normalized; Sun and McDonough, 1989). FeO and Mg# were calculated
assuming a Fe®' /Fe?" ratio of 0.1. Tectonic discrimination of felsic volcanic rocks
is aided by Yb — Ta plot of Pearce and others (1984) as the more commonly used
plot, Rb — (Y+Nb), may be affected by the mobility of Rb. Both Yb — Ta and Rb —
(Y+NDb) plots require “fresh, non-porphyry, non-cumulate, non-aplitic intrusive
rocks containing visible free quartz . . . > 5 modal %” (Pearce and others, 1984).
When the Rb — (Y+Nb) diagram was subsequently evaluated on a broader dataset
of granitic rocks which, included “felsic rocks containing modal quartz but not
necessarily K-feldspar, and with SiO, contents greater than 60%” (Foerster and
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TABLE 2
(continued)

Sample VLOZA VLOTA VLOIA VLO2A VLO2A VLOZA VELO2A VLO2A VLO2A VLO02A

134b 335 336 128 135 199 200b 224 104 122a
UTMx' 475491 470759 470187 473877 475697 480957 483707 486013 468948 477869
UTMy' 5366640 5361846 5361777 5365750 5366577 5371665 5373650 5375420 5358950 5367612
NTS map 12A/06 12A/06 12A/06 12A/06 12A106 12A/06 12A/11 12A/11 12A/06 12A/06
Type PP PP, PPy PP, PP, PP, PPy PP, PP PP,

ituff’ fruff fluff fuff ftuft
Rock type? (fgp) {qip) ot ftuff ftuff (qp) {qp} {qtp) ituff fruff
Laboratory® 1 4 2 1 1 3 ) 1 1 1
Si0; (wt%) 61.15 64.00 72.69 65.63 65.54 61.46 67.81 67.83 49.26 83.46
TiO, 0.30 0.32 0.26 029 0.24 0.29 0.24 0.30 0.81 .13
ALO; 14.59 14.40 12.89 13.42 13.92 14.68 14.19 12.34 18.59 9.40
MnO 0.09 0.10 0.02 0.10 0.09 0.11 0.03 0.08 0.12 0.01
MgO 3.59 3.00 . L70 2.25 242 4.11 2.65 3.02 546 0.26
CaO 5.94 146 1.90 6.19 6.17 3.02 3.17 4.19 543 0.23
Na,O 261 5.25 526 3.06 3.3t 247 3.26 2.40 3.93 5.36
K,0 0.04 0.17 030 0.63 0.12 1.62 0.61 0.34 1.46 0.03
P,0;5 0.06 0.05 0.06 0.07 0.05 0.03 0.05 0.04 0.02 0.02
LOI 3.04 7.01 1.35 2.15 225 3.40 2.30 232 5.80 .24
Fe,0; total 8.68 8.00 3.85 6.17 6.35 8.72 5.58 7.44 9.04 0.75
Total 100,11 99.80 100.29 99.98 100.18 99.95 99.90 100.02 99.95 99.90
Ba (ppm) 24 102 25 43 1 259 48 53 81 13
Cr 38 23 0.5 35 35 21 21 41 31 17
Cs 0.11 0.10 0.08 0.19 0.12 030 0.21 0.21 0.69 .08
Hf 1.30 1.50 1.42 0.70 0.80 1.40 1.50 1.20 1.10 3.40
Nb 1.04 1.20 0.92 0.50 .51 1.00 0.93 0.92 0.97 3.46
Ni 10.4 5.00 b.d. 11.7 9.52 7.00 5.10 12.1 13.0 2.96
Pb 4.30 2.00 2.96 4.10 4.00 3.30 6.00 720 1.40 3.00
Rb 0.40 2.70 334 6.06 1.86 132 4.38 4.54 17.8 0.24
Sc 38.8 31.0 20.6 37.1 37.3 33.0 27.0 352 32.1 7.50
Sr 76 87 70 143 156 177 101 85.1 151 323
Ta 0.18 b.d. b.d. 0.16 0.17 bud. 0.17 0.20 0.19 0.26
Th 1.47 1.80 111 0.51 .61 220 L7 1.28 0.39 4.18
U 0.59 0.02 0.60 0.57 035 1.00 0.66 0.96 0.16 1.22
v 214 136 58.3 199 184 220 888 232 315 3.8
Y 18.97 20.00 2296 1622 20.65 16.60 30.12 12,75 16.5 35.0
Zr 44.90 52.00 45.42 21.90 27.30 37.80 46.60 38.00 359 [§3!1
La 422 5.20 4.15 226 3.63 4.30 435 333 1.86 8.80
Ce 9.46 11.00 9.10 526 8.29 9.40 10.04 8.04 4.96 19.88
Pr 1.25 1.40 1.26 0.70 1.08 1.07 1.39 1.07 0.75 2.46
Nd 5.61 6.60 5.78 332 5.14 510 7.07 4.71 4.28 10.37
Sm 1.70 1.80 1.90 1.23 1.55 2.10 2.19 1.39 1.43 2.76
Eu 0.40 0.40 0.62 0.39 0.40 038 0.53 032 0.61 0.48
Gd 222 2.40 2.62 1.58 235 217 3.19 1.50 2.14 375
Thb 0.44 0.43 0.51 0.32 0.46 0.36 .60 0.34 0.42 0.72
Dy 2.84 2.90 3.48 223 2.99 221 439 2.03 2.82 518
Ho 0.69 0.67 0.86 0.54 0.69 0.54 1.07 0.46 0.60 1.18
Er 210 2.10 2.55 179 2.15 1.70 333 1.48 1.85 397
Tm 035 035 .43 .32 037 0.29 0.56 024 .30 0.61
Yb 2.16 2.40 2.86 1.88 2.21 1.98 4.03 1.55 2.00 4.29
Lu 038 042 1.49 0.33 037 0.37 0.68 0.26 .31 0.71
Mg#™ 474 43 49 443 42.1 50.7 509 46.9 56.8 43
(La/Th)n* 0.1 0.1 02 0.2 03 0.1 02 0.1 0.2 0.1
{La/Nb)n 38 4 4.2 42 6.6 4 4.4 34 1.8 2.4
{Zr/Sm)n 0.94 1.03 0.85 .63 0.63 0.64 0.76 0.97 0.89 1.43
(La/Smn 2.0l 3.04 23 1.93 246 2.15 2.09 252 1.37 335
(Gd/Lun 0.72 0.71 0.66 0.59 0.79 0.73 0.58 0.71 0.85 0.65

others, 1997) no significant difference was found between the plutonic and
volcanic rocks in their study. Since volcanic rocks essentially represent liquidus
magmatic compositions and no significant differences were identified in related
plots, we infer that the Yb — Ta plot can be utilized in this study as a preliminary
discriminant of the tectonic setting of felsic volcanic rocks.

