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A comparison of automatic and supervised
methods for extracting lithological end members
from hyperspectral data: application to
lithological mapping in southern Baffin Island,
Nunavut

J.R. Harris, P. Ponomarev, S. Shang, P. Budkewitsch, and D. Rogge

Harris, J.R., Ponomarev, P., Shang, S., Budkewitsch, P, and Rogge, D., 2006: A comparison of automatic
and supervised methods for extracting lithological end members from hyperspectral data: application to
lithological mapping in southern Baffin Island, Nunavut; Geological Survey of Canada, Current Research
2006-C4, 19 p.

Abstract: This paper compares two automatic methods (unsupervised classification and an end-member
extraction algorithm) and a supervised method (ground collection of training areas followed by matched filter
classification) for producing a spectral map over a small area in eastern Baffin Island in the Canadian Arctic.
The spectral maps and automatically generated spectra used to produce the spectral maps are compared to
the spectral map and spectra produced using the supervised approach.

Both the supervised and unsupervised methods discussed in this paper provide spectral maps that provide
similar lithological information when compared to the mapped geology. The supervised approach provides
the results that are the most comparable to the mapped geology and this is not unexpected as this approach
benefits from fieldwork and supporting geochemical and thin-section analysis.

Résumé : Dans le présent article, nous comparons deux méthodes automatisées (classification non
dirigée et algorithme d’extraction de terme extrême) et une méthode de classification dirigée (collecte au sol
de zones-échantillons suivie d’une classification par filtrage adapté) pour la production d’une carte
spectraloïde d’un petit secteur de l’est de l’île de Baffin, dans l’Arctique canadien. Les cartes spectraloïdes
et les spectres automatiquement générés servant à la production de ces cartes sont comparés à la carte
spectraloïde et aux spectres produits en utilisant la méthode de classification dirigée.

Les méthodes de classification dirigée et non dirigée examinées dans cet article fournissent toutes deux
des cartes spectraloïdes qui présentent de l’information lithologique similaire lorsque comparées à la carte
géologique. La méthode de classification dirigée fournit les résultats les plus comparables à la cartographie
géologique, ce qui n’est pas inattendu puisqu’elle s’appuie sur des travaux de terrain et sur des analyses
géochimiques et de lames minces.
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INTRODUCTION

Hyperspectral remote sensors offer significant advan-
tages over multispectral optical remote sensors (i.e. Landsat)
for geological mapping. The increased spectral resolution
that hyperspectral remote sensors offer allows for identifica-
tion of specific minerals and various rocks groups (i.e. groups
of minerals) as opposed to simple discrimination.
Reflectance properties of minerals have been well studied
(Hunt and Salisbury, 1970, 1971; Hunt, 1977; Goetz et al.,
1982; Clarke et al., 1990), although fewer studies have been
conducted on the reflectance spectra of rocks (Hunt et al.,
1973a, b, 1974). Significant research in hot desert areas of the
world have shown that a wide range of minerals, particularly
clay, hydroxyl-group minerals, and carbonate can be
uniquely identified and mapped through spectral analysis
(see van der Meer and de Jong, 2001, and references therein).
Less research has been conducted in cold-desert environ-
ments typical of Canada’s north; however, recent work using
airborne hyperspectral (PROBE) data in the Canadian Arctic
indicates that dolostone can be uniquely separated from lime-
stone (Budkewitsch et al., 2000) and that metasedimentary,
metatonalitic, and metagabbroic rocks can be discriminated
(Harris et al., 2001, 2005).

Many methods can be envisioned with which to produce a
spectral map. A spectral map is based on differences in spec-
tral reflectance in a hyperspectral or multispectral, remotely
sensed data set. In many cases the spectral map may correlate
with lithogical and/or surficial units on the ground; however,
field verification is generally required to geological calibrate
a spectral map from a hyperspectral data set. This paper com-
pares two automatic methods (unsupervised classification
and an end-member extraction algorithm) and a supervised
method (ground collection of training areas followed by
matched filter classification) for producing spectral maps.
The spectral maps and spectra generated automatically are
compared to those produced using the supervised approach,
as well as the existing lithological map. The supervised

approach involved field verification, collection of field sam-
ples, and subsequent lab analysis using an Analytical Spectral
Device (ASD) ground spectrometer, whereas the automatic
approach did not.

STUDY AREA

The study area comprises a small portion (~ 5 km by 7 km)
of southeastern Baffin Island along the Meta Incognita Peninsula
located in northern Canada (Fig. 1). The area has been chosen
as it represents a typical Arctic geological and biophysical
environment with relatively good bedrock exposure and little
vegetation cover (lichens excluded), comprising a variety of
rock types ranging from gneissic and/or granitoid basement
rocks to rift-related volcanic and sedimentary rocks, and has
recently been mapped (St-Onge et al., 1998a, b; 2001). The
recent bedrock mapping and associated field observations
provide a basis for comparison between spectral maps
derived from the hyperspectral data and the geological maps
that have been produced by traditional methods (i.e. field
traverses, aeromagnetic signatures, and analysis of
airphotos).