Pats Pond Group
Pats Pond Group comprises six informal geochemical types that occur at distinct
stratigraphic levels. In ascending order, they are informally referred herein as PP,-PPg,
such that type PP, comprises the lowest exposed stratigraphic unit and type PP occurs
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TABLE 2
(continued)

Sample VL02A VLO2A VLO2A VLOIA VLO2A VLO2A  RAXOI RAXOL RAXG RAXO02

2465 140b 186 347 218b 262b 034 082 914 117
UTMx* 478760 475721 471462 468280 485985 486138 506207 505319 523396 527100
UTMy' 5368443 5367161 5365230 5360643 5377340 5377671 5387828 5387227 5399306 5395447
NTS map 12A/06 12A/06 12A/06 12A/06 12A/11 124711 12A/10 12A/10 12A/10 12A/10
Type PP, WB, WB, WB, WB, w8, WB; WB; WB; WB,

fruff
Rock type? (gp) thyolite rhyolite rthyolite fluft’ futt atuft’ fuft ftuft’ ftuff
Laboratory? 1 3 1 3 1 1 5 5 5 3
Si0; (Wt%) 79.89 84.41 76.23 63.73 61.48 60.24 58.48 67.52 74.33 75.90
TiO, 0.19 0.12 0.06 0.74 0.57 0.74 0.59 0.42 0.22 0.33
ALO; 11.47 824 12.82 14.47 18.00 17.14 18.44 16.43 13.79 11.63
MnO 0.01 0.01 0.02 0.12 0.10 0.06 0.18 0.18 0.09 0.11
MgO 6.31 0.10 1.97 2.80 2.86 2.06 1.68 1.68 2.01 0.19
CaQ 0.09 0.65 0.41 2.46 2,19 3.55 517 0.28 0.66 0.20
N0 6.09 3.79 1.13 3.64 4.45 342 3.42 3.83 4.76 3.05
K,0 0.33 0.53 3.26 129 179 2.93 2.85 2.81 1.80 1.34
P,0; 0.04 0.03 0.01 0.60 0.18 0.23 027 0.06 0.07 0.05
LOI 0.42 1.00 2.42 2.40 2.67 4.83 3.55 235 1.72 2.00
Fe,0; total 1.30 0.96 1.50 7.57 5.92 5.25 6.28 5.07 2.14 3.87
Total 100.15 99.89 99.84 99.85 100.21 100.46 100.89 101.07 99.76 99.84
Ba (ppm) 70 476 168 216 248 354 539 617 396 281
Cr 14 7 13 7 9 21 3 15 b.d. 55
Cs 0.13 0.10 2.45 0.60 1.79 1.89 1.88 224 113 2.00
Hf 3.60 3.00 10.90 4,00 4.80 3.90 2.94 3.58 225 2.30
Nb 3.79 8.50 147.30 7.40 3.36 2.68 2.66 8.68 7.41 4.50
Ni 3.00 2.60 3.34 13.1 1.72 8.33 b.d. 8.61 b.d 16.4
Pb 1.90 4.40 12,90 .10 4.30 2.40 2.41 18.68 4.54 4.80
Rb 4.07 103 853 30.4 45.8 734 752 88.5 58.9 44.4
Se 104 2.00 155 21.0 16.8 221 109 18.5 3.96 9.00
Sr 34.9 96.5 713 247 258 168 436 49.0 152 89
Ta 037 0.60 6.36 0.40 0.30 0.28 b.d. 0.53 0.61 0.30
Th 3.50 2.00 15.36 4.30 8.30 6.72 8.05 9.17 5.93 6.30
u 111 0.50 4.91 2.60 2.72 1.81 2.30 2.07 1.02 1.00
v 10.1 9.0 3.6 85.0 18.7 66.3 88.3 70.6 22.0 66.0
Y 55.3 29.4 85.3 655 453 45.5 229 252 10.6 122
Zr 122 783 209 124 173 142 96.7 i 76.4 74.9
La 9.08 7.50 21.26 37.20 21.32 20.77 27.98 24.34 18.09 19.30
Ce 22.26 14.30 54.42 78.90 50.28 48.16 56.88 48.08 34.19 33.10
Pr 291 191 7.63 8.61 7.34 6.57 731 5.79 4.02 3.65
Nd 13.10 8.30 3141 38.50 3255 29.81 28.55 21.26 13.65 14.90
Sm 3.23 2.10 10.93 8.20 7.14 712 5.56 4.36 256 2.60
Eu 0.61 1.19 0.04 2.05 223 1.99 1.75 1.01 0.52 0.66
Gd 4.87 348 12.80 8.70 6.60 7.23 4.90 424 1.96 2.01
b 1.03 0.61 2.56 139 1.22 119 0.71 0.72 032 0.33
Dy 7.24 4.12 16.11 9.14 7.61 7.58 4.08 4.38 1.86 228
Ho 1.76 0.85 327 2.03 1.64 1.57 0.86 0.94 0.35 0.41
Kr 5.71 2.80 10.02 5.51 499 482 2.36 2.78 1.02 1.39
Tm 0.86 0.44 1.70 0.99 0.80 0.78 037 0.43 0.15 0.21
Yh 5.59 2.91 11.72 5.67 5.10 477 2.50 2.89 1.07 1.56
Lu 0.91 0.39 1.95 0.93 0.84 0.79 0.42 0.46 0.17 0.30
Mg#™ 34.2 185 744 44.6 51.3 46.1 36.8 46.4 162 439
(La/Thyn¥ 0.1 0.2 0.1 0.4 0.1 0.1 0.2 0.1 0.1 0.1
(La/Nbjn 22 0.8 0.1 4.7 5.9 7.2 9.8 2.6 23 4
(Zt/Smn 134 1.33 0.68 0.54 0.86 0.71 0.62 0.9 1.06 1.02
(La/Smyn 2.96 3.76 205 4.77 3.4 3.07 5.29 5.87 7.43 7.81
(Gd/Lwn 0.66 1.1 0.81 1.16 0.97 113 1.44 114 143 0.83

near the stratigraphic top. PP, (n = 4) consists of transitional calc-alkaline basaltic
andesite to island arc tholeiite (figs. 6 and 7A). The samples exhibit consistently strong
Th enrichment (average La,/Th,, 0.2), strong Nb depletion (La,/Nb,, 8.1), slight Ti
depletion, negative Zr and Hf anomalies (Zr,/Sm,, 0.5), strong enrichment of LREE
(La,/Sm, 2.9) and slight enrichment of MREE (Gd,/Lu, 1.4). The samples are
primitive to moderately evolved (Mg# 70.5 to 58.7). Sm-Nd isotopic analyses of two
samples yielded ENd g5 values of -0.54 and +0.34 (table 3).

PP, (n = 2) comprises calc-alkaline basalt and mafic tuff and is locally intercalated
with PPy, andesite (figs. 6 and 7A). The samples have very similar trace element
profiles to PP, on extended spidergrams, however, they have overall lower absolute
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TABLE 2
(continued)

Sample VLOIA VLOTA VLO2A RAXG2 RAXO02 RAXO01 RAXO! VLOTA VLO2A VLO2A

328 327b 209b 123 124 008 033 326a 093 137b
UTMx' 467791 468324 485544 541568 540962 507160 486738 468783 468913 475442
urTMmy’ 5359382 5361335 5378179 5408696 5408352 5388689 5378303 5361759 5363345 5367675
NTS map 12A/06 12A/06 12A/11 12A/16 12A/16 12A10 12A711 12A/00 12A/06 12A/006
Type WB; WB; WB; WB, WB, WB; WB; WB; WB; WB;s
Rock type? ftuff’ rhyolite ftuff ftutt ftuff pbslt pbsit gabbro bslt bslt
Laboratory® 3 2 1 6 6 S 5 4 i 1
SiO; (wt%) 69.67 73.11 7224 69.45 67.58 45.86 47.51 48.30 47.26 50.80
TiO, 0.46 .40 0.35 0.40 0.46 071 0.57 0.95 1.29 1.99
ALO; 12.90 10.72 14.17 13.49 13.35 17.28 11.02 15.10 15.95 14.01
MnO 0.07 021 0.14 0.15 0.18 0.12 0.16 0.17 0.17 0.20
MgO 2.29 1.94 0.96 1.31 222 6.48 733 8.61 7.90 5.51
Ca0 1.79 0.83 0.93 2.59 1.76 6.96 12.63 7.39 8.72 7.82
Na,O 2.78 332 4.44 277 4.19 112 4.73 3.41 3.87 4.53
K, O 1.93 035 210 2.20 1.06 2.87 0.78 0.28 0.25 0.24
P,0s 0.09 0.07 0.10 0.10 0.13 0.12 0.08 0.07 0.12 0.17
LO! 2.80 212 1.69 230 239 9.28 926 6.24 3.62 1.83
Fe,0; total 4.99 7.18 3.09 5.80 6.80 9.72 6.59 12.00 11.37 13.11
Total 99.84 100.26 100.22 100.57 100.13 100.53 100.65 99.10 160.61 100.25
Ba (ppm) 481 113 798 389 542 227 160 44 58 31
Cr 55 41 32 29 20 252 338 199 316 32
Cs 1.40 0.30 2.88 224 1.64 283 318 0.19 0.17 1.2z
Hf 220 236 3.20 1.70 1.40 1.34 1.05 1.30 1.90 3.40
Nb 6.00 815 7.19 1.08 1.08 0.82 0.68 0.67 1.09 1.22
Ni 251 234 7.66 3.37 299 90.1 153 73.0 118 242
Pb 18.40 26.41 9.60 10.10 15.00 212 1.31 b.d. 1.70 2.60
Rb 61.8 1.8 79.7 39.6 252 53.8 213 3.40 3.13 9.23
Se 14.0 9.49 12.5 27.1 289 352 282 45.0 528 41.2
Sr 180 178 183 191 534 145 224 115 120 155
Ta 0.40 0.49 0.60 0.16 0.18 0.15 0.15 b.d. 022 0.22
Th 6.80 7.11 10.05 2.63 1.96 1.46 a7 4.52 0.53 0.86
u 1.70 1.46 243 1.44 1.00 1.04 0.47 0.14 0.55 022
v 100 50.2 68.4 71.0 83.4 312 225 344 360 424
Y 219 15.6 218 232 24.0 17.7 12.1 29.0 28.1 51.0
Zr 923 83.8 131 53.1 41.6 43.1 338 42.0 708 119
La 23.10 22.92 38.66 7.25 6.52 531 5.02 3.30 5.18 5.50
Ce 43.70 58.15 53.89 15.46 13.78 12.87 12.11 8.50 10.85 1529
Pr 528 5.53 8.00 1.97 1.80 1.86 1.78 1.30 1.88 256
Nd 22.20 20.08 28.96 8.78 7.98 8.57 7.99 7.30 9.62 14.34
Sm 4.10 3.81 510 2510 223 2.46 2.02 230 3.03 4.96
Eu 0.84 0.84 1.25 0.63 .68 0.91 0.78 0.74 1.14 1.82
Gd 3.16 3.16 423 3.08 3.02 281 2.19 3.30 4.21 6.90
Tb 0.58 051 0.59 .56 0.56 0.46 0.36 0.66 0.72 1.30
Dy 3.78 292 3N 3.58 3.78 3.1 224 4.30 4.47 8.07
Heo 0.71 0.61 0.73 0.85 0.88 0.71 0.48 0.94 1.00 1.92
Er 212 1.65 227 2.63 2.61 2.12 1.40 2.60 3.01 542
Tm 033 0.26 035 042 0.44 0.3t 023 0.43 0.42 0.86
Yb 219 1.62 244 2.69 2.79 2.18 1.25 2.80 2.76 5.2
Lu 037 0.26 0.34 045 0.46 0.33 021 0.44 0.39 0.83
Mg#" 50 371 404 33 41.6 59.2 70.8 61 60.2 478
(La/Thyn® 02 0.2 0.2 0.1 02 0.2 02 0.3 0.5 0.3
(L.a/Nbmn 36 2.6 5 6.3 5.6 6 6.9 4.6 4.4 4.2
(Zr/Smin 0.8 .78 0.91 0.75 0.66 0.62 0.59 0.65 0.84 0.85
{La/Sni)n 5.93 633 797 3.04 3.08 227 2.61 1.51 1.8 1.17

(Gd/Lu)n 1.06 1.5 1.54 0.85 0.81 1.05 1.29 0.93 1.33 1.03

TUTM zone 21 (NADS3); 1 (p)bslt-(pillowed) basalt; (s)diab-(sheeted)diabase; gabb-gabbro; (f, i,
m) tuff-(felsic, intermediate, mafic) tuff; gran-granodiorite; rhyo-rhyolite; fdike-felsic dike; (p)and-
(pillowed)andesite; (q, f)p-(quartz, feldspar) porphyritic; § 1: McGill (XRF); Ontario Geological Survey
(OGS; ICPMS; 2001), 2: OGS (2001), 3: Acme (2001), 4: GSC (2003), 5: OGS (2002), 6: McGill; OGS (2003);
see Rogers (2004); # b.d.-below detection; n.a. not applicable: +1 Mg# = Mg**/(Mg®* + Fe?"), Fe**/
Fe?* = 0.1; {1 N-MORB normalized value (Sun and MacDonough, 1989).

abundances of trace elements (fig. 6). Similar to PP, the samples exhibit consistently
strong Th enrichment (La,/Th, 0.2), strong Nb depletion (La,/Nb, 5.7) and
negative Zr and Hf anomalies (Zr,,/Sm,, 0.5). However, this geochemical type appears
to lack Ti depletion, has stronger enrichment of LREE (La,/Sm, 3.9) and has flat
HREE (Gd,,/Lu, 1.1). PP, samples are primitive to moderately evolved (Mg# 70.5 to
58.7).
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TABLE 3
Sm/Nd isotope data
Sampie’ Stratigraphic unit  Type Age Nd*  Sm? "Nd/ N Yom/ UNd YN/ MNGS eNd(D)Y
VL0O1A325 Dragon Pond Fm.  WB; 454 1932 394 0512217 (16) 0.1234 0.511850 -3.98
VLO1A315"  DragonPond Fm. WB; 454 17.72 345 0512194 (13) 0.1178 0.511844 -4.08
VLO2A140b  Dragon Pond Fm. WB, 454 721 187 0512824 (l14) 0.1570 0.512357 5.93
VLO2A246b  Pats Pond Group PP, 487 1122 287 0512701 (15) 0.1546 0.512208 3.85
VLO02A221 Pats Pond Group ~ PP, 487 3.12  0.85 0512777 (14) 0.1655 0.512249 4.67
VL02A128 Pats Pond Group PPy 487 217 0.63 0512854  (6) 0.1766 0.512291 5.48
VL02A202 Pats Pond Group PP, 487 10.14 2,68 0512493 (12) 0.1598 0.511983 -0.54
VLO2A026 Pats Pond Group PP, 487 13.04 330 0512515 (15) 0.1530 0.512026 0.31

T Lithology, location and geochemistry listed in table 2; I Concentration in ppm from isotope dilution;
§ Calculated at age of formation; # felsic tuff, no geochemical analysis, NAD83, UTM Zone 21 468729
5360774

PP; and PP, (n = 12) comprise calc-alkaline arc andesite to rhyolite (SiO, 49 to 73
wt%; figs. 6 and 7A). The types were separated on the basis of field characteristics,
however PP; and PP, have similar geochemical traits. PP; comprises feldspar (*
quartz) porphyritic volcanic rocks, whereas PP, comprises quartz (* feldspar) porphy-
ritic volcanic rocks. PP and PP, have very similar trace and major element characteris-
tics. Samples exhibit consistently strong Th enrichment (La, /Th, 0.2), strong Nb
depletion (La,/Nb,, 4.4) and generally prominent Ti depletion. Zr and Hf anomalies
range from un-depleted to moderately depleted (Zr,/Sm, 0.8). There is strong
enrichment of LREE (La,/Sm, 2.4) and moderate depletion of MREE (Gd,/Lu,
0.75) resulting in a characteristic concave-up profile for these samples on N-MORB
normalized spidergrams (fig. 7). The two types may be differentiated geochemically on
the basis of the slope of HREE (Gd,,/Lu, 2.6 (PP3); 2.1 (PP,)). PP3 and PP, samples
are moderately to strongly evolved (Mg# 47 to 56 (PPg), 42 to 51 (PP,)). Sm-Nd
isotopic analysis of two PP, samples yielded ENd,g; values of +4.7 and +5.5 (table 3).
The felsic rocks of this suite plot in the volcanic arc field on a Yb — Ta plot (fig. 7A;
Pearce and others, 1984).