The bedrock geology of this area (Fig. 2) was mapped by
St-Onge et al. (1998a, b, 20012001) using traverses spaced 1 km
to 3 km apart. The area comprises of Paleoproterozoic metasedi-
mentary rocks, monzogranite, metatonalite and rare ultramafic
rocks. Polyphase deformation and metamorphism during the
Trans-Hudson Orogeny affected the Paleoproterozoic rocks,
resulting in the current complex fold interference geometry
(St-Onge et al., 1998a, b). The surficial environment includes
rolling topography (~ 350–600 m) with appreciable areas of
exposed and weathered bedrock. Lichen is prevalent and cov-
ers from 0% to 80% of exposed surfaces depending on rock
type. Lichen and stunted vegetation (e.g. grasses, moss, shrub
willows) grows selectively on specific rock types including
metagabbro, metadiorite, and amphibolite.
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DATA

Noranda Inc. collected hyperspectral data along several
flight lines over the study area (Fig. 1), using the airborne
PROBE sensor in mid-July 2000. Swath width for each line
was approximately 7 km and length was 50 km. Flight line
orientation was north-south to minimize bi-directional
reflectance artifacts. Solar elevation angles varied from
approximately 45º to 37.5º during the period of acquisition.
Spatial resolution, which is partially defined by the flight alti-
tude, was approximately 5 m for this data set. The data con-
sisted of 128 bands with a bandwidth of 15 nm ranging from
0.4 µm to 2.5 µm over the visible-near-infrared (VNIR) and
short-wave infrared (SWIR) portions of the electromagnetic
spectrum. The analysis presented here is focused on a small
portion of one flight line (~14 km by 5 km, Fig. 2) that com-
prises a representative subset of the geology of southern
Baffin Island.

METHOD

The data were processed in a number of steps summarized
in Figure 3.

Data preprocessing

The data were converted from digital numbers to radiance
values using calibration coefficients measured in the field
(vicarious calibration) and then atmospherically corrected
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using a MODTRAN 4 algorithm (Berk et al., 1989). A flat
field correction (SMILE; Neville et al. (2003; R.A. Neville,
unpub. technical note, Canada Centre for Remote Sensing,
2004) was then applied to the data to correct for spectral line
curvature.

Vicarious calibration was used to correct the radiometric
coefficients supplied with the data (Secker et al., 2001).
Ground spectra measured in situ were used to provide spectra
for vicarious calibration. Atmospheric correction was based
on a look-up-table (LUT) approach (Staenz and Williams,
1997), which considers the wavelength, pixel position, atmos-
pheric water vapour, aerosol optical depth, and terrain eleva-
tion for the generation of LUT data and then a MODTRAN 4
algorithm is used to correct the data. The SMILE or ‘slit-cur-
vature’ is a method to correct for spectral line curvature
caused by the spectrograph’s dispersing component (prism or
grating) (Neville et al., 2003; R.A. Neville, unpub. technical
note, Canada Centre for Remote Sensing, 2004).

The atmospherically corrected data were not geometri-
cally corrected to preserve the spectral integrity of each pixel;
however, the resulting maps and classifications were geomet-
rically corrected using a second-order polynomial (‘rubber-
sheeting’) to warp the data to the existing geological map for
comparison purposes.

Data enhancement

Areas of snow, ice, water, and vegetation were masked
out following the procedures set forth by Harris et al. (1998,
2005). Eliminating these areas allowed analysis to focus on
areas of exposed or partially weathered bedrock; however,
Harris et al. (2005) found that vegetation could be used as a
proxy for mapping metagabbroic rocks within the study area
and carbonate outside the immediate study area. This was due
to the favourable chemistry of these rocks (high levels of
MgO and or CaO) that nourished vegetation growth. Thus, in
some cases, the exclusion of vegetation in northern regions
may lead to a loss of potential lithological information. This
must be evaluated on a case-by-case basis.

The data were noise reduced using the method proposed by
Harris et al. (in press). This simple technique involves trans-
forming the data over the masked areas (bedrock and weath-
ered surface) using a minimum noise fraction (MNF)
algorithm (Green et al., 1988), selecting the component images
that account for more than 3% of the variance (Harris et al.,
2005), and then applying an inverse MNF transform using only
the selected component images to produce a noise-reduced
data set comprising the same number of channels as the origi-
nal data set. This is an effective technique since much of the
noise in the MNF transformed data set resides in the higher
component images that account for only a small variation of
the information content within the data set. Ten component
images were used in the inverse transform.

Once corrected and noise reduced, the hyperspectral data
set was transformed again using an MNF algorithm. The
MNF was employed as an enhancement technique as ternary
images of the components (spectral maps) were found to pro-
vide good colour separation of the various lithological units
(Harris et al., 2005), enabling the selection of training areas
(end members) in concert with supporting field observations
as well as a valuable spectral map for photogeological inter-
pretation of various lithological units. In fact, Harris et al.
(2005) found that ternary hyperspectral images produced
using a MNF transform provided more lithological informa-
tion than the existing geology map in the same area as this
study.