PP; is represented by a single moderately evolved (Mg# 57) sample of IAT that
exhibits strong Th enrichment and prominent Nb depletion. There is slight enrich-
ment of LREE (La,/Sm,, 1.4) and slight depletion of MREE (Gd, /Lu, .85). This
sample plots on the intersection of MORB — BAB — VAB fields La/10-Y/15-Nb plot (fig.
7A; Cabanis and Lecolle, 1989).

PPs (n = 2) comprises high silica trondhjemitic (O’Connor, 1965) rhyolite (SiO,
80 to 83 wt%). Samples exhibit strong Th enrichment (La/, Th,, 0.1), prominent Nb
depletion (La,/Nb, 2.3), and strong Eu and Ti depletion. There are prominent
positive Zr and Hf anomalies (Zr,,/Sm,, 1.4), strong enrichment of LREE (La,,/Sm ,,
3.2) and prominent depletion of MREE (Gd,/Lu, 0.66). The samples are strongly
evolved (Mg# 34 to 43). Sm-Nd isotopic analysis of one sample yielded an éNd 4, value
of +3.89 (table 3). The rocks of this suite plot on the boundary of arc and ocean ridge
granite fields on the Yb — Ta plot (fig. 7A; Pearce and others, 1984).

Wigwam Brook Group

The Dragon Pond Formation of the Wigwam Brook Group comprises five distinct
informal geochemical types of volcanic rocks, referred to herein as WB, to WBy. WB, is
a high silica rhyolite (n = 2; SiO, 76 to 84 wt%) and occurs near the base of the Dragon
Pond Formation (figs. 6 and 7B). The samples exhibit strong Th (La,/Th, 0.2), Nb
(La,/Nb,, 0.5) and LREE (La,,/Sm,, 2.9) enrichment. Ti is strongly depleted, as is Eu
in one sample. Sm-Nd isotopic analysis of one sample yielded an éNd 5, value of +6.0
(table 3). The samples plot in the within-plate field on granitoid discrimination plots
(fig. 7; Pearce and others, 1984).
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Fig. 6. Extended trace-element normalized plots
(N-MORB normalized, Sun and McDonough, 1989).

for the Pats Pond and Wigwam Brook groups

WB, is andesitic (n=3; SiO, 60 to 64 wt%) and occurs throughout the Dragon
Pond Formation interlayered with group WB, rhyodacite (figs. 6 and 7B). The samples
exhibit consistently strong Th enrichment (La,/Th, 0.2), strong Nb (La,/Nb, 5.9)
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and Ti depletion, prominent negative Zr and Hf anomalies (Zr,/Sm,, 0.70) and strong
enrichment of LREE (La,/Sm, 3.7) and flat HREE profile (Gd,/Lu, 1.1). The
andesite is moderately evolved (Mg# 46 to 51). WB, samples plot on the boundary of
the volcanic arc and ocean ridge /within plate granite field on granitoid discrimination
plots (fig. 7B; Pearce and others, 1984).

WB; andesite to rhyodacite (n = 7; SiO, 58 to 74 wt%) exhibit consistently strong
Th enrichment (La,/Th, 0.2), strong Nb depletion (La,/Nb, 4.3), strong Ti deple-
tion, slight negative Zr and Hf anomalies (Zr,,/Sm, 0.9) and strong enrichment of
LREE (La,/Sm,, 6.7) and slight enrichment of MREE (Gd, /Lu, 1.3). This geochemi-
cal type is strongly fractionated (Mg# 16 to 50). The sample analyzed for its Sm-Nd
isotope composition was collected immediately above the breccia horizon and yielded
an €Nd,;, of —4.0 (table 3). A second sample, which was collected stratigraphically
below the breccia horizon, yielded an €éNd,5, of —4.1. Although the geochemistry of
this sample was not determined, the measured Sm-Nd ratio of <0.2 is consistent with
other samples in this group (>0.2 in WBy). WB4 samples plot in the volcanic arc
granite field on granitoid discrimination plots (fig. 7B; Pearce and others, 1984).

WB, type comprises dacitic tuff (n = 2; SiO, 67 to 69 wt%). The samples occupy an
uncertain stratigraphic position in the northeastern part of the Wigwam Brook Group
and are associated with rocks typical of the Dragon Pond Formation (figs. 6 and 7B).
WB, is characterized by strong Th enrichment (La,/Th, 0.2), strong Nb (La,/Nb,
6.0) and Ti depletion, slight negative Zr and Hf anomalies (average Zr,,/Sm,, 0.7) and
strong enrichment of LREE (La,/Sm,, 3.1) and slight enrichment of HREE (Gd,,/Lu,,
0.8). WB, samples are strongly evolved (Mg# 33 to 42). They plot in the volcanic arc
granite field on granitoid discrimination plots (fig. 7B; Pearce and others, 1984).

WB4 comprises several analyses of tholeiitic basalt (n = 4) and gabbro (n = 1; figs.
6 and 7B). The samples exhibit Th enrichment (La,/Th, 0.2 to 0.5), strong Nb
depletion (La,/Nb, 4.2 to 6.9), negative Zr and Hf anomalies (Zr,/Sm,, 0.6 to 0.8),
prominent enrichment of LREE (La,/Sm, 1.2 to 2.6), slight enrichment to slight
depletion of HREE (Gd, /Lu,, 0.9 to 1.3). The samples plot in the field transitional
between calc-alkaline basalt and island arc tholeiite on the La-Y-Nb discrimination plot
(fig. 7B; Cabanis and Lecolle, 1989).

DISCUSSION

The Pats Pond and Wigwam Brook groups form the western most portion of the
peri-Gondwanan Victoria Lake Supergroup (fig. 1). The adjacent rocks of the Red
Indian Lake Group to the west display peri-Laurentian affinities (Zagorevski and
others, 2006) including lack of Upper Ordovician black shale cover and a sub-Silurian
unconformity (see Williams and others, 1988). Hence the Wigwam Brook and Red
Indian Lake groups (fig. 1) are separated by the Red Indian Line, which is conve-
niently marked by black shale melange (Rogers and van Staal, 2002). In the following
section, the tectonic setting and correlatives of the Pats Pond and Wigwam Brooks
groups will be discussed and they will be placed into a regional tectonic framework.
This enables an alternative tectonic model (van Staal, 1994) to be proposed for the
Victoria Lake supergroup and related tectonic elements in Newfoundland. This model
is applicable to the temporally correlative belts in New Brunswick, Nova Scotia and
Maine.

Pats Pond Group and Correlatives

The c. 487 Ma age of the Pats Pond Group is distinctly younger than the adjacent
rocks of the Cambrian Victoria Lake supergroup (fig. 1; c. 513 — 494 Ma; Evans and
others, 1990; Dunning and others, 1991; Evans and Kean, 2002) from which it is
separated by a high strain zone interpreted to be a steepened thrust. The Pats Pond
Group preserves a chemical stratigraphy that is entirely consistent with a supra-
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subduction zone origin. The transitional tholeiitic to calc-alkaline basalt (PP, PP,) in
the lower and middle Pats Pond Group has a strong arc signature, as indicated by Th
and LREE enrichment and Nb depletion. Intermediate and felsic rocks higher in the
stratigraphy (PPg, PP,) display similar characteristics indicative of an arc volcanic
setting. On the other hand, the stratigraphically highest IAT (PP5) and trondhjemitic
rhyolite (PPs) have a relatively weak arc signature, suggesting a transitional setting
between an arc and back-arc environment (figs. 6 and 7A). The upward transition from
arc to back-arc in the Pats Pond Group is interpreted to represent the progressive
rifting of a dominantly extensional calc-alkaline arc.

Temporal equivalents to the Pats Pond Group occur in north-central Newfound-
land and include the Exploits Group (c. 486 Ma, O’Brien and others, 1997), Wild Bight
Group and South Lake Igneous complex (c. 489 — 486 Ma, O’Brien, 1992; MacLachlan
and Dunning, 1998a), and New Bay Pond sequence (Swinden and Jenner, 1992).
These record transitions from arc tholeiite to trondhjemitic rhyolite to refractory
back-arc tholeiite (O’Brien and others, 1997), refractory arc tholeiite to boninite to
non-arc tholeiite (MacLachlan and Dunning, 1998a), and refractory arc tholeiite to
non-arc tholeiite (Swinden and Jenner, 1992), respectively.

The eruption of boninite (* refractory arc tholeiite) can be favored by many
tectonic settings characterized by high heat flow, including initiation of subduction
(for example, Stern and Bloomer, 1992), forearc spreading (for example, Bedard and
others, 1998), mantle plume (for example, Sobolev and Danyushevsky, 1994; Macpher-
son and Hall, 2001), and intersection of a subduction zone and spreading ridge (for
example, Falloon and Crawford, 1991; Monzier and others, 1993). Presence of older
arc volcanism in the Victoria Lake supergroup (Evans and Kean, 2002) discounts the
subduction initiation model of MacLachlan and others (1998a). Forearc spreading is a
very rare tectonic setting with no modern analogues (Fryer and Pearce, 1992) and is
probably associated with initiation of subduction. In recent arcs, boninite and refrac-
tory tholeiite eruption is commonly associated with the propagation of a back-arc
spreading center into an active arc (for example, Tonga: Falloon and Crawford, 1991;
New Hebrides: Monzier and others, 1993). Coeval eruption of calc-alkaline basalt (Pats
Pond group: see previous) and boninite and refractory tholeiite (Wild Bight Group:
MacLachlan and Dunning, 1998a), as well as presence of sheeted diabase (O’Brien,
1992; MacLachlan and Dunning, 1998a) strongly suggests active rifting of an arc,
probably as a result of intersection of a backarc-spreading center with the active arc.
This arc is referred to as the Penobscot Arc in northern Appalachians (van Staal and
others, 1998).

Penobscot Arc Characteristics

The Penobscot arc was generally accepted to be an ensimatic arc system in the
Newfoundland Appalachians (for example, Swinden and Jenner, 1992; O’Brien and
others, 1997; MacLachlan and Dunning, 1998a). However, geochronology of the Pats
Pond Group has revealed significant Proterozoic zircon inheritance. Presence of
xenocrystic zircon, in the c. 560 Ma and c. 0.9 to 1.2 Ga age range, is consistent with the
presence of Gander-like crust in the source (for example, van Staal and others, 1996;
McNicoll and others, 2001, 2003; Rogers and others, 2006).

The age of the youngest xenocrystic zircon is identical to the nearby, continentally
contaminated Crippleback Igneous Suite and related Sandy Brook Group (figs. 8 and
9; Evans and others, 1990; Kerr and others, 1995; Rogers and others, 2006) suggesting
that Pats Pond Group was built on related crust. Although no zircon inheritance has
been identified in the Crippleback Igneous Suite, the Sm-Nd isotopic data indicate c.
1.1 to 1.3 Ga Tp,, ages (Kerr and others, 1995) consistent with presence of Mesoprot-
erozoic crust in the source region similar to the older population of xenocrystic zircon
in the Pats Pond Group. We thus interpret the Pats Pond group to have erupted in an



Island arc activity in the Victoria Lake Supergroup, Central Newfoundland 359

107
5-
= A A
o
P4 0'_]/// T ‘A Tl T T
w AL 2 3\) o 04
A N2 “'Sm/"“Nd =
Wild Bight Group
@ 9
-5 (&) Pipestone Pond Complex
@ Ecm
® PP
W PP4 O wa
Som + ppe A WBS
-101

Fig. 8. €yq versus '*7Sm/'**Nd plot illustrating the range of values in the Lower Ordovician Pats Pond
and Upper Ordovician Wigwam Brook groups. The range of values in Lower Ordovician Wild Bight Group
(Swinden and others, 1990; MacLachlan and Dunning, 1998a), Upper Cambrian Pipestone Pond Complex
(Jenner and Swinden, 1993) is plotted for reference. Field with diagonal lines illustrates mixing trend
between SCM and DM. ECM (exposed continental material), SCM (subducted continental material), DM
(depleted mantle); see text for discussion.

ensialic arc setting above attenuated Crippleback basement. Crippleback Igneous
Suite has been recently proposed to form a remnant of Ganderian basement in central
Newfoundland (Rogers and others, 2006).

Low &Nd values (-0.5 to +0.3) in the Pats Pond mafic lavas (PP;) likewise support
interaction with mature continental crust. The role of continental material in the
genesis of the Pats Pond Group can be qualitatively investigated using the Sm-Nd
isochron diagram to illustrate possible mixing/partial melting relationships (fig. 8).
Three hypothetical sources are used in the discussion of the isotopic data: depleted
mantle (DM), subducted continental material (SCM), and exposed continental mate-
rial (ECM). The DM field for the Tremadocianian mantle, based on the composition
of Ordovician ophiolitic rocks in Newfoundland, is from Jenner and Swinden (1993).
The SCM field represents the range of Gander Zone meta-sedimentary rocks that
could have been subducted in the Tremadocian and is also representative of the
Gander Zone continental basement (compiled from D’Lemos and Holdsworth, 1995;
Kerr and others, 1995; Whalen and others, 1997; compare Jenner and Swinden, 1993).
The ECM field is derived from the exposed Proterozoic igneous and volcanic rocks
(fig. 9; Crippleback Intrusive Suite and Sandy Brook Group: Kerr and others, 1995;
Rogers and others, 2006) that may represent portions of the basement to the
Penobscot Arc (Rogers and others, 2006). The ECM has a lower 147Sm/144Nd ratio and
higher éNd values than the SCM.