Supervised approach

An MNF ternary image (Fig. 4) in conjunction with analy-
sis of the existing geology map (Fig. 2) and field observations
were used to select representative training areas for each
lithological unit as well as check areas used for evaluating the
various classifications produced from matched filtering (MF)
(Fig. 4). Training areas (end members) were visually identi-
fied on the basis of colour homogeneity on the MNF colour
ternary image as well as by inspecting N-dimensional
scatterplots of the MNF components. Training areas (shown
on Fig. 4) comprising a single pixel were collected for each
lithological unit, derived from the MNF image; however, the
end-member spectra used for classification were generated
from an average of nine pixels in total surrounding the single
pixel defining the training area. It was found that for mapping
lithological units comprising a number of minerals an aver-
age spectrum based on nine, 5 m pixels, representing an area
of 225 m2, produced more representative spectra than spectra
based on a single pixel. Furthermore, the averaging process
helped to produce spectra that were less noisy. The training
areas were selected in areas where topographic effects were
likely to be minimal by inspecting the shaded DEM (not
shown) of the study area. The bright and dark areas on the
DEM (slopes facing the sun azimuth direction at the time of
acquisition and the adjacent, poorly illuminated back slopes)
were avoided when possible. Check areas (Fig. 4) were cho-
sen based on the colour separation seen on the ternary image
(Fig. 4), inspection of the mapped geology (Fig. 2), and field
observations. The check areas were used as ‘ground truth’
with which to evaluate the various lithological maps
produced by the supervised and automatic methods using
crosstabulation (confusion matrix) analysis.

Matched filtering (MF) was applied to the masked and
noise-reduced data (Fig. 3) and used to find the abundances of
four end members (monzogranite, psammite, quartzite, and
metatonalite) using a partial unmixing. Unmixing is a technique
whereby the relative abundances of materials present in a multi-
or hyperspectral data set are determined based on the material’s
spectral characteristics. The reflectance for each pixel is
assumed to be a linear combination of each material (termed end
member) present within each pixel. This technique maximizes
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the response of the known end member and suppresses the
response of the composite unknown background, thus
‘matching’ the known signature. Unlike linear unmixing,
matched filtering does not require knowledge of all the end
members within the scene. Thus in areas of highly mixed
rocks (typical of this study area) where identification of all
the end members is difficult, matched filtering may be a better
choice for classification. Matched filtering was selected to
classify the data sets as Harris et al. (2005) found that better
results were achieved using matched filtering on this data set
as opposed to Spectral Angle Mapper (SAM), another popu-
lar algorithm for classifying hyperspectral data.

The results of the matched filtering appear as a series of
gray-scale images (fraction or abundance maps), one for each
selected end member. These fraction maps have values that
range from 0 to 1 where 0 represents a nonmatch to the
end-member (training) spectrum and 1 is a perfect match. The
fraction maps can be combined in ternary images that are use-
ful for displaying and interpreting lithological units. Thresh-
olds using standard deviations, quantiles, or probability plots
can then be identified to create binary maps from the fraction
maps to show areas with relatively good matches to the
end-member spectra or combined with other fraction maps as
ternary images producing a lithological and/or compositional
map. The binary maps can also be combined into class maps
that can be used to compare to the check sites to evaluate the
performance of the classification

Automatic approaches

Many methods exist for automatically deriving end mem-
bers (spectra) from hyperspectral data including ORASIS
(Bowles et al., 1998), N-FINDR (Winter, 1999) and Iterative
Error Analysis (IEA) (Neville et al., 1999). In this study the
authors have used the sequential maximum angle convex
cone (SMACC) method as this offers advantages for
hyperspectral data sets that have high correlation between
channels that can impair unmixing by standard techniques
(Gruninger et al., 2004).

Sequential Maximum Angle Convex Cone
(SMACC) method

The SMACC algorithm, which is part of the ENVI™
image processing software, is based on a convex cone model
for representing vector data where the end members are
extracted directly from the hyperspectral data set. Extreme
points in N-dimensional space are identified, forming a con-
vex cone that comprises the first end member. The next end
member is derived from applying a constrained oblique pro-
jecting to the existing cone and the cone is then increased to
include the new end member. This process is repeated until a

projection derives an existing end member or until the desired
number of end members have been found. A set of abundance
images (equalling the number of end members found) are
generated which show the reflectance of each pixel contrib-
uted by each resulting end member. In simple terms SMACC
finds the brightest pixel in the data set, then finds the pixel
most different from the brightest and then the pixel most dif-
ferent from the first two. This is an iterative process that
continues until a pixel already included in a previous group
has been found or until the specified number of end members
has been found. More detail on this algorithm including the
mathematical derivation can be found in Gruninger et al.
(2004).