The PP, calc-alkaline basalt plots within a mixing field between DM and SCM/
ECM sources. A simple mixing relationship is consistent with the high Mg# (66.5 and
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Fig. 9. Distribution of pre-Cambrian Suites, Cambro-Ordovician Penobscot arc, and Ordovician Victo-
ria arc complexes in Newfoundland (after van Staal and others, 1998). BAN — Bay du Nord Group; BH -
Baggs Hill Granite; CB — Crippleback Igneous Suite and Sandy Lake Group; E — Exploits Group; LL — Long
Lake group; NPL — Noel Paul’s Line; PPG — Pats Pond Group; RIL — Red Indian Line; SG — Summerford
Group; TP-Tally Pond Group; TU — Tulks; WB - Wild Bight Group. Penobscot ophiolites: BHC — Blue Hills of
Couteau ophiolite Complex; CPC — Coy Pond Complex; GRUB — Gander River Ultrabasic Belt; PP —
Pipestone Pond Complex.

70.5) indicating that the basalts likely represent relatively unfractionated liquids. PP,
felsic rocks have lower 14t7Sm/ 144Nd than would be expected if a simple mixing model
of the DM and SCM source components were assumed. An addition of a third
component, such as a low-degree partial melt of either DM or SCM (similar to ECM),
could easily explain the observed data.

Similar to Pats Pond Group, Sm-Nd isotope data of the Wild Bight Group
(Swinden and others, 1990a; MacLachlan and Dunning, 1998a) indicate influence of
continental material in the source area of the magmatic rocks of the Penobscot Arc
although a highly depleted source characterized by high '*’Sm/'*!Nd is required. In
the absence of clear zircon inheritance in the Wild Bight Group, the low &y, values
have been interpreted to represent contamination of the magma source region by
subduction of continentally—derived sedimentary material (MacLachlan and Dun-
ning, 1998a). An entirely ensimatic setting for the Wild Bight and Exploits groups
would require a transition from continental (that is Pats Pond group) to oceanic arc
substrate along strike of the Penobscot Arc, and trench parallel transport of arc and
basement-derived sediment from areas of ensialic magmatism (see following). Such a
transition would generally reflect major irregularities in the Gander continental
margin relative to the strike of the arc (for example, Kermadec Arc: Gamble and
others, 1995) and can be explained by local transgression of the Penobscot Arc onto
oceanic crust adjacent to such irregularities in the margin during arc-trench migra-
tion. Alternatively, the Wild Bight Group could represent advanced stages of rifting of
an ensialic magmatic arc formed as a result of intersection of a backarc spreading
center with the active arc (for example, Tonga: Falloon and Crawford, 1991; New
Hebrides: Monzier and others, 1993).
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Evolution of the Penobscot Arc

The Cambrian to Lower Ordovician portions of the Victoria Lake supergroup,
which includes the Pats Pond Group, form part of the extensive Penobscot Arc system
that extends from Newfoundland to Maine (van Staal and others, 1998). Previous
models of the Penobscot arc (fig. 10) have attempted to reconcile the obduction of the
Penobscot ophiolites with a west-dipping subduction of the Gander margin (van Staal,
1994), and the Penobscot arc was generally assumed to be ensimatic (for example
Swinden and Jenner, 1992; O’Brien and others, 1997; MacLachlan and Dunning,
1998a). Improved understanding of the provenance and significance of the Victoria
Lake supergroup and the adjacent units in Newfoundland allows us to evaluate the
tectonic models for the Penobscot Arc system.
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In the Victoria Lake supergroup, the arc complexes become progressively younger
towards the Red Indian Line (fig. 1). From east to west these include Tally Pond (c. 513
Ma: Dunning and others, 1991; Rogers and others, 2006), Long Lake (c. 505 Ma:
McNicoll, unpublished data; van Staal and others, 2005¢), Tulks (c. 498 Ma: Evans and
others, 1990) and Pats Pond groups (c. 487 Ma; see above). Similarly, the Wild Bight and
Exploits groups (c. 486 — 489 Ma) are also located along the Red Indian Line in
north-central Newfoundland. Although such a distribution could be due to a compli-
cated deformation history, the lack of repetition of tectonic units and only sparse
magmatic links suggest that this more likely reflects the original relative positioning of
these magmatic phases, such that they formed during the trench-ward migration of the
magmatic front. The temporal and spatial changes in the magmatic front can be
utilized to reconstruct the geometry and evolution of the subduction zones in ancient
orogens (for example Sengor and Natal’in, 1996). Hence, since the Tremadocian
volcanic sequences of the Penobscot arc should be situated trench-ward from the
Cambrian volcanic sequences, the trench should lie to the west (figs. 9 and 10B).
Consistent with the proposed trench location, the Penobscot ophiolites (figs. 9 and
10B; c. 494 Ma: Dunning and Krogh, 1985), which have been interpreted to have
formed in a back-arc tectonic setting (Jenner and Swinden, 1993) are currently
positioned to the east of the Cambro-Ordovician Penobscot Arc (fig. 10B).

If the interpretation of the relationships between the arc-back-arc complexes is
valid, then their present distribution suggests that the Penobscot Arc was formed above
an east dipping (present coordinates) subduction zone (fig. 10B). The earliest known
supra-subduction zone magmatism is c. 513 Ma (Tally Pond Group in Newfoundland;
Dunning and others, 1991; Rogers and others, 2006; Mosquito Lake Formation in New
Brunswick: Johnson and McLeod, 1996; McLeod and others, 2003), and was located
along an attenuated or perhaps irregular Gander margin (fig. 10B). The presence of
Gander margin is indicated by basement-cover relationships (van Staal, 1994; Johnson
and McLeod, 1996; Rogers and others, 2006), zircon inheritance data (Squires and
Moore, 2004) and Sm-Nd isotopic characteristics (figs. 8 and 11; Rogers and others,
2006). Ensialic arc volcanism (for example, Rogers, 2004) was occurring until c. 494
Ma, when the Penobscot back-arc basin was formed (Jenner and Swinden, 1993)
separating the ensialic Penobscot arc from its parent (Ganderian) microcontinent.
Similar to the ensialic portions of the Penobscot Arc, the Penobscot back-arc basin
ophiolites show evidence of contamination by crustal material (Pipestone Pond
Complex: fig. 8; €yq 7.3 to -1.3: Jenner and Swinden, 1993) suggesting rifting of an
ensialic basement. Following the rifting event, calc-alkaline ensialic arc volcanism was
re-established by c. 490 Ma (Pats Pond Group) while portions of the Penobscot arc
were still undergoing active extension (fig. 10B; for example, Wild Bight Group:
Swinden and others, 1990; MacLachlan and Dunning, 1998a; Exploits Group: O’Brien
and others, 1997).

A prominent magmatic gap in the arc-magmatism in the Exploits Subzone (c. 485
— 480 Ma; van Staal and others, 1998) coincides with the obduction of the Penobscot
back-arc basin ophiolites onto the Gander passive margin prior to c. 478 Ma (fig. 10B;
Colman-Sadd and others, 1992; Tucker and others, 1994) and an unconformity on the
Gander Zone in Newfoundland and east-central Maine (Boone and others, 1989).
Previously this has been interpreted to mark the arc-continent collision with the
west-dipping subduction attached to the Gander Margin (fig. 10A; van Staal and
others, 1996; MacLachlan and Dunning, 1998a) . However this is inconsistent with the
east-dipping subduction zone model proposed herein where Gander margin is never
subducted (fig. 10B).