The SMACC was applied to the masked and noise reduced
data set (see Fig. 3). Initially the number of end members to be
found was set at 30; however, the actual number found that
appeared to be related to continuous lithological units, through
preliminary visual analysis of the spectra and associated abun-
dance images, was reduced to fourteen. The spectra of these
derived end members and associated abundance images were
then visually assessed in more detail and compared to the
geology map (Fig. 2) and MNF ternary image (Fig. 4) and only
those that appeared to be spatially continuous and related to
lithological patterns were selected for further analysis. The
total number of lithological end members after this screening
process was six. These spectra and abundance images were
evaluated by comparing them to the end members derived
from supervised analysis (see above).

Unsupervised classification

A K-means clustering algorithm was applied to the
masked and noise-reduced data set. This commonly used and
popular algorithm initially uses a user-specified number of
means (classes) evenly distributed in N-dimensional space
and then iteratively assigns pixels to clusters reclassified after
each iteration. More details on this algorithm can be found in
Tou and Gonzales (1974).

K-means clustering was applied to the first 10 MNF com-
ponent images that were calculated from the masked and
noise-reduced data (Fig. 3). A total of six classes were
derived for the classification and the average spectra for each
of these classes were calculated and used as end members. It
was felt that six classes would be sufficient to capture the sig-
nature (spectra) for the four known rock types as well as any
possible extraneous signatures due to other factors (i.e.
noise). These spectra were then used to classify the masked
and noise-reduced data using MF, similar to the supervised
process discussed above. These spectra and the associated
unsupervised classes and abundance maps generated from
MF were evaluated by comparing them to the end members
and abundance images derived from the supervised analysis.
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RESULTS

Supervised approach

The spectra for the quartz-bearing rocks (quartzite, mon-
zogranite; Fig. 5a for spectra and Fig. 6a, b, c, d for type expo-
sures and hand samples of the various rock types) have the
highest intensity and this is expected as felsic rocks generally
have higher albedos and thus greater overall reflectance. The
difference between the two spectra other than the quartzite
being more reflective occurs in the short-wave-infrared
(SWIR) portion where a moderate absorption band typifies
the quartzite spectra around 2.32 µm, indicating the presence

of another mineral other than pure quartz or an effect due to
lichen. A reflectance peak or absorption trough is absent for
the monzogranite in this portion of the spectra whereas the
metatonalite and psammite have reflectance peaks.

The monzogranite is characterized by the second highest
reflectance (Fig. 5a, 6c, d) next to the quartzite, but the spec-
trum is relatively featureless with no noticeable peaks or
troughs in the VNIR or SWIR.

The metatonalite (Fig. 5a, 6e, f) is typified by lower
reflectance than the psammite throughout the VNIR and
SWIR. The psammite (Fig. 5a, 6g, h, i) has a strong iron sig-
nature in the visible portion of the electromagnetic spectrum

Current Research 2006-C4 7 Harris, J.R. et al.

2500

2500

2000

2000

1500

1500

1000

1000500
Wavelength

c) Spectral library plots

4000

3000

2000

1000

2500200015001000500
Wavelength

b) Spectral library plots

Unsupervised, monzogranite

Unsupervised, metatonaliteUnsupervised, quartzite

Unsupervised, psammite

Auto-end-member 2

Auto-end-member 3

Auto-end-member 5

Auto-end-member 7

Auto-end-member 9

Auto-end-member 10

3000

2500

2500

2000

2000

R
ef

le
ct

an
ce

 (
p

er
 c

en
t 

x 
10

0)

1500

1500

1000

1000

500

500
Wavelength

a) Spectral library plots

Monzogranite

Metatonalite

Gabbro

Quartzite

Psammite

R
ef

le
ct

an
ce

 (
p

er
 c

en
t 

x 
10

0)

R
ef

le
ct

an
ce

 (
p

er
 c

en
t 

x 
10

0)

Figure 5. Spectra extracted from the airborne PROBE hyperspectral data set for various
rock types, a) spectra extracted from training areas for each major lithological unit (training
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Figure 7. Abundance maps for each major lithological unit derived from training area spectra
(Fig. 5a) and matched filtering (MF) classification based on noise-reduced hyperspectral data
set, a) quartzite abundance map, b) monzogranite abundance map, c) metatonalite
abundance map, and d) psammite abundance map.
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Figure 8. Ternary images based on
abundance maps produced from supervised
and automatic approaches for identifying
end members, a) based on the supervised
approach, b) based on automatic approach
(Sequential Maximum Angle Convex Cone,
SMACC).



typified by a steep slope from the blue to infrared wave-
lengths with a peak around 0.834 µm. Harris et al. (in press)
provide a more detailed interpretation of the spectra.

The individual rock types are quite distinct on the MNF ter-
nary image (Fig. 4); the psammite units are green-yellow, the
monzogranite units are cyan, the metatonalite units are
orange-red, and quartzite units are blue. The MF fraction maps
produced (Fig. 7), which in fact represent mixtures of the vari-
ous rock types, in some cases do show reasonable separation of
each lithological unit when compared to the MNF ternary image
(Fig. 4) and the existing geology map (Fig. 2). The brighter tones
in Figure 7 indicate areas that have a better spectral match to the
end member (training spectra), the locations of which are shown
on Figure 4, and the actual spectra on Figure 5a.

The quartzite abundance map (Fig. 7a) shows a sinuous
(folded) zone of resistant quartzite that has been included in
one large metasedimentary unit on the geology map (Fig. 2).
In addition the dark, sinuous band in the central portion of the
image closely correlates with the metasedimentary unit com-
prising psammite. The psammite unit is a dark tone on the
quartzite abundance map (Fig. 7a), indicating a low match
and thus a large difference in spectral response (see Fig. 5a).

The monzogranite abundance map (Fig. 7b) roughly corre-
lates with the mapped monzogranite (Fig. 2) but appears to be
more extensive and continuous than mapped. The metatona-
lite abundance maps (Fig. 7c) appears to comprise two sepa-
rate units differing from the one larger mapped unit (Fig. 2).
The psammite abundance map (Fig. 7d) comprises one mod-
erately thick sinuous unit and a thinner unit that have been
lumped into the mapped metasediment unit on the regional
geology map (Fig. 2).

A ternary image (Fig. 8a), comprising the abundance
maps shown in Figure 7 provides a first-order lithological
map in which the quartzite, psammite, and metatonalite units
are clearly separated displayed in red, green, blue and/or cyan
colours, respectively.

Each of the abundance maps shown in Figure 7 were con-
verted to a classified map using a threshold of three standard
deviations above the mean value for each map. A threshold of
three standard deviations was chosen to create the class maps
as this includes the areas of the best match (i.e. > 95% match)
to each of the spectra (Fig. 5a) as well minimizing possible
areas of overlap (confusion) between end members. These
were then combined into one image (Fig. 9a) and compared to
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a)  Supervised class map b)  Auto-end-member class map c)  Unsupervised class map

Figure 9. Class maps derived from thresholding abundance maps a) based on the supervised approach where
abundance maps (Fig. 7) were created using spectra shown on Figure 5a (training areas for spectra shown on Fig. 4)
and matched filtering, b) based on the automatic approach (Sequential Maximum Angle Convex Cone, SMACC) to
define end members (spectra shown on Fig. 5b) and abundance maps (see Fig. 10), c) based on the automatic
approach (unsupervised classification) to define end members (spectra shown on Fig. 5c) and abundance maps (see
Fig. 13).



check areas (Fig. 4) identified in the field for each lithology
using crosstabulation (confusion matrix) analysis. An 88.7%
accuracy was achieved when comparing the class map to the
check areas and greater than 90% when comparing the class
map to the training areas (Table 1). The quartzite and monzo-
granite were the most confused as they have similar spectra
confirmed by transformed divergence (TD) analysis (Table 2)
that shows a smaller TD value (1.31) that is indicative of only
moderate statistical separation between spectra. Both units are
characterized by high reflectance due to the high abundance of
quartz (Fig. 5a). The kappa coefficients which are generally
high (> 0.4) (Table 1) also indicate good agreement between
the class map and check training areas. Quartzite shows good
spectral separation between psammite and metatonalite (TD >
1.9, Table 2) and moderate separation from monzogranite (TD
of 1.31, Table 2). The psammite and metatonalite shows

moderate separation (TD of 1.72) with psammite characterized
by higher reflectance in both the VNIR and SWIR as well as
strong iron reflectance in the visible (V) range (Fig. 5a).

Automatic approach

Sequential Maximum Angle Convex Cone
method

The spectra of the six automatically derived end members
(Fig. 5b) are quite distinct and provide four abundance
images (Fig. 10) that can be directly related to mappable
lithological units. Using the ENVI™ Spectral Analyst™
function the best match between the automatically derived
spectra (auto-end-members, Fig. 5b) and the supervised spec-
tra (Fig. 5a) can be obtained (Table 3, Fig. 11). The output
from Spectral Analyst is a ranked score between 0 and 1
(based on spectral feature fitting); the highest score (see
Table 3) indicates the closest match and higher confidence in
spectral similarity. Auto-end-member 2 (Fig. 5b) matches
well with the quartzite end member (Fig. 11a) and to a lesser
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Accuracy
(%)

Kappa 
coefficient 

1. Supervised 
Training areas 92.7 0.90 
Check areas 88.7 0.83 

2. Auto-end-members 
Training areas 69.4 0.63 
Check areas 49.9 0.29 

3. Unsupervised 
Training areas 16.6 0.06 
Check areas 88.1 0.83 

Table 1. Results of comparing class maps
(Fig. 9) for each end member extraction
method to check areas shown on Figure 4.