The cause of the inversion of the Penobscot back-arc basin is incompletely
understood at present, however the obduction of the ophiolites occurred while the
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Fig. 11. Diagramatic illustration of the Nd isotopic evolution of the arc — back-arc complexes of the
Penobscot and Victoria Lake arcs based on €y, plotted versus age. Field for Notre Dame Subzone (light gray)
plotted for reference (data from Swinden and others, 1990, 1997; Jenner and Swinden, 1993; Kerr and
others, 1995; Whalen and others, 1997, 1998; MacLachlan and Dunning, 1998a, 1998b; Rogers, 2004; Rogers
and others, 2006).

backarc was still young (<10 My). Investigations of the structure of young ensialic
back-arc basins indicate that they develop a strong asymmetry with the spreading
concentrated near the magmatic front, where the lithosphere is the weakest (for
example, Barker and others, 2003). This inherent asymmetry favors the obduction of
back-arc crust onto the continental margin if the ensialic arc and young back-arc are
placed under compression (for example, Rocas Verdes: Dalziel, 1986; Barker and
others, 2003). Compression of the arc can be caused by a change in plate motions
(Andean orogenesis: Dalziel, 1986) and/or collision with thickened crust, such as an
oceanic plateau (for example, Cloos, 1993). The incomplete understanding of the
Ordovician plate motions precludes any inferences to be made about the former,
although evidence for a Tremadocian outboard collision event may be preserved in the
Notre Dame Bay area of Newfoundland. The Summerford Group basalts (fig. 9; at least
Tremadocian: Kay, 1967) have been interpreted as remnants of a seamount(s) (Jacobi
and Wasowski, 1985) which was accreted to the Penobscot along the Red Indian Line
and incorporated into the Dunnage melange (van Staal and others, 1998). The
original aerial extent of the seamount or plateau represented by the Summerford
Group is unknown as only the upper portion of the crust is likely to be incorporated
into the accretionary complex (for example, Kimura and Ludden, 1995) while the rest
would be generally subducted (for example, Cloos, 1993). Hence, the capability of the
Summerford Group to place the Penobscot arc under compression leading to inver-
sion of the back-arc is only a speculation, although it can certainly be a viable cause for
the Penobscot Orogeny and accompanying magmatic gap. Alternate models may
involve subduction of young oceanic lithosphere and/or spreading center. Following
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the inversion of the back-arc basin and obduction of the Penobscot ophiolites, felsic
arcrelated plutons intruded the Gander margin and stitched the ophiolites by 478 to 474
Ma (for example, Colman-Sadd and others, 1992; Tucker and others, 1994), placing an
upper age constraint on the age of the Penobscot Orogeny in Newfoundland.

Tectonic Setting of the Wigwam Brook Group

The Wigwam Brook Group is the youngest known tectono-stratigraphic unitin the
Victoria Lake supergroup. The Wigwam Brook Group probably unconformably over-
lies the Pats Pond Group, indicating deposition above Penobscot Arc basement.
Chemistry of the volcanic rocks indicates that there are two distinct tectonic settings
preserved in the basal Dragon Pond Formation. High silica rhyolite (WB;) near the
base of the Dragon Pond Formation lacks an arc signature and plots in part in the
within-plate field on a granitoid tectonic discrimination diagram (fig. 7; Pearce and
others, 1984), and could have erupted in a tectonic setting such as rifting of an ensialic
arc. The age of eruption of WB, rhyolite is poorly constrained at present, it may be
significantly older than the overlying volcanic rocks (Williams and others, 1993). The
proposed extensional setting is consistent with the dominantly extensional evolution
of the Victoria Arc in the Middle Ordovician (for example, O’Brien and others, 1997;
MacLachlan and Dunning, 1998b; van Staal and others, 1998). Alternatively, this
unusual chemistry may be related to ridge subduction as inferred for the broadly
correlative portions of the Bathurst supergroup of New Brunswick (Rogers and van
Staal, 2003; Rogers and others, 2003; van Staal and others, 2003).

Felsic volcanic rocks that are geochemically different were deposited above the
WB, rhyolite and associated volcanoclastic sediments. WB,_, andesitic and dacitic rocks
exhibit LREE enrichment and Nb depletion consistent with derivation in a volcanic arc
setting, although this could also be an inherited characteristic of volcanic arc-related
basement. The low €Nd values (-4.0) in WB dacite indicate strong influence of mature
continental crust (Tpy ~1370 Ma), either in the source and/or as a result of
contamination by continentally-derived sediment during deposition. The associated
mafic volcanic rocks near the top of the Dragon Pond Formation also suggest eruption
in a volcanic arc setting. The predominantly felsic volcanic activity, combined with very
low eNd values, zircon inheritance and basement-cover relationships, indicate erup-
tion of the Dragon Pond Formation in a mature ensialic arc setting above composite
Penobscot and Gander basement.

The upper portions of the Dragon Pond Formation record waning volcanic
activity, suggesting a significant change in tectonic environment. The overlying Half-
way Pond and Perrier’s Pond Formations are predominantly sedimentary. Shale and
immature wacke comprise the Halfway Pond Formation, while shale and black shale
dominate the Perrier’s Pond Formation. The transition from Dragon Pond Formation
to Halfway Pond and Perrier’s Pond formations is interpreted to represent the
cessation of ensialic arc volcanism. Cessation of arc volcanism is well documented in
the Exploits Subzone and the predominantly volcanic Victoria Lake supergroup is
overlain by marine black shale and turbidite sequence of the Upper Ordovician to
Llandovery Badger Group (Williams and others, 1993).

Evolution of the Victoria Arc

Following the Penobscot Orogeny, Middle to Upper Ordovician rocks of the
Victoria Lake supergroup were deposited on the composite Penobscot - Gander
basement. Volcanic rocks of the Victoria Lake supergroup were erupted in various
arcrelated settings related to the Victoria Arc magmatism in central Newfoundland
(for example, Evans and Kean, 2002). The oldest dated felsic ensialic arc volcanic rocks
in the Victoria Lake supergroup are contained in a structural panel immediately to the
east of the Wigwam Brook Group (c. 453 Ma), within the c. 462 Ma (Dunning and
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others, 1987) Sutherlands Pond Group (fig. 1; Rogers and others, 2005b), which
contains E-MORB-like basalt (Upper Basalts: Evans and Kean, 2002). Coeval calc-
alkaline arc felsic and E-MORB mafic magmatism suggests the presence of an imma-
ture back-arc basin to the east of the Wigwam Brook arc volcanics. Further to the east,
the Middle Ordovician Diversion Lake Group (not shown; Kean and Mercer, 1981)
basalts and Harpoon Gabbro intrusive suite (fig. 1; 465=2: Pollock and others, 2002,
2004) have enriched within plate characteristics with tholeiitic and calc-alkaline
affinities suggestive of rifting of ensialic basement (Pollock and Wilton, 2001; Evans
and Kean, 2002). While the Red Cross Group (Valverde-Vaquero and others, 2006),
situated along the Noel Pauls Line (fig. 9), is most likely a correlative of the Bathurst
Supergroup in New Bruswick (van Staal and others, 2003), which represents the
Exploits — Tetagouche backarc basin (fig. 10B). Similar to the Penobscot arc (see
previous), this configuration most simply reflects the location of the trench to the west
of the arc — back-arc, that is along or underneath the Red Indian Line (fig. 10C).

Correlative arc sequences to the Victoria Arc include the Wild Bight-Exploits Arc
and back-arc in the north-central Newfoundland (MacLachlan and others, 2001) and
Popelogan Arc — Tetagouche back-arc in New Brunswick (van Staal and others, 1998).
The oldest Victoria arc-related supra-crustal rocks in Newfoundland include the Upper
Wild Bight Group (fig. 9; c. 473 Ma: MacLachlan and Dunning, 1998b) and Upper
Exploits Group (fig. 9; Arenig: O’Brien and others, 1997). The Wild Bight Group
records the establishment of ensialic calc-alkaline arc magmatism above composite
Gander and Penobscot basement and subsequent rifting of this arc (MacLachlan and
Dunning, 1998b). The adjacent Exploits Group also records opening of a back-arc in
which the sedimentation was active until at least Upper Ordovician (O’Brien and
others, 1997). Similarly, calc-alkaline magmatism was established in the Popelogan Arc
in New Brunswick by c. 474 Ma (for example, Rogers and others, 2003) followed by the
opening of the Tetagouche back-arc basin (for example, van Staal and others, 1998;
Rogers and van Staal, 2003).