Quartzite Psammite Metatonalite Monzogranite 

Quartzite   1.9 1.95 1.31
Psammite    1.72 1.99
Metatonalite    1.99
Monzogranite      

Table 2. Matrix of Transformed Divergence (TD) values for each end
member derived from training areas shown on Figure 4. (TD >1.9 = good
separability, <1 is poor; colours based on MNF ternary image in Fig. 4).

d)a) b) c)

Figure 10. Abundance maps derived from the automatic method (Sequential Maximum Angle Convex Cone,
SMACC) to derived end members: a) auto-end-member 2, mostly quartzite, b) auto-end-member 3, mostly
metatonalite, c) auto-end-member 5, mostly monzogranite, d) auto-end-member 9, mostly psammite.



extent the monzogranite end member. The associated abun-
dance map for the auto-end-member 2 (Fig. 10a) has the
strongest correlation (see last column on Table 3) with the
quartzite abundance map (Fig. 7a). Auto-end-member 3 (Fig. 5b)
has the strongest match with the metatonalite spectra (Fig. 11b)
and the abundance map (Fig. 10b) is moderately correlated

(0.4, Table 3) with the metatonalite abundance map derived
from the supervised approach (Fig. 7c). Auto-end-member 5
(Fig. 5b) best matches the monzogranite spectrum (Fig. 11c)
and the abundance map (Fig. 10c) has the highest correlation
(0.51, Table 3) with the monzogranite abundance map (Fig. 7b)
whereas auto-end-member 9 (Fig. 5b) best matches the psammite
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Figure 11 (left). Spectra derived from automatic generation of end members (Sequential Maximum
Angle Convex Cone, SMACC), a) auto-end-member 2, mostly quartzite and best match from spectra
(Fig. 5a) derived from training sites (Fig. 4), which in this case is quartzite, b) auto-end-member 3,
mostly metatonalite and best match from spectra (Fig. 5a) derived from training sites (Fig. 4), which in
this case is metatonalite, c) auto-end-member 5, mostly monzogranite and best match from spectra
(Fig. 5a) derived from training sites (Fig. 4), which in this case is monzogranite, d) auto-end-member 9,
mostly psammite and best match from spectra (Fig. 5a) derived from training sites (Fig. 4), which in this
case is psammite.

Auto-end- 
member 

Best spectral match 
(SFF) 

Second best 
spectral match 

(SFF) 
Lithological 

type
Highest correlation (with 

MF-abundance maps) 

2 Quartz (0.61) Monzogranite (0.51)  Quartz- 
monzogranite 

 Quartz = 0.68 

3 Metatonalite (0.79) Psammite (0.67) Metatonalite  Metatonalite = 0.4 
5 Monzogranite (0.47) Metatonalite (0.45) Monzogranite- 

metatonalite
 Monzogranite = 0.51 

9 Psammite (0.59) Metatonalite (0.57) Psammite  Psammite = 0.3 

Table 3. Best spectral matches between end members derived automatically using SMACC and end
members derived from training areas shown on Figure 4.



spectra (Fig. 11d) and the abundance map (Fig. 10d) shows
the highest correlation (0.3, Table 3) with the psammite
abundance map (Fig. 7d).

A ternary map of the abundance images (Fig. 8b) provides
reasonable separation of the quartzite and metasedimentary
rocks, although not nearly as clear as the ternary map derived
from the MF abundance maps based on the training areas
(Fig. 8a).

A class map (Fig. 9b) was derived from each of the abun-
dance maps for each auto-end-member using the same
approach used to produce class maps of the MF fraction
maps, discussed above. The class map was compared to the
check areas using a crosstabulation. Reasonable accuracies

were achieved between the class map and the check areas
(49.9%) and supervised training areas (69.4%) (Table 1).
Again confusion was highest between auto-end-member 2
(reflecting mostly quartzite) and auto-end-member 5 (mostly
monzogranite). Some confusion between auto-end-member
9 (psammite) and quartzite and auto-end-members 3
(metatonalite) and 9 (psammite) was also found.

Unsupervised method

An unsupervised classified map of the first 10 MNF com-
ponent images (Fig. 12) produces a reasonable lithological
map when compared to the MNF ternary image (Fig. 4) and
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Mostly metatonalite

Mask: water, ice,
snow, vegetation

Quartzite and
monzogranite

Psammite

Monzogranite

Psammite and
illumination artifact

Noise: snow and/or ice

33

22

44

11

Unsupervised class mapUnsupervised class map

Figure 12. Class map derived from unsupervised
classification of the first 10 component images
derived from an MNF transform applied to the
noise-reduced and masked PROBE hyperspectral
data set (see Fig. 3 for processing steps).



the mapped geology (Fig. 2); however, the classification has
highlighted an illumination problem in the raw data reflected
by the magenta colour on the right side of the image. This is in
part a reflection of lithological differences, but also of
unequal illumination across the swath. Methods to correct for
this unequal illumination effect are presently under investiga-
tion. Comparison to the MNF ternary image (Fig. 4) and geo-
logical map (Fig. 2) as well as field observations indicates
that the yellow class represents mostly metatonalite, the blue
class psammite, the green and cyan, quartz-bearing rocks
(quartzite and monzogranite). The magenta class represents
psammite and/or sandstone, but also is a manifestation of
unequal illumination across the swath as mentioned above.