The distribution of the Popelogan — Victoria Arc and Exploits — Tetagouche
back-arc complexes indicates east-dipping subduction underneath the Gander margin,
which culminated in the opening of the wide Japan Sea-like Exploits — Tetagouche
back-arc basin (fig. 10; for example, van Staal, 1994; O’Brien and others, 1997; van
Staal and others, 1998; MacLachlan and others, 2001; Rogers and van Staal, 2003).
Volcanism and sedimentation in the Victoria — Popelogan Arc and Exploits — Teta-
gouche back-arc were active until the Upper Ordovician, followed by a general
cessation of arc volcanism (Victoria Arc: see above, Williams and others, 1993;
Popelogan Arc: van Staal and others, 1991), syn-tectonic sedimentation (Badger
Group: Williams and others, 1993), and the unroofing of the peri-Gondwanan (van
Staal and others, 1991) and peri-Laurentian (for example, Kean, 1983; Dunning and
others, 1987; Bostock, 1988) arc complexes. Subsequently deposited syn-tectonic
sedimentary rocks in the Exploits Subzone contain a detrital contribution from both
the Notre Dame Arc and Laurentian basement (Badger Group: Nelson, 1981; Mc-
Nicoll and others, 2001). This evidence suggests Upper Caradoc collision of the
peri-Gondwanan Victoria — Popelogan arc and the peri-Laurentian Annieopsquotch
Accretionary Tract along the Red Indian Line and closure of the main tract of Iapetus
(van Staal and others, 1998; Zagorevski and others, 2006).

CONCLUSIONS

Two new peri-Gondwanan tectono-stratigraphic units, the Tremadocian Pats
Pond Group and probably unconformably overlying Caradoc Wigwam Brook Group,
have been identified through detailed mapping, geochemistry and geochronology in
the Victoria Lake supergroup in Newfoundland. The Pats Pond and Wigwam Brook
groups define the western-most extent of the Victoria Lake supergroup and the
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position of the Red Indian Line. They also preserve the last stages of volcanism and
sedimentation of the Penobscot and Victoria arcs and provide constraints on the
evolution of these two arc systems. The tectonic model for the Penobscot Arc
presented herein differs from the previously proposed models in that the ensialic
Penobscot Arc was built above an east-dipping (present coordinates) subduction zone
along the Gander margin. Ensialic Penobscot arc volcanism was active from 513 to 485
Ma, and at least in part was accompanied by opening up of a back-arc basin (fig. 10B).
Obduction of the back-arc ophiolites onto the Gander Margin at 485 to 480 Ma and the
local formation of unconformities on the Gander margin mark the Penobscot Orog-
eny, which formed in response to closing the back arc basin and resulted in an arc
magmatic gap. Calc-alkalic arc magmatism was re-established above an east dipping
subduction zone by at least c¢. 473 Ma (fig. 10B; for example, MacLachlan and
Dunning, 1998b; Rogers and others, 2003). The Popelogan — Victoria Arc formed in a
generally extensional setting, as indicated by the eruption of coeval non-arc volcanic
rocks, and the formation of the wide Japan Sea-like Exploits — Tetagouche back-arc
basin (fig. 10C; van Staal, 1994; O’Brien and others, 1997; MacLachlan and Dunning,
1998b; van Staal and others, 1998; Rogers and others, 2003). Magmatism and sedimen-
tation in the Victoria — Popelogan Arc and Tetagouche-Exploits back-arc (Dunning
and others, 1987; O’Brien and others, 1997; MacLachlan and Dunning, 1998b; Rogers
and van Staal, 2003; Rogers and others, 2003) continued until the Caradoc collision
with the Peri-Laurentian Red Indian Lake Arc (van Staal and others, 1998; Zagorevski
and others, 2006), marking the closure of the main portion of Iapetus and the arrival
of the leading edge of Ganderia to the Laurentian margin. Subsequently, subduction
stepped back into the Tetagouche — Exploits back-arc basin, closing the remainder of
the Iapetus by the end of Early Silurian (fig. 10C; for example, van Staal and others,
1998), which led to the Salinic Orogeny.

ACKNOWLEDGMENTS

We are honored to form part of this special issue dedicated to the life achievement
of John Rodgers whose work on the Appalachian/Caledonian Orogen, in our humble
opinion the most beautiful and challenging orogen on our planet, was an inspiration
to us all. The first author gratefully acknowledges the support of Geological Survey of
Canada, Natural Science and Engineering Research Council, Ontario Graduate Schol-
arship Program and Strategic Areas of Development Program. The authors thank the
Ottawa-Carleton Radiogenic Isotope Group and staff of Geological Survey of Canada
geochronology laboratory for assisting in isotope analysis. This manuscript was signifi-
cantly improved through the reviews of J. Kim, B. Murphy, A. Tremblay, J. Whalen, and
R. Wintsch. This is Geological Survey of Canada contribution #20060079, TGI000018:
Geology of the Iapetus Suture.

APPENDIX

SHRIMP 1II analyses were conducted at the Geological Survey of Canada (GSC) using analytical
procedures described by Stern (1997), with standards and U-Pb calibration methods following Stern and
Amelin (2003). Zircons from the samples were cast in 2.5 cm diameter epoxy mounts [GSC mount #257 for
sample VLA01-067 (27630) and GSC mount #295 for sample VLA01-314 (27630)] along with fragments of
the GSC laboratory standard zircon (26266, with 206py, /238 age = 559 Ma). The mid-sections of the zircons
were exposed using 9, 6, and 1 pm diamond compound, and the internal features of the zircons were
characterized with backscatter electrons (BSE) and cathodoluminescence (CL) utilizing a Cambridge
Instruments scanning electron microscope (SEM). Mount surfaces were evaporatively coated with 10 nm of
high purity Au. Analyses were conducted using an '°0O" primary beam, projected onto the zircons at 10 kV.
The sputtered area used for analysis was ca. 25 wm in diameter with a beam current of ca. 13 nA and 5 nA for
27252 and 77630, respectively. The count rates of ten isotopes of Zr*, U, Th™, and Pb™ in zircon were
sequentially measured over 6 scans (sample z7252) or 4 scans (z7630) with a single electron multiplier and a
pulse counting system with deadtime of 35 ns. Off-line data processing was accomplished using customized
in-house software. The 1o external errors of 2°°Pb/?**U ratios reported in table 1 incorporate a *1.0 percent
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error in calibrating the standard zircon (see Stern and Amelin, 2003). No fractionation correction was
applied to the Pb-isotope data; common Pb correction utilized the measured 2***Pb/2°Pb and compositions
modeled after Cumming and Richards (1975). The 2*°Pb/2?3U ages for the analyses have been corrected for
common Pb using both the 204- and 207-methods (Stern, 1997), but there is generally no significant
difference in the results (table 1). Concordia ages (Ludwig, 1998) have been calculated for the samples
presented in this paper. A Concordia age incorporates errors on the decay constants and includes both an
evaluation of concordance and an evaluation of equivalence of the data (how well the data fit the assumption
that they are repeated measurements of the same point). The calculated Concordia ages and errors quoted
in the text are at 20 with decay constant errors included.
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