The average spectra for each unsupervised class (Fig. 5c)
were used to classify the noise-reduced and masked data
using MF and Figure 13 shows the resulting abundance maps.

The spectrum for unsupervised class 1 (Fig. 5c for spec-
trum and Fig. 12 for class) best matches the quartzite spec-
trum (Table 4, Fig. 14a) and the associated abundance map
(Fig. 13a) has the highest correlation with the quartzite abun-
dance map (Fig. 7a). The spectrum from unsupervised class 2
(Fig. 5c, 12) best matches the quartz-bearing rocks (quartzite
and monzogranite; Table 4; Fig. 13b); however, the highest
correlation of the abundance map (Fig. 13b) is with the psam-
mite abundance map (Fig. 7d). Indeed, visual comparison of
these abundance maps indicates that unsupervised class 2 is
more representative of psammite, which is the third best spec-
tral match (Table 4) according the ‘Spectral Feature Fitting’
algorithm. This stresses the need for independent evaluations
of the spectra through a comparison of abundance maps (as
above), as spectral matching algorithms are by no means
foolproof. This is further illustrated by unsupervised classes 3
and 4, the spectra of which best match quartzite according to
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d)d)c)c)b)b)a)a)

Figure 13. Abundance maps producing using average spectra (Fig. 5c) for each class derived from the
unsupervised classification (Fig. 12), using matched filtering (MF), a) quartzite and/or monzogranite,
b) psammite, c) metatonalite, d) monzogranite and/or quartzite.

Unsupervised 
end-member 

class
Best spectral 

match 
Second best 

spectral match 
Lithological type 

2, green Quartz (0.864) Monzogranite (0.777)  Quartz or monzogranite 
3, blue Quartz (0.8) Monzogranite (.74) / 

psammite (0.69) 
Monzogranite or psammite 

4, yellow Quartz (0.754) Metatonalite (0.74) Metatonalite or quartzite 
5, cyan Quartz (0.863) Monzogranite (0.775) Monzogranite or quartzite 

Table 4. Best spectral matches between end members derived automatically using
unsupervised classification and end members derived from training areas shown on
Figure 4.



the spectral feature-fitting algorithm (Table 4); however, a
better visual match is obtained by the spectra that have the
second best match, these being metatonalite and monzo-
granite for unsupervised spectra 3 and 4, respectively
(Fig. 14c, d; Table 4). Indeed the abundance maps for these
spectra (Fig. 13c, d) show the highest correlations with the
metatonalite and monzogranite abundance maps (Fig. 7c, b).

In general, the averaged spectra for each unsupervised
map class (Fig. 5c) appears more similar to the supervised
spectra (Fig. 5a) than the automatically derived spectra
(Fig. 5b).

Comparison of the class map (Fig. 9c) derived by
thresholding each abundance map in Figure 13 (see above)
indicates a good match between the ground verified check
areas and predicted lithology derived from the unsupervised
classification (Table 1). In fact the overall accuracy is equal to
the accuracy derived from the supervised approach when

comparing the class maps to the check areas. The greatest
confusion is between class 1 representing mostly quartzite
and class 4 (mostly monzogranite).

A reasonable lithological map can be created by combining
the MF abundance maps (Fig. 13) derived from the unsupervised
classification into ternary images (Fig. 15). Red on these
maps reflect primarily quartzite; magenta and yellow,
monzogranite; green, psammite; and cyan-blue, metatonalite.

DISCUSSION

All methods discussed in this paper (Fig. 3) provide rea-
sonable spectral maps that appear to represent different litho-
logical units when compared to the mapped geology (Fig. 2)
and the MNF ternary image (Fig. 4) that we have used as
‘ground truth’ in this paper as the colours in this image have
been geologically calibrated in the field (Harris et al., 2005).
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Figure 14. Spectra derived from automatic generation of end members (unsupervised classification,
K-means) represents average spectra for each unsupervised class (see Fig. 12), a) class 1, mostly
quartzite and best match from spectra derived from training sites (Fig. 4) which in this case is quartzite,
b) class 2, mostly psammite and third best match from spectra derived from training sites (Fig. 4), which
in this case is psammite, c) class 3, mostly metatonalite and second best match from spectra derived
from training sites (Fig. 4), which in this case is metatonalite, d) class 4, mostly monzogranite and second
best match from spectra derived from training sites (Fig. 4), which in this case is monzo-granite.
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a)a) b)b)

RGB class 2 (quartzite and/or monzogranite)
RGB class 3 (psammite)
RGB class 4 (metatonalite)

RGB class 5 (quartzite and/or monzogranite)
RGB class 3 (psammite)
RGB class 4 (metatonalite)

Figure 15. Ternary images (spectral maps) based on abundance maps derived from average
spectra from unsupervised classification, a) using abundance maps derived from average spectra
from unsupervised classes 2, 3, and 4, b) using abundance maps derived from average spectra
from unsupervised classes 5, 3, and 4; RGB = red-green-blue.



In fact these maps provide apparently more lithological infor-
mation than on the geology map (Fig. 2). The various litholo-
gical maps produced in this study (especially Fig. 4, 8a, 9, 12,
15) reveal more compositional variation than is present on the
regional geological map (Fig. 2); however, it must be kept in
mind that the geological map is based on regional scale
transects that are spaced on average 3 km apart and filled in
from interpretations of airphotos in contrast to information
derived from 5 m pixels on the airborne hyperspectral data. In
addition compositional units have been grouped together on
the geological map (i.e. quartzite is included in the mapped
metasedimentary unit that comprises semipelite, psammite,
orthoquartzite, and monzogranite). Therefore, this result
might be expected; however, the hyperspectral data offers
compositional information providing a distinct signature for
psammite, quartzite, and monzogranite.

There is no doubt that lichen imparts a similarity to the
spectra throughout the VNIR and SWIR range by decreasing
reflectance and in part suppressing diagnostic reflectance
peaks and troughs (see Fig. 16). In both the spectra for psam-
mite (Fig. 16a) and monzogranite (Fig. 16b) derived from
field samples measured using an ASD spectrometer in the lab
(internal light source), reflection decreases with increased
lichen cover and spectral features (troughs and peaks) are
suppressed especially in the psammite spectra; however, in
this study, enough variability in the spectra as a function of
different mineralogy and associated weathering styles (par-
ticularly colour) was present to successfully discriminate one
major lithological group (metatonalite) and three composi-
tional units (psammite, quartzite, and monzogranite) that
comprise a mapped metasedimentary lithological unit as well
as vegetation which, in this area only, is a good proxy for
metagabbroic rocks (see Harris et al., 2005).

The supervised approach arguably provides the ‘best’
results (Fig. 7, 8a) and this is not unexpected as this approach
benefits from fieldwork and supporting geochemical and
thin-section analysis (Harris et al., 2005); however, support-
ing fieldwork may not always be possible especially when
providing a spectral map to support the initial stages of field-
work (i.e. a first year of a mapping project). In this case a
supervised approach, which involved the inspection of
existing (albeit often old and out-of-date) geological maps in
concert with analysis of remotely sensed data (e.g. Landsat,
airphotos) to define potential end members (training areas),
may provide the best alternative for producing a spectral map
which gives some indication of lithological variability in a
given study area.

The lithological maps produced from particularly the
unsupervised approach (as opposed to the SMACC method)
(Fig. 12, 13) provide reasonable renditions of the mapped
lithology and as discussed above offer more detail on specific
lithological packages than what has been mapped. The unsu-
pervised classification approach may be favoured as the
‘best’ automatic method as it gave better results when com-
paring the derived class map (Fig. 9c) to the check areas;
however, much more analysis on other hyperspectral data
sets in varying geological environments is required to
unequivocally verify this result.

Each method has its advantages and disadvantages. The
supervised approach although not requiring field analysis,
does benefit from it by allowing for the fine-tuning of repre-
sentative training areas (end members), the selection of check
areas and for the geological calibration of the resulting maps.
The automatic approaches are quick and are easily imple-
mented although the associated uncertainty in such maps may
be high. They do, however, produce maps which provide a
first ‘geological look’ at a given area, assist in focusing
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Figure 16. Spectra of hand samples using internal light source from the ASD spectrometer
contact probe a) psammite b) monzogranite.



fieldwork, and/or provide stand-alone maps for areas where
no fieldwork is possible. Both approaches afford the opportu-
nity to collect representative spectra of mixed rocks that can
be stored in a spectral library and applied to adjacent areas or
areas with similar geology and surficial cover.

CONCLUSIONS

Hyperspectral remote sensing holds promise for assisting
in producing spectral maps that can be directly related to dif-
ferent rock types. These spectral maps are useful for focusing
field mapping in areas with complex geology and also as a
data source for producing stand-alone maps that can serve as
first-order lithological maps in remote areas that cannot be
mapped in detail.

Two methods (supervised and automatic) have been pre-
sented to produce a spectral map. For all methods the imple-
mentation of masking and noise-reduction techniques is
recommended to improve classification results. The super-
vised method produced, arguably the ‘best’ results, but
requires field input. Spectral maps that are almost as accurate
as the supervised map, when compared to ground-truth infor-
mation, are produced using both automatic methods
(auto-end-member selection algorithm and unsupervised
classification). The spectra and maps produced using unsu-
pervised classification are in general more similar to the spec-
tra and maps produced using the supervised approach. The
maps produced using either method provide valuable geolog-
ical information in frontier areas such as Canada’s north.
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